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Abstract— In fault isolation, it is often necessary to first
make a decision on which class of fault has occurred. Such
a decision requires isolating the occurred fault class amongst
different possible fault classes. We shall refer to this problem
as Fault Class Isolation (FCI), and this problem is the subject
of this paper. In order to address the FCI problem, a general
methodology is proposed. As an application of the methodology,
FCI schemes using unknown input observers are designed to
achieve the isolation between actuator and sensor class of faults
for certain linear systems with unknown inputs. The results
demonstrate that the FCI between actuator and sensor class of
faults can be achieved under certain conditions. Examples are
provided to show the effectiveness of the proposed FCI schemes.

I. INTRODUCTION

In the context of fault diagnosis, a typical control system

can be shown as in Figure 1. The system includes actuators,

sensors, and a process to be controlled. Therefore, faults

are often put into three classes, i.e., actuator faults, sensor

faults, and process component faults. Many fault detection

and isolation schemes have been proposed for certain class of

faults. For examples, actuator fault diagnosis schemes were

proposed in [1], [2], [3], sensor fault diagnosis schemes were

designed in [4], [5], and process component fault diagnosis

schemes were presented in [6], [7].

A common assumption in the above cited references is that

the fault class is known. However, given a control system

possibly subject to faults, it is often the case that the fault

class is not known a priori. In fact, how to determine the

fault class is an important part of fault isolation.

Although FCI is often needed, little research is devoted

to it. In fact, not such result has been found in the litera-

ture. This observation motivated the research in this paper,

which aims to raise the FCI problem and provide a general

methodology to solve it.

The purpose of this paper is to propose the FCI problem

and present methods that can be used to solve it. Specifically,

it is intended to propose schemes to determine which classes

of faults have occurred, that is, whether actuator faults,

sensor faults, or process component faults have occurred.

The remainder of the paper is arranged as follows: In

Section 2, a FCI problem is formulated, and a general

methodology to solve the problem is provided. In Section

3, the general methodology proposed in Section 2 is applied

to the FCI problem of a class of linear systems with unknown

inputs, and FCI schemes are proposed based unknown input
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Fig. 1. A typical control system

observer (UIO) design. In Section 4, two examples are pro-

vided to show the effectiveness of the proposed FCI schemes

and simulation results are presented. Finally, concluding

remarks are made in the last section.

II. FCI PROBLEM AND GENERAL

METHODOLOGY

With the goal of FCI in mind, an immediate temptation

is trying to formulate and solve the following problem.

General FCI Problem: Given a control system as in Figure

1, determine the possible classes of faults, and once a fault

is detected, identify to which class the fault belongs.

If the problem could be solved, FCI amongst the three

most common classes of faults, i.e., actuator faults, sensor

faults, and process component faults, would be achieved

in a perfect way. However, one may soon find that the

problem is too general to be solved because the number of

measurements provided by sensors will not be enough when

the number of actuators and process components exceeds the

number of sensors.

In order to formulate a tractable fault class isolation

problem, some assumptions have to be made. In this paper,

the following FCI problem is formulated.

Problem of FCI Between Two Fault Classes (FCI2): Given

a control system as in Figure 1, assume that only one class

of faults among two possible fault class can occur. Then the

problem is to identify the fault class after fault detection.

According to the problem, there are three cases in total,

i.e., FCI between actuator and sensor faults; FCI between

actuator and process component faults; and FCI between

sensor and process component faults.

A general methodology that will be used to solve the

above formulated problem is proposed as follows.

General Methodology: Design one residual or a bank of

residuals such that at least one residual is insensitive to one
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class of faults but sensitive the other class of faults. If this

very residual is zero (small), the fault class is isolated as the

one whose residual is insensitive to. If it is not zero (small),

the other class is isolated as the fault class.

In this paper, only FCI between actuator and sensor faults

is considered because the methodology can be used in the

other two cases as well.

