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Optimal Control of Cellular Uptake in Tissue Engineering
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Abstract— The optimal control of a distributed parameter
system with reaction, diffusion, and convection is investigated.
The problem is motivated by tissue engineering where the
control of the uptake of growth factors (signaling molecules) is
required to spatially and temporally regulate cellular processes
for the growth or regeneration of a tissue. Four approaches
for solving the optimal control problem are compared: (i) basis
function expansion, (ii) method of moments, (iii) internal model
control, and (iv) model predictive control. This comparison
suggests that these approaches should be combined to solve the
optimal control problem for multiple spatial dimensions.

I. INTRODUCTION

The primary goal of tissue engineering is the production of
biological tissues for clinical use. One of the main manufac-
turing strategies utilizes the attachment or encapsulation of
cells within a tissue matrix that is typically made of collagen
or synthetic polymers [12]. Beyond receiving nutrients and
releasing waste products, the development of a healthy func-
tioning tissue requires that the cells uptake hormones, drugs,
or signaling molecules in a controlled way [11]. For example,
in the development of tissues from stem cells, the stem cells
must uptake growth factors which are proteins to regulate
cellular processes such as stimulating cellular proliferation
and cell differentiation. The spatial and temporal control of
the cellular uptake can be achieved through localized release
(e.g., [20]).

Many materials and devices have been created for re-
leasing molecules in a controlled way [19]. Biodegradable
polymeric nano- or microparticles have been developed that
can be placed within a tissue matrix to provide localized
timed release [10]. These particles include spheres, core-
shell particles, and capsules that encapsulate small molecules,
protein, or DNA including growth factors or other signalling
molecules or, in the case of microcapsules, can contain cells
that excrete hormones or other macromolecules [12]. Tech-
niques have been established to make particles with highly
uniform physical properties, that produce a wide variety of
highly reproducible release profiles by manipulating physical
dimensions or by combining different types of particles [22].
These particles can be accurately positioned and attached to
a tissue matrix using such technologies as solid free-form
fabrication [3] and layer-by-layer stereolithography [15], so
as not to move until the particles have released their payloads
to the cells.
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The tissue engineering application motivates the formu-
lation of an optimal control problem for the release of
molecules from biodegradable polymeric nano- or micropar-
ticles to achieve a desired temporal and spatial uptake rate
for cells within a tissue matrix. A potential application is to
control the development of a tissue from stem cells within a
matrix, so that the timed release of different growth factors
in various locations form the multiple types of cells needed
for the functioning components of a tissue. The shape and
dimensions of these components would be a function of both
the spatial and temporal release of growth factors (e.g., [20]).

The mathematical formulation as a distributed parameter
optimal control problem is followed by a comparison of four
methods for solving the problem. The results suggest how to
best solve higher dimensional problems by a combination of
methods.

II. PROBLEM SETUP

To keep the nomenclature consistent, the term “growth
factor” will be used to refer to the molecule being released,
although the theory and algorithms also directly apply to other
molecules. Spatial and temporal control of the cellular uptake
rate in a biological tissue under the influence of diffusion
and convection can be formulated as a distributed parameter
optimal control problem:
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where Jg.,; is the desired cellular uptake rate for species
i, R; is its cellular uptake rate, and its concentration C;
is the solution to the reaction-diffusion-convection equation
(RDCE) [21]
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(z,y, z) are the spatial coordinates defined over domain V,
ty is the final time of interest, v is a known velocity field as a
function of the spatial coordinates, and D, is the diffusion
coefficient for species i. Depending on the specific tissue
engineering application, the optimal control variables v, can
be either distributed throughout the spatial domain such as in
the case that controlled release particles are intermingled with
the biological tissue, or can be a subset Uf; of the boundary
conditions on the surface of the domain V. This model
(2) considers applications in which the minimum physical
dimensions in the domain V are larger than the maximum
dimensions of the molecules, cells, and polymer particles that
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release growth factors. The cellular uptake kinetics and the
Jdes,i are determined in small-scale biological experiments
so as to produce a desired response, such as differentiation
to form a desired type of cell [2], [12], [21]. The model
(2) is appropriate in the early stages of tissue development,
before substantial cell migration and proliferation occurs.
The situation in which signaling molecules are produced
by cells which are then taken up by other cells (cell-cell
communication) requires only minor modification of (2).

