
Discrete Time Lyapunov Stable Staggered Estimator MIMO Adaptive
Interference Cancelation with Experimental Verification

Jawad Arif and Suhail Akhtar.

Abstract— In this paper we develop a closed-loop discrete-time
interference cancelation algorithm. The novel features of this
algorithm are its ability to deal with multiple channels being
affected by interferences with different frequency spectrums.
Also we provide a proof of Lyapunov stability of closed loop
system and asymptotically perfect interference cancelation for
a class of interference signals. Furthermore we introduce a new
approach for updating the estimator through the use of staggered
estimate. The goal of staggered estimation is to minimize the total
number of a estimates / calculations done within a time period
while ensuring that there is no estimator aliasing. Finally the
proposed algorithm is implemented on a TMS320C6713 DSP Kit
and experimental verification obtained.

I. INTRODUCTION
Traditionally notch filters have been used to eliminate si-

nusoidal interferences in an information bearing signal. A
fixed notch filter can eliminate the noise when its distribution
is centered exactly at the frequency for which the filter is
designed [1]. If the frequency of interference signal is unknown
or if it drifts slowly then an adaptive notch filter is required [2].
Adaptive notch filters can be implemented using a feed forward
or a feed back structure [3]. While the feed forward structure
alleviates stability concerns, it requires a measurement of the
interference or a signal correlated with the interference [2,
p.24]. In the feedback structure direct measurement of the
disturbance is not required but stability is not guaranteed and
needs to be demonstrated.

In this paper we consider the problem of simultaneous
multiple channel interference cancelation via a multi variable
feedback control law.The Lyapunov stability of the closed
loop system is demonstrated by using the Lyapunov function
candidate whose difference is shown to be non positive.
Asymptotically perfect interference cancelation for a class of
disturbances is demonstrated through the use of lemma on
maximally monotonically increasing subsequences.

From the algorithm implementation point of view computa-
tion of the parameter estimate at each step entails the use of a
sophisticated and therefore expensive digital signal processor
. In order to make use of less capable and therefore less
expensive components for implementation, it is some time
desirable not to update the parameter estimates at each time
step but to allow a number of time step before an update is
made. This scheme can however lead to estimator aliasing in
which although the parameter error is growing periodically it
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is zero at the update instants. To circumvent this problem we
propose staggered estimator updating in this paper.

The contents of the paper are as follows. In section II
we describe controller model. In section III we formulate
the closed-loop system. The adaptive algorithm with regular
estimator updating is described in section IV. In section V we
discuss an algorithm with staggered estimator updating and
provide a complete proof of Lyapunov stability of the closed-
loop system and asymptotically perfect disturbance rejection
for bounded time invariant interference. Computer simulations
of the proposed algorithm are used to reject reject tonal and
amplitude modulated interferences in section VI. Finally, in
section VII we implement the proposed algorithm on a DSP
kit and obtain experimental verification of its workability.

II. ADAPTIVE CONTROLLER ARCHITECTURE
The structure of the proposed control scheme is depicted in

Figure 1, where w, u, z represent the interference , the control

Fig. 1. Adaptive Controller Architecture

and the performance respectively. Let the instantaneously linear
controller Gc(k) be represented by the MIMO ARMA model

u(k) = −
nc∑
j=1

Γ̂j(k)u(k − j) +
nc∑
j=1

Λ̂j(k)z(k − j), (2.1)

for all k ≥ 0, where u ∈ Rm, z ∈ Rl and nc is or-
der of the instantaneously linear controller Gc(k). Also the
controller parameter matrices Γ̂1, Γ̂2 . . . , Γ̂nc

∈ Rm×m and
Λ̂1, Λ̂2 . . . , Λ̂nc

∈ Rm×l are determined by a yet unspecified
controller parameter estimator. Next, define the control horizon
vector

U(k)
4
=

 u(k − 1)
...

u(k − nc)

 ∈ Rq1 , (2.2)
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the performance horizon vector

Z(k)
4
=

 z(k − 1)
...

z(k − nc)

 ∈ Rq2 , (2.3)

the regressor

φ(k)
4
=

[
U(k)
Z(k)

]
∈ Rq3 , (2.4)

and the controller parameter matrix

Θ̂(k)
4
= [ −Γ̂1(k) · · · −Γ̂nc

(k) Λ̂1(k) · · · Λ̂nc
(k)]

(2.5)

where Θ̂(k) ∈ Rm×q3 ,q1 = ncm, q2 = ncl and q3 = q1 + q2.
With this notation, (2.1) can be written as

u(k) = φ(k)Θ̂(k). (2.6)

To vectorize the matrix Θ̂ we use the Kronecker product
identity [4, p. 245]

vec (Iφ(k)Θ̂(k)) = (φT ⊗ I)vec Θ̂(k), (2.7)

to obtain

u(k) = ψT (k)θ̂(k), (2.8)

where

ψT (k)
4
= φ(k)⊗ I, ∈ Rq4×l (2.9)

is the regressor matrix and

θ̂(k)
4
= vec Θ̂, ∈ Rq4

is the estimated controller parameter vector. Also, q4
4
= mq3.