III. FCI IN A CLASS OF LINEAR SYSTEMS WITH

UNKNOWN INPUTS

As an application of the general methodology proposed in

the previous section, the FCI between actuator and sensor

faults is considered for linear systems with unknown inputs

described as below

ẋ(t) = Ax(t) + Bu(t) + Dd(t)

y(t) = Cx(t) (1)

where x(t), y(t), u(t) are the system state vector, output

vector and input vector respectively, and x(t) ∈ Rn, y(t) =
(y1(t) · · · yp(t))

T , u(t) = (u1(t) · · · um(t))T . d(t) is the

unknown input vector and d(t) ∈ Rq. A, B, C and D are

all known matrices.

Because FCI is performed after fault detection, a fault

detection scheme is needed. In the following subsection, a

fault detection scheme based on UIO design is provided.

For convenience, define uH(t) as the desired input vector

when all actuators are healthy, which is computed according

to the controller design.

A. Fault Detection Using UIO Design

The observer proposed in [9] is used here for fault

detection.

żD(t) = NDzD(t) + GDuH(t) + LDy(t)

x̂D(t) = zD(t) − EDy(t) (2)

where ND, GD, LD,MD are defined as

ND = MDA − KDC

LD = KD(I + CED) − MDAED

GD = MDB, MD = I + EDC (3)

where ED and KD are chosen by the designers, and I is an

identity matrix in Rn×n.

Remark 1: If actuator faults are present, u(t) is no longer

available. However, uH(t) is always available. This is the

reason uH(t) is used in the UIO design.

In order to ease the design difficulty of the above observer,

according to [10], the following linear matrix inequality

(LMI) is introduced for computing ȲD, K̄D, and PD.

((I + UDC)A)T PD + PD(I + UDC)A

+(VDCA)T Ȳ T
D + ȲD(VDCA)

−CT K̄T
D − K̄DC < 0 (4)

where UD = −D(CD)+ and VD = I − (CD)(CD)+ with

(CD)+ = ((CD)T (CD))−1(CD)T .

Once ȲD and K̄D are obtained, ED and KD can be

computed as

ED = −D(CD)+ + P−1

D ȲD(I − (CD)(CD)+),

KD = P−1

D K̄D. (5)

The following result has been proved in [10].

Theorem 1: Assume that CD is of full column rank, then

the UIO given by (2) and (3) exists if and only if the LMI

defined by (4) has a feasible solution of ȲD, K̄D and a

symmetric matrix PD > 0.

If the system (1) admits the UIO given by (2) and (3), a

residual used for fault detection can be defined as rD(t) =
‖y(t) − Cx̂D(t)‖, and the detection can be achieved using

the following logic.

1) Choose a threshold for rD(t).
2) If rD(t) stays below the threshold, no fault has oc-

curred. Otherwise, faults have been occurred.

In order to apply the general methodology, UIO design

is used to generate the desired residuals. The following two

cases are considered:

• Case A: Design a UIO such that it is insensitive to both

u(t) and d(t).
• Case B: Design a bank of UIOs such that at least one

UIO is insensitive to both actuator faults and d(t).

Case A is considered in this subsection, while Case B will

be studied in the following subsection.

B. FCI in Case A

In this case, by modifying the UIO given by (2) and (3),

a UIO with the following structure is proposed.

żA(t) = NAzA(t) + LAy(t)

x̂A(t) = zA(t) − EAy(t) (6)

where NA and LA are defined as

NA = MAA − KAC

LA = KA(I + CEA) − MAAEA (7)

with MA = I + EAC, and EA and KA are chosen by the

designers.

As in the precious subsection, the following LMI is

introduced for computing ȲA, K̄A, and PA.

((I + UAC)A)T PA + PA(I + UAC)A

+(VACA)T Ȳ T
A + ȲA(VACA)

−CT K̄T
A − K̄AC < 0 (8)

where UA = −D̄(CD̄)+ and VA = I − (CD̄)(CD̄)+ with

(CD̄)+ = ((CD̄)T (CD̄))−1(CD̄)T with D̄ = (B D).
Once ȲA and K̄A are obtained, EA and KA can be

computed as

EA = −D̄(CD̄)+ + P−1

A ȲA(I − (CD̄)(CD̄)+),

KA = P−1

A K̄A. (9)

The following result can be derived easily using Theorem

1.
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Theorem 2: Assume that CD̄ is of full column rank, then

the UIO given by (6) and (7) exists if and only if the LMI

defined by (8) has a feasible solution of ȲA, K̄A and a

symmetric matrix PA > 0.