The standard approach to solving the above optimal control
problem is control vector parameterization [17], where the
control variable w;(z,y, z,t) is discretized with respect to the
spatial and time variables, inserted into (1)-(2), and solved nu-
merically as an algebraic optimization problem. The difficulty
in applying this approach using the standard discretization of
the control input (i.e., u(0), u(At), u(2At),...) is the large
number of degrees of freedom. For example, in the case where
a single control variable is spatially distributed throughout the
domain, 100 discretization points in each spatial dimension
and in time results in 100* = 10® degrees of freedom in the
algebraic optimization. This large dimensionality problem is
well recognized in the optimal control literature (e.g., [9],
[18]). While many approaches have been proposed, no single
algorithm dominates either the literature or applications and
it is generally accepted that the best approach depends on the
details on the optimal control problem being solved.

To gain insight into how to best solve the three-dimensional
(3D) optimal control problem (1)-(2), this manuscript solves
the 1-dimensional (1D) version of the optimal control problem
for a single species with manipulatable boundary condition
and linear cellular uptake kinetics:

tf
. 2
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subject to the partial differential equation (PDE)
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The reference trajectory Jyes(t) > 0,V¢ > 0 is a desired
cellular uptake rate at one boundary (at z = 1) and the control
trajectory is the concentration u(t) at the other boundary (z =
0) (see Fig. 1). This problem arises when the objective is to
ensure that a desired time-varying uptake of a growth factor
occurs at a specified distance (of 1 dimensionless unit) from
a position where the growth factor is released through micro-
or nanoparticles or is carried with fluid entering the tissue at
x = 0 (this fluid brings nutrients such as glucose to the cells).
The cells within the domain would uptake at least as much
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Fig. 1. Boundary control at x = 0 with a Neumann boundary condition at

x =1.

growth factor as cells at x = 1, ensuring that all of the cells
within the domain respond to the growth factor.

The optimal control problem (3)-(7) was solved by four
different methods: (i) basis function expansion, (ii) method
of moments, (iii) internal model control, and (iv) model
predictive control.

III. BASIS FUNCTION EXPANSION

This method generalizes an approach studied in the mid-
1980s to solve optimal control problems for systems described
by ordinary differential equations [18] to partial differential
equations, in a similar manner as has been done for sheet and
film processes (e.g., see [6], and citations therein) as well as
nonlinear PDEs such as Burgers equation [9]. To apply this
method, start with the analytical solution to the PDE (4)-(7)
C(1,t) =

v © t U2
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and p,, is the nth root of tan(y/w,) = —2,/fn,D/v. Param-
eterize u(t) by a basis function expansion:

u(t) =Y aigi(t) = a’g(t), (10)
i=1
where {¢;(¢)} is any set of basis functions, and
a1 P1(t)
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Let f;(¢) be the solution to the PDE (4)-(7) for input ¢;(t):
fi(t) =

v > t 2
e20 D Z By iy sin /i, / i (7)6*(@+k+MD)(t77)dT
n=1 0

(12)
and
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then the optimal control problem with u(t) given by (10) can
be written as

min /Otf(Jdes(t) — kaTf(t))%dt

14
u(t)>0 (14

since the function (8) is a linear operator on u(t). An approx-
imate analytical solution to the optimal control problem can
be obtained by dropping the non-negativity constraint:

d 7 (J3.s(t) — 2k Jaes(t)a” £ () + (ka” f(2))?) dt
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There are many choices of basis functions [5], [6] for which
the temporal accuracy to the solution of the unconstrained
optimal control problem is specified directly by the number
of basis functions, whereas the number of terms in the
summation in (12) specifies the spatial accuracy. Fig. 2a
shows excellent tracking performance of this approach for
a Gaussian reference trajectory, using 20 terms in a truncated
Fourier cosine series [7] as the basis functions ¢;(t) (see
Fig. 2a). Drawbacks of this method are that (i) it can result
in ringing at discontinuities along the time axis due to
the Gibbs phenomenon [8], [23], and (ii) it does not take
the non-negativity constraint on the control variable in (3)
into account, which can result in constraint violations. Fig.
2b shows both deficiencies occurring for a step reference
trajectory.

IV. METHOD OF MOMENTS

In the method of moments, analytical expressions are
derived for moments of output variables in a PDE in terms
of the moments of input variables [1]. More specifically, it
can be shown for a linear system that a compact control input
u(t) and the output variable y(t) are related by

Hy = Hg + Hu, (13)

Uptake rate, J

Uptake rate, J

Fig. 2. Outputs for the basis function expansion approach when the reference
trajectories are Gaussian [4] and step functions (for D = v =1 and k = 7.6,
which are the parameters used for the entire paper). The number of basis
functions is n and the number of eigenfunctions for the spatial variable was
10. The negative uptake rate is the result of a negative control input, which
is not physically realizable.