III. CLOSED-LOOP SYSTEM

From Fig. 1 the closed-loop performance is given by

z(k) = w(k)− u(k) (3.1)

From (2.8)

z(k) = w(k)− ψT (k)θ̂(k) (3.2)

Assumption 3.1: The disturbance w(k) is generated by the
free response of a Lyapunov stable LTI system of order nw ≤
nc.

Remark 3.1: Assumption 3.1 is satisfied by the linear
combinations of sinusoidal and step signals.
Assumption 3.1 implies that ∃ Θ∗ ∈ Rm×q3 such that w(k) =
ψT (k) vec Θ∗, where

θ∗
4
= vec Θ∗ ∈ Rq4

From (3.2)

z(k) = ψT (k) vec Θ∗ − ψT (k)θ̂(k)

= ψT (k)θ∗ − ψT (k)θ̂(k)

= ψT (k)[θ∗ − θ̂(k)] (3.3)

Define the parameter error vector

θ̃
4
= θ∗ − θ̂(k), (3.4)

then

z(k) = ψT (k)θ̃(k). (3.5)

IV. ADAPTIVE ALGORITHM AND ITS STABILITY
ANALYSIS WITH REGULAR ESTIMATOR

UPDATING

A. Adaptive Algorithm

The adaptive feedback mechanism in Figure 1 consists of
an instantaneously linear controller Gc(k) given by (2.6) and
a parameter update law that modifies the controller parameters
at each time step k.

To obtain the parameter update law for θ̂, we define the a
priori performance as

ẑ(k)
4
= ψT θ̃(k + 1) (4.1)

and the cost function

J(k, θ̂(k + 1)) ,
1
2
ẑT (k)ẑ(k)

=
1
2

[ψT (k)θ̃(k + 1)]T [ψT (k)θ̃(k + 1)] (4.2)

which is quadratic in the a priori performance ψT(k)θ̃(k+1).
Then we use a recursive least squares estimate of θ̂(k + 1) to
minimize (4.2); for details see, for example, [5]. The recursive
least square estimate of θ̂(k + 1) is given by

θ̂(k + 1) = θ̂(k)− P(k + 1)ψ(k)z(k), (4.3)

P(k + 1) = P(k)−G(k)ψT(k)P(k), (4.4)

where

G(k) = P(k)ψ(k)
[
I + ψT(k)P(k)ψ(k)

]−1

Using (3.4), (4.3) and (4.4) the closed-loop error system is
given by

θ̃(k + 1) = θ̃(k)− P(k + 1)ψ(k)ψT(k)θ̃(k), (4.5)

P(k + 1) = P(k)−G(k)ψT(k)P(k). (4.6)

where P(0) > 0.

B. Stability Analysis

The Lyapunov stability of every equilibrium of the system
(3.5),(4.5) and (4.6) is demonstrated in [6].

V. ADAPTIVE ALGORITHM WITH STAGGERED
ESTIMATOR UPDATING AND STABILITY ANALYSIS

In this section we consider the case where the estimator
is updated less frequently i.e, it is not updated at each time
step. In subsection (V-A), first we consider the same adaptive
algorithm described in section (IV) except that the parameter
estimates remains unchanged for n steps. We then explain the
problem encountered by adopting this methodology. Finally we
suggest staggered estimator updating as a means of allowing
more time for estimator computations while avoiding the
problem of estimator aliasing.
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A. Adaptive Algorithm

The adaptive feedback mechanism in Figure 1 consists of
an instantaneously linear controller Gc(jn) given by (2.6) and
a parameter update law that modifies the controller parameters
at time step jn. Consider the control law (2.8) under the
constraint

θ̂(jn) = θ̂(jn− 1) =, · · · ,= θ̂(jn− n+ 1), (5.1)

where j = 1, 2, 3, . . .. The gain estimate is not updated for n
steps. To obtain the parameter update law for θ̂, we define the
a priori performance as