If the system (1) admits the UIO given by (6) and (7),

a residual used for FCI can be defined as rA(t) = ‖y(t) −
Cx̂A(t)‖. Using the UIO given by (2) and (3) and the UIO

given by (6) and (7), a FCI scheme for the problem of FCI2

can be proposed as follows.

UIO Based FCI2 Scheme For Case A:

1) Generate rD(t) using (2) and (3).

2) Generate rA(t) using (6) and (7).

3) Monitor rD(t) and rA(t).
4) If rD(t) becomes nonzero (or no longer small), faults

are detected.

5) After faults are detected, monitor rA(t) only.

6) If rA(t) becomes nonzero (or no longer small), sensor

faults have occurred. Otherwise, actuator faults have

occurred.

It should be pointed out that the scheme is based on the

general methodology and only works under the assumptions

that only one class of faults can occur and that only actuator

and sensor faults are the possible classes of faults.

C. FCI in Case B

In order to use the proposed scheme in the previous

subsection, the existence of the UIO given by (6) and (7) is

required. For some systems, the condition that CD̄ is of full

column rank is too strong to be satisfied, or the LMIs may

not have a feasible solution. For such systems, it is desired to

achieve FCI under weaker conditions. On the other hand, it

is often that only some actuators are actually faulty, it is not

necessary that the UIOs are designed to be insensitive to all

the inputs in u(t), and instead, the UIOs are only required to

be insensitive to certain number of inputs in u(t). Based on

the above arguments, Case B is considered in this subsection.

For convenience, let φ denote the empty set, and 2S denote

the set consisting of all subsets of S = {1, 2, · · · ,m}. Denote

B = (b1 · · · bm). For any s = {i1, · · · , il} ∈ 2S with

i1 ≤ · · · ≤ il, 1 ≤ l ≤ m,, denote Bs = (bi1 · · · bil
), and

define B̄s as the matrix consisting of the remaining columns

of B after removing the columns of Bs from B. Similarly,

denote us(t) = (ui1(t) · · · uil
(t))T and ūs(t) is defined in

a similar manner as B̄s. Define uH
s (t) and ūH

s (t) in the same

way as us(t) and ūs(t)
For any s = {i1, · · · , il} ∈ 2S with 1 ≤ l ≤ m, system

(1) can be rewritten as

ẋ(t) = Ax(t) + B̄sūs(t) + Bsus(t) + Dd(t),

y(t) = Cx(t). (10)

Define D̄s = (Bs D) and d̄(t) = (uT
s (t) dT (t))T , by

modifying the detection UIO, the following UIO can be

proposed.

żs(t) = Nszs(t) + Ḡsū
H
s (t) + Lsy(t)

x̂s(t) = zs(t) − Esy(t) (11)

where Ns, Ḡs, Ls,Ms are defined as

Ns = MsA − KsC,

Ḡs = MsB̄s,

Ls = Ks(I + CEs) − MsAEs,

Ms = I + EsC. (12)

As in Subsection A, the following linear matrix inequality

(LMI) is introduced for computing Ȳs, K̄s, and Ps.

((I + UsC)A)T Ps + Ps(I + UsC)A

+(VsCA)T Ȳ T
s + Ȳs(VsCA)

−CT K̄T
s − K̄sC < 0 (13)

where Us = −D̄s(CD̄s)
+ and Vs = I − (CD̄s)(CD̄s)

+

with (CD̄s)
+ = ((CD̄s)

T (CD̄s))
−1(CD̄s)

T .

With Ȳs, K̄s, and Ps, Ks and Es can be computed as

Ks = P−1
s K̄s,

Es = −D̄s(CD̄s)
+

+P−1
s Ȳs(I − (CD̄s)(CD̄s)

+). (14)

With Ks and Es, all the observer gain matrices can be

computed using (12).