2 _ 2 2
Oy =04+ 0y,

2 (19)

where p is the mean time (which is related to the first-order
moment), o2 is the variance of the signal about its mean
time (which is related to the second-order moment), and the
subscripts y refers to output, u refers to input, and g refers
to the linear system relating v and y. Analytical expressions
for p14 and O’S are derived by taking integrals of the PDE [1].

We apply this method to optimal control by decomposing
the reference trajectory into a linear combination of non-
negative basis functions, each of which is parameterized by
mean time and variance. The form of the basis function is
selected such that the shape of the optimal control trajectory
is known and parameterized by mean time and variance which
are computed from (18) and (19). The overall optimal control
trajectory is computed by summing the optimal control tra-
jectories corresponding to each of the basis functions. Fig.
3 shows nearly perfect tracking for a Gaussian reference
trajectory using Gaussian basis functions, for which the
optimal control trajectories are Gaussian-like functions. This
approach is very computationally efficient for computing a
non-negative optimal control trajectory, but does not directly
address state or other types of control constraints.
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Fig. 3. Uptake rate using the method of moments approach (the magnitude
of the control input was adjusted by dividing the reference input by the DC
gain of the plant; which gives the same total amount of the growth factor
uptake as desired).

V. INTERNAL MODEL CONTROL

Internal model control (IMC) is based on inverting a
transfer function model. The transfer function obtained by
taking the Laplace transform of (4)-(7) is irrational (see Table
I), as the model is described by a PDE (4). Since the IMC
design equations [16] only apply to finite-dimensional or
highly restrictive classes of infinite-dimensional models, the
spatial variable was discretized (Method of lines, MOL) to
obtain an approximate rational transfer function (see Table
I) by using the finite difference method, which is an accu-
rate representation of the exact transfer function over the
frequency range of the interest (see Bode plots in Fig. 4).
The rational transfer function was minimum phase, so the
resulting IMC control transfer function is the inverse of the
rational transfer function augmented by a filter designed to
make the overall system proper [16]. Applications of IMC
for Gaussian and step reference trajectories are shown in
Fig. 5, with A\ tuned so that the control variable is non-
negative. While this approach can give insight into the form
of the optimal control trajectory, it is sub-optimal and does
not handle general control constraints, and extensions of IMC
to handle constraints [24] are not optimal with respect to the
optimization objective (3).

VI. MODEL PREDICTIVE CONTROL

Model predictive control (MPC) is a well-known method
for solving optimal control problems with constraints [13].
In contrast to the usual application of MPC to closed-loop
control problems, here MPC is used to solve an open-loop
optimal control problem. Most MPC formulations assume a
staircase control trajectory. To compute the smooth control
trajectory desired in this application, the process model was
augmented by an integrator and the actual control variable
was computed from the integral of the MPC control variable.

A. MPC Formulation and Results

Discretization of the PDE (3)-(7) results in a state-space
model

z(k+1) = Az(k) + Bu(k) (20)
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Fig. 4. Bode plots of various transfer functions: The first three transfer
functions are obtained by MOL, where Az is the grid size. The “Expansion”
transfer function was obtained from the first 51 terms of the eigenfunction
expansion and the exact transfer function is obtained by taking the Laplace
transform of the PDE. The “Expansion” transfer function is less accurate
than the finite discretization for the same number of terms due to a slow
convergence rate for the summation in (8). The transfer functions are listed
in Table I.

Uptake rate, J
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Fig. 5. Outputs obtained using the IMC approach. The control trajectory
is calculated by using a transfer function with Az = 1/20 and augmenting
with a filter f = 1/(\s + 1)2°, where the filter parameter is A =
(the slowest plant pole)/1000c.

y(k) = Ca(k), (2D
where x is the state vector, u is the control variable, and y
is the model output. The state space equations of the system
augmented with an integrator are

Zo(k+1) = Asxq(k) + Baug(k), (22)

y(k) = Caza(k), (23)
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TABLE I
TRANSFER FUNCTIONS BETWEEN THE CONTROL VARIABLE AND THE UPTAKE RATE FOR THE (1) EIGENFUNCTION EXPANSION OF THE PDE, (2) FULL
PDE, AND (3) SPATIAL DISCRETIZATION OF THE PDE.