ẑ(jn)
4
= ψT θ̃(jn+ 1) (5.2)

and the cost function

J =
1
2

[ψT (jn)θ̃(jn+ 1)]T [ψT (jn)θ̃(jn+ 1)] (5.3)

which is quadratic in the a priori performance ψT(jn)θ̃(jn).
Then we use a recursive least square estimate of θ̂(jn+ 1) to
minimize (5.3); for details see,for example, [5], [7] and [8].
The recursive least square estimate of θ̂(jn+ 1) is given by

θ̂(jn+ 1) = θ̂(jn)− P(jn+ 1)ψ(jn)z(jn), (5.4)

P(jn+ 1) = P(jn)−G(jn)ψT(jn)P(jn), (5.5)

where

G(jn) = P(jn)ψ(jn)
[
I + ψT(jn)P(jn)ψ(jn)

]−1

Using (3.4), (5.4) and (5.5) the closed-loop error system is
given by

θ̃(jn+ 1) = θ̃(jn)− P(jn+ 1)ψ(jn)ψT(jn)θ̃(jn), (5.6)

P(jn+ 1) = P(jn)−G(jn)ψT(jn)P(jn). (5.7)

where P(0) > 0, and

θ̂(jn) = θ̂(jn− 1) =, · · · ,= θ̂(jn+ n− 1),
P(jn) = P(jn− 1) =, · · · ,= P(jn+ n− 1).

B. Stability Analysis

To demonstrate that every equilibrium of the system (5.2),
(5.6) and (5.7) is Lyapunov stable we require the following
lemma

Lemma 5.1: Define

VP(P)
4
= tr P2, (5.8)

4VP(jn)
4
= tr

[
P2(jn+ 1)− P2(jn)

]
, (5.9)

Vθ̃(θ̃,P)
4
= θ̃TP−1θ̃, (5.10)

and

4Vθ̃(jn)
4
= θ̃T(jn+ 1)P−1(jn+ 1)θ̃(jn+ 1)

− θ̃T(jn)P−1(jn)θ̃(jn). (5.11)

Then,
4VP(jn) ≤ 0, (5.12)

4Vθ̃(jn) = −θ̃T(jn)ψ(jn)
[
I + ψT(jn)P(jn)ψ(jn)

]−1
ψTθ̃

(5.13)

≤
−‖z(jn)‖22

1 + γ
∑nc

i=0

[
‖u(jn− i)‖22 + ‖z(jn− i)‖22

] ,
(5.14)

where

γ
4
= λmax [P(0)] , (5.15)

Furthermore,
lim
k→∞

4Vθ̃(jn) = 0, (5.16)

and limk→∞ θ̃(jn) and limk→∞ P(jn) exist.
Proof. The results (5.12), (5.13), (5.16), and the convergence

of {θ̃(jn)}∞k=0 and {P(jn)}∞k=0 follow from standard proper-
ties of recursive least square, see [8, p. 60], [9, p. 22], [10, p.
58] and [11, p. 202]. From (5.12) follows that

P(jn) ≤ P(jn− 1).

Now we demonstrate the asymptotic convergence of the per-
formance to zero. From (2.9) it follows that

ψT (jn)ψ(jn) = φT (jn)φ(jn)⊗ I. (5.17)

where I ∈ Rq4×q4 . Equation (5.17) follows that

‖ψ(jn)‖2 = ‖φ(jn)‖2, (5.18)

Using (5.18) in (2.4) we have

ψT (jn)ψ(jn) =
nc∑
i=1

[
‖u(jn− i)‖22 + ‖z(jn− i)‖22

]
.

(5.19)

It follows from (3.1), (5.14) and (5.19) that

4Vθ̃(jn) ≤
−‖z(jn)‖22

1 + γ
∑nc

i=1

[
‖u(jn− i)‖22 + ‖z(jn− i)‖22

]
≤

−‖z(jn)‖22
1 + γ

∑nc

i=1

[
‖u(jn− i)‖22 + ‖z(jn− i)‖22

]
+M(jn)

,

(5.20)

where

γ = λmax [P(0)] > λmax [P(jn)] , (5.21)

and

M(jk) = γ ‖z(jn)‖22 + γ ‖u(jn)‖22 . (5.22)

From (3.1) it follows that

‖u(jn)‖ ≤ ‖w(jn)‖+ ‖z(jn)‖ (5.23)

From (5.20), (5.22) and (5.23), we have

4Vθ̃(jn) ≤
−‖z(jn)‖22

1 + γ
∑nc

i=0

[
‖w(jn− i)‖22 + 2 ‖z(jn− i)‖22

]
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From Assumption 3.1 it follows that w(jn) is bounded there-
fore ∃ c ∈ R+ such that