According to Theorem 1, the following theorem can also

be proved.

Theorem 3: For a given set s = {i1, · · · , il} ∈ 2S with

1 ≤ l ≤ m, assume that CD̄s is of full column rank, then

the UIO given by (11) and (12) exists if and only if the

LMI defined by (13) has a feasible solution of Ȳs, K̄s and

a symmetric matrix Ps > 0.

Assume that there exists an integer l0 such that CD̄s is of

full column rank and the LMI defined by (13) has a feasible

solution of Ȳs, K̄s and a symmetric matrix Ps > 0 for all

sets of the form s = {i1, · · · , il0} ∈ 2S . Let lmax be the

largest one amongst such integers.

If lmax = m, Case A can be solved. If lmax < m, the

FCI scheme for Case A can no longer be applied because

the UIO given by (6) and (7) does not exist. Actually, if

lmax < m, in order to solve the problem of FCI2, Case B,

instead of Case A, should be considered. In order to achieve

FCI2, it is assumed that the number of faults nf is less than

lmax.

For all sets of the form, s = {i1, · · · , ilmax
} ∈ 2S , if

l is replaced by lmax, a bank of UIOs of the form (11)

and (12) can be designed. Actually, there are Clmax

m such

UIOs in total. Using all the designed UIOs, a bank of

residuals can be defined as rs(t) = ‖y(t) − Cx̂s(t)‖ with

s = {i1, · · · , ilmax
} ∈ 2S .

Now, using the UIO given by (2) and (3) and the UIOs

given by (11) and (12) for all sets of the form s =
{i1, · · · , ilmax

} ∈ 2S , a FCI2 scheme can be proposed as

follows.

UIO Based FCI2 Scheme For Case B:

1) Generate rD(t) using (2) and (3).

2) Generate all the residuals rs(t) using (11) and (12) for

all sets of the form s = {i1, · · · , ilmax
} ∈ 2S .
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3) Choose thresholds for rD(t) and all rs(t), and monitor

them.

4) If rD(t) becomes larger than its chosen threshold,

faults are detected.

5) After faults are detected, monitor all rs(t) only.

6) If all residuals rs0
(t) go beyond their thresholds,

sensor faults have occurred. Otherwise, actuator faults

have occurred.

Remark 2: Although how to chosen suitable thresholds is

not trivial task, our focus is on FCI and the design of schemes

for FCI.

Remark 3: It is obvious that the scheme proposed for Case

B can be applied to more classes of systems than the one for

Case A. However, an additional condition on the number of

faults is required, which is nf ≤ lmax. This is not a severe

limitation because many existing fault isolation results in the

literature only consider the single fault case, which satisfies

the condition automatically.

Remark 4: It should be pointed out that sliding mode

observers ([4], [8]) can also be used to solve the problem in

a very similar way. It is also possible to combine the general

methodology in this paper with the geometric approach

in [11] to solve the FCI problem formulated for a class

of nonlinear system with unknown inputs. Since the main

purpose of this paper is to raise the problem of FCI, present

a general methodology to solve the FCI problem, and provide

a means as to how to implement the methodology using UIO

design based approach, these and other possible extensions

are left as future research topics.

IV. EXAMPLES AND SIMULATION RESULTS

Two examples are given in this section. The first one is

taken as the inverted pendulum with a cart example studied

in [8] to show the effect of the FCI scheme proposed for

Case A. The FCI scheme is designed based on a local

linear model of the inverted pendulum with a cart, but tested

on its nonlinear system model. In order to test the FCI

scheme proposed for Case B, the local linear model of the

inverted pendulum example is used by adding an additional

input manually. Here, both the design and the test of the

FCI scheme for Case B are carried out based only on the

linearized model with an added input.

A. FCI Scheme For Case A: The inverted Pendulum With A

Cart

The inverted pendulum with a cart example in [8] is used

here to show the effect of the FCI scheme proposed for Case

A, which is described by the following state space model.