Method Transfer function
, : . — nD .
Eigenfunction expansion  G(s) = ke2D Z By, sin (v/n)
n=1 + k+ Mn
£1+€2 v+1/v2+4(k+s)D v—y/v2+4(k+s)D
PDE G(S) =k (211 65612122652 where &1 = - ;FD( = €2 = 2+D( -
Method of lines G(s)=C(sI - A)~'B
2D D v
_DAzz —k Hé 2Ax D 0 0 0
22 t3ar Al R Az aan 0 0
+ v _ 2D k D v 0
where A = Ax? 2Ax Az?2 Az2 2Ax s
0 '
2D 2D
D v 0 Ax? AzZ T k
Ax? + 2Azx
0
B= ., c=[0 0 k|
0
where x, is the state vector with an integrator, u, is the (k) to be non-negative
control variable to the augmented system (its derivative is ), 1 0 ... 0
and y is the model output which is the same as previous y. 9 1 0 0
The state matrices A,, B, and C, are obtained by discritizing Aug (k)
the transfer function of the integrator augmented system in At :
continuous mo@el. . . p—1 1 0 Aug(k+p—1)
For the case in which there are no constraints on the control 5 1
variable, the control variable at time instant k is obtained by p
solving the optimization: 1 1
P 1 2
. . N2
min ly(k +i|k) — r(k +19)]| 24
Aua(k|k) 1=Zl > = u(k) — At ua(k - 1)7 (27)
Aug(k +m — 1|k) 1 p
. where At is the sampling time.
subject to . .
MPC gave good reference tracking with short control and
Aug(k+ik)=0, i=m,...,p—1, (25) prediction horizons as long as the sampling time was small

where p is the prediction horizon, m is the control horizon,
r(k) is the reference variable at time instant k, Au, (k) is the
control increment

Aug (k) = ug(k) — ug(k — 1), (26)

and “(k + ¢|k)” is the value predicted for time instant k + ¢
based on the information available at time instant k. At time
instant &, u, (k) = uq(k — 1) + Aug(k|k)* is implemented,
where Au, (k|k)* is the first element of the optimal sequence,
and the above optimization is calculated at the next time
instant based on the updated variables.

The constrained MPC problem solves (24) with the addi-
tional linear inequalities which constrain the control variable

enough (see Fig. 6). Such short horizons have a much lower
computational cost than long horizons. The computational
cost of MPC is an important consideration when extending
this approach to a larger number of spatial dimensions (1)-(2).

B. Comparison with Control Vector Parameterization

MPC has much lower memory requirements and computa-
tional expense than the standard control vector parameteriza-
tion (CVP) approach [17] which is obtained by choosing m
and p to span the entire length of the reference trajectory
and dropping the use of the receding horizon. Although
MPC requires an optimization to be solved at each sampling
instance, the optimization only has m degrees of freedom and
a much smaller cost for the objective calculation (24) which
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Fig. 6.  MPC Outputs for a control horizon of m = 2 and a sampling time
At = 0.1, transfer function with Az = 1/20.

scales linearly with p. The 1D optimal control problem is
simple enough that CVP could be implemented, in which
case a regularization term of

10719 | Aug (k[1)[? (28)
k

was added to the objective function (24) to remove numer-
ical ill-conditioning that arose due to the large number of
degrees of freedom. The time-domain plots were virtually
indistinguishable from those obtained from the best MPC
tuning (Fig. 6). Applying MPC to the optimal control problem
resulted in nearly globally optimal results, with many orders-
of-magnitude reduction in memory requirements and total
calculation time. This makes MPC more suitable than CVP
for the solution of the optimal control problem (1) with larger
number of spatial dimensions.

VII. A COMPOSITE APPROACH FOR THE 3D CASE

Recall that the 3D control problem (1)-(2) has too many
degrees of freedom to be solved directly, such as by CVP. The
results in Sections III-VI suggest that the 3D optimal control
problem can be solved by a combination of multiple design
methods. The near optimality of MPC observed in Section III
suggests that MPC is a much better approach than CVP for
solving the 3D control problem (1)-(2), due to the much fewer
degrees of freedom (dof). In addition, the near optimality of
the basis function expansion approach in Section III suggests
that parameterization of the control input in terms of basis
functions within such a 3D MPC algorithm would lead to
minimal loss in performance while further reducing the dof.

The near optimality of IMC and the method of moments
observed in Sections IV and V motivate the development
of 3D extensions to provide initial guesses for the 3D MPC
optimization, to greatly speed its convergence. The method of
moments would be generalized to utilize cross-moments (e.g.,
[14]). IMC would be best generalized so that it can be directly
applied to PDE models, to avoid the spatial discretization
used in Section V to be produce the nominal transfer function
model. Once a numerically efficient solution to the 3D linear
control problem is obtained, it can be bootstrapped to address
nonlinear uptake kinetics.
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