∑nc

i=0 ‖w(jn− i)‖22 < c. Conse-
quently

4Vθ̃(jn) ≤
−‖z(jn)‖22

1 + γc+ 2γ
∑nc

i=0 ‖z(jn− i)‖
2
2

=
−‖z(jn)‖22

c1 + c2
∑nc

i=0 ‖z(jn− i)‖
2
2

,

where c1
4
= 1 + γc and c2

4
= 2γ. Now suppose that

{‖z(jn)‖}∞k=0 is unbounded. Then it follows from Lemma 1.1
that there exist c3 > 0 and c4 > 0 such that the maximal
monotonically increasing subsequence {‖z(jni)‖}∞i=0 satisfies

c1 + c2

nc∑
i=0

‖z(jn− i)‖22 < c3 + c4 ‖z(jn)‖22

which implies that

4Vθ̃(jni) ≤
−‖z(jni)‖22

c3 + c4 ‖z(jni)‖22
for all i = 1, 2, · · · . Furthermore, since by (5.16)
limi→∞4Vθ̃(jni) = 0, it follows that

lim
i→∞

−‖z(jni)‖22
c3 + c4 ‖z(jni)‖22

= 0

Therefore the maximally monotonically increasing subse-
quence z(jni) → 0 as k → ∞, which is a contradiction.
Hence {‖z(jn)‖}∞k=0 is bounded and it follows from Lemma.
(1.1) that there exist c5 > 0 and c6 > 0 such that, for all k ≥ 0,

4Vθ̃(n) ≤
−‖z(jn)‖22

c5 + c6 ‖z(jn)‖22
Now using (5.16) we have

lim
i→∞

−‖z(jn)‖22
c5 + c6 ‖z(jn)‖22

= 0 (5.24)

Therefore, z(jn)→ 0 as k →∞. 2

Remark 5.1: Although Lemma 5.1 ensures convergence
of the performance to zero only at the time instants when the
parameter estimate is updated.

C. Estimator Aliasing
Estimator aliasing refers to the inability of the estimator to

adapt controller parameters in spite of a periodically growing
performance variable whose period ia an integral multiple of
the estimator update period. Therefore, even though Lemma
5.1 ensures convergence of the performance to zero at the
time instants when the parameter estimate is updated estimator
aliasing can still lead to a periodic and performance vector.
The mechanism of estimator updating suggests the use a
staggered updating i.e., the time between two consecutive gain
updates be varied instead of updating after a fixed interval. We
idea is presented formally in the lemma below.

Lemma 5.2: Let n be a positive integer and let

τ(j + 1) = τ(j) + n+ 1 if j is odd
τ(j + 1) = τ(j) + n if j is even.

where j = 1, 2, . . . and τ(1) = n. Furthermore let k =
0, 1, 2, . . .. Then there does not exist an integer T > 1 such
that for all k = τ(j)

sin
(

2πk
T

+ φ

)
= 0, (5.25)

where 0 ≤ φ < 2π.
Proof. To satisfy (5.25) for all k = τ(j), T/2 must divide

n, 2n+ 1, 3n+ 1, 4n+ 2, 5n+ 2, 6n+ 3, . . .

Therefore T can not be an integer. 2

Using Lemma 5.2 and Lemma 5.1 we state the following
lemma.

Lemma 5.3: Define the gain update

θ̂(τ(j + 1)) = θ̂(τ(j))

+ P(τ(j) + 1)ψ(τ(j))ψT (τ(j))θ̂(τ(j)), (5.26)
P(τ(j) + 1) = P(τ(j))

− P(τ(j))ψ(τ(j))L(τ(j))ψT(τ(j))P(τ(j)),

θ̂(τ(j)− 1) = θ̂(τ(j)− 2) =, . . . ,= θ̂(τ(j − 1) + 1),
P(τ(j)− 1) = P(τ(j)− 2) =, . . . ,= P(τ(j − 1) + 1),

P(0) > 0 (5.27)

and

τ(j + 1) = τ(j) + n+ 1 if j is odd (5.28)
τ(j + 1) = τ(j) + n if j is even, (5.29)

where

L(τ(j)) =
[
In + ψT(τ(j))P(τ(j))ψ(τ(j))

]−1
, (5.30)

also j = 1, 2, . . . and τ(1) = n. Then all parameters of the
closed-loop system (3.1),(5.26)-(5.29) remain bounded, and
z(k)→ 0 as k →∞.