ẋ1(t) = x3(t)

ẋ2(t) = x4(t)

ẋ3(t) =
1

3.735 − 0.615cos2(x2(t))
(−6.3x3(t)

+ 0.0283x4(t)cos(x2(t))

− 6.0266sin(x2(t))cos(x2(t))

+ 0.1953x2
4(t)sin(x2(t)) + u(t))

ẋ4(t) =
1

0.062 − 0.0102cos2(x2(t))
(−0.009x3(t)

+ 1.9151sin(x2(t)) − 0.3242x3(t)cos(x2(t))

− 0.0102sin(x2(t))cos(x2(t))x
2
4(t)

− 0.0523cos(x2(t))u(t)) (15)

where x1(t) = x(t), x2(t) = θ(t), x3(t) = ẋ(t), x4(t) =
θ̇(t).
According to [8], via linearizing the above system around

x1(t) = x2(t) = x3(t) = x4(t) = 0, a linear model can be

derived as

ẋ(t) = Ax(t) + Bu(t) (16)

where

A =







0 0 1 0
0 0 0 1
0 −1.9333 −1.9872 0.0091
0 36.9711 6.2589 −0.1738






,

B =







0
0

0.3205
−1.0095






,

and a full state feedback can be designed to assign closed-

loop system poles at {−4.2,−4.4,−4.6,−4.8}.

To test the fault detection effects, only x1(t), x2(t), x3(t)
are assumed to be available. Hence,

C =





1 0 0 0
0 1 0 0
0 0 1 0



 ,

and y(t) = Cx(t). The fault detection and fault class

isolation schemes are designed based on the linearized model

(16) with y(t) = Cx(t). Because the unknown input vector

term d(t) is absent, the following observer is designed for

fault detection

żD(t) = AzD(t) + BuH(t) + KD(y(t) − CzD(t))

x̂D(t) = zD(t) (17)

where

KD =







1.0000 0.0034 0.9940
0.0079 2.2260 0.0162
−0.0059 −1.9164 −1.6870
0.0054 37.3842 6.2620






,

and uH(t) = 41.2181y1(t)+171.6711y2(t)+43.1215y3(t)+
29.3803x4(t), which can assign closed-loop system poles at

{−4.2,−4.4,−4.6,−4.8} when the system is free of faults

(note that all states are assumed available for the controller

design). It is easy to see that the above observer is a special

case of the UIO given by (2) and (3) with ED = 0.

By letting D̄ = B, it can be checked the LMI (8) is

feasible, and the UIO given by (6) and (7) can be designed

using the Matlab LMI toolbox as

żA(t) = NAzA(t) + LAy(t)

x̂A(t) = zA(t) − EAy(t) (18)
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The observer gain matrices are not provided because of lack

of space.

The detection observer and the UIO for fault class isolation

designed based on the linearized model (16) are applied to

the nonlinear system model given by (15) in the simulations.

The proposed FCI scheme for Case A is first tested for an

actuator fault (u(t) = uH(t) + 0.1(t − 5) when t ≥ 5), and

the simulation results are shown in Figure 2. It is tested also

for a sensor fault (y(t) = x1(t) + 0.1(t − 5) when t ≥ 5),

and the simulation results are presented in Figure 3.
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Fig. 2. The simulation results in the presence of an actuator fault
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Fig. 3. The simulation results in the presence of a sensor fault

In both Figure 2 and Figure 3, faults are detected because

both the detection residuals rD(t) exceed the threshold and

keep going up. It is also easy to see that the FCI residual

rA(t) in Figure 2 remains small, while the residual rA(t) in

Figure 3 exceeds the threshold and goes up. Therefore, using

UIO Based FCI Scheme For Case A, it can be concluded

that the results in Figure 2 indicate that an actuator fault has

occurred while those in Figure 3 indicate that sensor faults

have occurred. The decisions are correct, and the FCI scheme

for Case A isolated the occurred fault class successfully.