Proof. From Lemma 5.1 with jn + 1 replaced by τ(j) we
have x(τ(j)) → 0 as j → ∞. Now we use Lemma 5.2 to
conclude that z(k)→ 0 as k →∞. 2

VI. COMPUTER SIMULATION

Example 6.1: In this example the interference is a single
tone at 0.8 rad/sec, and the controller is of the order 4. A plot
if the performance ’z’ vs time is shown in Fig. 2. A bode plot
of the controller after the controller parameters have converged
is shown in Fig. 3. Note that the controller has high gain at
the interference frequency of 0.8 rad/sec. In this regard our
proposed method can be viewed as an adaptive internal model
control (IMC) scheme.

Example 6.2: In this example, two interferences are given
at two different channels. The first channel is affected by a
single tone interference at (0.2 rad/sec, while on the second
channel the interference frequency is 0.9 rad/sec. Plots of
the closed-loop performance ’z’ vs time for two channels are
shown in Fig. 4 and Fig. 5 respectively. In this example the
order of controller is nc = 4.

Example 6.3: In this example we again consider the two
channels interference problem with the first channel be affected
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Fig. 2. Performance for the interference at 0.2 rad/sec [Example 6.1]

Fig. 3. Bode plot of controller obtained after converges of parameter with
frequency at 0.8 rad/sec [Example 6.1]

by a tone at frequency 5Hz and the second channel be affected
by Amplitude modulated wave with carrier frequency is 100Hz
and modulating signal at 10Hz . The controller order used for
this example was nc = 8. A plot of closed-loop performance
’z’ vs time is shown in Fig. 6.

VII. HARDWARE IMPLEMENTATION
A. Experimental Setup

The controller was implemented on a real time
TMS320C6713 DSP Kit at a sampling rate of 8000 Hz.
The interference signals were generated via a external signal
generator and the output of the DSP Kit was sent to a PC
via the audio card where the performance variable ’z’ was
recorded using the Windows audio recorder.

B. Experiment 1

In first experiment the interference was a tone at 5 kHz. The
plot of closed-loop ’z’ vs time are shown in Fig.7. Initially, the
interference is allowed to effect the performance and then the
adaptive algorithm was switched on via a DIP switch on the
DSP kit. The adaptive algorithm then adapted the controller
parameters to reject the tonal disturbance.

Fig. 4. Performance for the interference at 0.2 rad/sec [Example 6.2]

Fig. 5. Performance for the interference at 0.9 rad/sec [Example 6.2]

C. Experiment 2

In this experiment two interference channels are considered.
Channel one being effected by a tonal disturbance of 5 kHz
and channel 2 by an Amplitude modulated wave at 1 kHz. The
plots of closed-loop ’z’ vs time are shown in Fig. 8 and Fig.
9.

VIII. CONCLUSIONS

A. Conclusions

In this paper we proposed an algorithm for multiple channel
interference cancelation via a multi-variable feedback con-
trol law and infrequent estimator updating. The theoretical
foundation for the proposed algorithm was established via
a comprehensive proof of Lyapunov stability of the closed-
loop system. Effectiveness of the algorithm as an interference
canceler was demonstrated via simulations and experiments.

APPENDIX

Lemma 1.1: Let {α(k)}∞k=0 be a sequence of positive
scalars. Let N be a positive integer, let g1 > 0, g2 > 0, and
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Fig. 6. Performance for the AM interference at frequency 10Hz [Example
6.3]

Fig. 7. Performance for the Tone interference at frequency 5kHz [Experi-
ment:1]

define

L(k)
4
= g1 + g2

N∑
j=0

α(k − j). (1.1)

Also, define the maximal monotonically increasing subse-
quence {α(ki)}∞i=0 such that α(k) < α(ki) for all k < ki.
Then the following statement hold

1) If {α(k)}∞k=0 is bounded, then there exist g3 > 0, g4 > 0
such that, for all k ≥ 0

L(k) ≤ g3 + g4α(k). (1.2)

2) If {α(k)}∞k=0 is unbounded then there exist g3 > 0,
g4 > 0 such that for all i = 1, 2, . . . the maximal mono-
tonically increasing subsequence {α(ki)}∞i=0, satisfies

L(ki) ≤ g3 + g4α(ki). (1.3)
Proof. If {α(k)}∞k=0 is bounded, then (1.2) is satisfied with

g3 = g1 + (N + 1)g2 supk≥0 α(k) and g4 > 0. Now ,suppose
that {α(k)}∞k=0 is unbounded, then (1.3) is satisfied with g3 =
g1 and g4 = N + 1. 2

Fig. 8. Performance for the Tone interference at frequency 5kHz [Experi-
ment:2]

Fig. 9. Performance for the AM interference at frequency 1KHz [Experi-
ment:2]
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