B. FCI Scheme For Case B

In order to test the FCI scheme for Case B, an additional

input is added to the local linear model (16), which lead to

the following system

ẋ(t) = Ax(t) + Bu(t) (19)

where A is the same as in the previous subsection, u(t) =
(u1(t) u2(t))

H , and

B =







0 0
0 0

0.3205 −1.0095
−1.0095 0.3205






,

and a full state feedback is designed to assign closed-loop

system poles at {−4.2,−4.4,−4.6,−4.8}.

Again, to test the fault detection effects, it is assumed that

C =





1 0 0 0
0 1 0 0
0 0 1 0



 ,

and y(t) = Cx(t).
The fault detection and FCI schemes are designed based

on the linearized model (19) with y(t) = Cx(t). Because

the unknown input vector term d(t) is absent, the following

observer is designed for fault detection

żD(t) = AzD(t) + BuH(t) + KD(y(t) − CzD(t))

x̂D(t) = zD(t) (20)

where

KD =







1.0000 0.0034 0.9940
0.0079 2.2260 0.0162
−0.0059 −1.9164 −1.6870
0.0054 37.3842 6.2620






,

and uH(t) = −Kcx(t) with

Kc =

(

−6.2139 −61.8228 −9.1570 −9.6138
−22.1595 −16.7789 −9.8895 −2.8542

)

,

which can assign closed-loop system poles at

{−4.2,−4.4,−4.6,−4.8} when the system is free of

faults (note again that all states are assumed available for

the controller design).

By letting D̄ = B, it is easy to check that rank CD̄ = 1,

which implies that the UIO given by (6) and (7) can no longer

be designed because EA does not exist such that EACD̄ =
−D̄. Hence, for system (19), it is impossible to consider

Case A, instead, Case B should be considered. In such a

case, it is assumed only a single fault can occur.

Because there are only two inputs, it is easy to see that s

is either {1} or {2}. For simplicity and with a slight abuse

of notation, s is replaced by 1 or 2 when it is either {1} or

{2}.
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Define D̄1 = B1 and D̄2 = B2, according to the UIO

given by (11) and (12), note that ūH
1 (t) = uH

2 (t) and

ūH
2 (t) = uH

1 (t), the following UIOs can be designed.

ż1(t) = N1z1(t) + Ḡ1u
H
2 (t) + L1y(t)

x̂1(t) = z1(t) − E1y(t) (21)

and

ż2(t) = N2z2(t) + Ḡ2u
H
1 (t) + L2y(t)

x̂2(t) = z2(t) − E2y(t) (22)

The proposed FCI scheme for Case B is tested for an

actuator fault (u(t) = uH(t) + 0.1(t − 5) when t ≥ 5), and

the simulation results are shown in Figure 4.
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Fig. 4. The simulation results in the presence of an actuator fault

In Figure 4, a fault is detected because the detection resid-

ual rD(t) exceeds the threshold and keeps going up. It is also

easy to see that the FCI residual r1(t) remains small, while

the residual r2(t) exceeds the threshold and keeps going up.

Therefore, using UIO Based FCI Scheme For Case B, it can

be concluded that an actuator fault, rather than a sensor fault,

has occurred.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this paper, the problem of FCI was raised. A feasible

FCI problem was formulated, and a general methodology

for the formulated problem was proposed. As an application

of the general methodology, UIO based FCI schemes were

proposed for the FCI between actuator and sensor faults for

two cases, which are Case A and Case B defined in Section

3. The simulation results showed both schemes were able to

achieve FCI successfully. Because the scheme for Case B

requires weaker conditions, it is more promising to be used

to the FCI problems between component and sensor faults

and those component and actuator faults.

B. Future Work

Using the general methodology, many other FCI schemes

can be designed using different types of observer or output

estimator based design techniques. Sliding mode observers

([4], [8]), the geometric approach based observers ([11]), and

output estimators ([3], [12]) are only a few possible examples

that can be used to design FCI schemes. Moreover, the

methodology is not confined to linear systems, it is expected

that it can be applied to nonlinear systems as well, which is

another future research topic. Because model based FCI has

been paid very little attention, many FCI problems need to

be studied and solved in the future.
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