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Abstract— The fault diagnosis problem for nonlinear systems
is treated, some results based on a differential algebraic
approach are used in order to determine fault diagnosability
with the minimum number of measurements from the system.
Two schemes of nonlinear observers are used for reconstructing
the fault signals for comparison purposes, one of them being a
reduced order observer and the other a sliding mode observer.
The methodology was tested in a real time implementation
of the three-tank system for which a previous identification
of uncertain parameters is realized in order to improve fault
estimations.
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I. INTRODUCTION

The fault diagnosis problem has been studied for more

than three decades, many papers regarding this problem can

be found in the literature, see for instance [1], [2], [3], [5].

For nonlinear systems a variety of approaches have been

proposed. Some model-based approaches can be found, such

as the approaches based upon differential geometric methods

[4], [15]. On the other hand, alternative approaches have been

proposed based on an algebraic and differential framework

[6]-[13]. These approaches consist in the observation of

the dynamics of the fault variables, which are defined as

uncertain inputs [7].

This paper deals with nonlinear systems diagnosis and the

goal is to find malfunctions in the system, based on input-

output measurements. The outputs are mainly measured

signals obtained from sensors, their number is important

in order to know whether a system is diagnosable or not.

This question has been solved in terms of the differential

transcendence degree concept in [14] and [20].

The fault diagnosis problem is considered as the problem

of observing the fault signals. So the diagnosability of a

systems is given by the so-called algebraic observability

condition [7], [8] of the fault. In this paper, two schemes of

observers are proposed in order to estimate the fault signals,

one of them is a reduced-order observer based on a free-

model approach and the other is a sliding-mode observer

based on a partial change of coordinates. Both schemes

possess asymptotic convergence properties and are relatively

easy to design when the algebraic observability condition is

available.

Even though the algebraic approach has been applied to

the fault diagnosis problem for almost one decade, there

are not reported works containing real-time applications

based in this theoretical framework. The Amira DTS200

interconnected three-tank system [17] has been considered

for the experimental fault diagnosis study, we can see for

instance [12], [15] and [16] even recently, one work based in

the geometric approach has been reported [15]. We can also

mention one previous work with the three-tank system using

the differential algebraic approach [12], in that work the

authors only report a numerical simulation study and not a

real-time experiment, also, they only solve the simplest case

in which three measured outputs are available to estimate

two faults, that is to say, they do not analyze the minimal

number of measurements to attack the diagnosis problem as

we do in this work.

This paper is organized as follows: In section II some def-

initions and examples in a differential algebraic framework

are given. In section III the minimal number of measurements

that one need to make a system diagnosable in terms of

the differential transcendence degree concept is given. An

asymptotic reduced-order observer for the fault signals is

presented in section IV. In section V an asymptotic sliding-

mode observer is given. In section VI the three-tank system

model is described, the minimal measurements condition is

evaluated in three different cases, the reduced-order and the

sliding-mode observers are designed and an identification

strategy for the uncertain parameters is given. In section VII

the experimental results are shown for the fault and state

estimation with two different observers. Finally, in section

VIII the paper is closed with some concluding remarks.

II. SOME DEFINITIONS

Some basic definitions are introduced. Further details can

be found in [6]-[10] and references therein.

Definition 1 Let L and K be differential fields. A differ-

ential field extension L/K is given by K and L such that:

1) K is a subfield of L and; 2) the derivation of K is the

restriction to K of the derivation of L.
Example 1 R < et > /R is a differential field extension,

where R ⊆ R < et > . et being a solution of ẋ− x = 0.
Definition 2 Let ξ = (ξ1, ξ2, . . . , ξn) be a set of ele-

ments of L. If it satisfies an algebraic differential equation

P
(

ξ, ξ̇, ξ̈ . . .
)

= 0 with coefficients in K it is called K-

differentially algebraically dependent. Otherwise, ξ is called

differentially K-algebraically independent.
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Definition 3 Any set of elements of L which is differen-

tially K-algebraically independent and maximal with respect

to inclusion forms a differential transcendence basis of L/K.

Two such basis have the same cardinality. This is called the

differential transcendence degree of L/K and denoted by

diff tr d◦ L/K
Definition 4 A fault is a not permitted deviation of at least

one characteristic property or parameter of any process in

relation to the development of the same parameter under

normal conditions. Faults are defined as transcendent ele-

ments over K 〈u〉 , therefore, a system with the presence of

faults is a differential transcendental extension, denoted as

K 〈u, f, y〉 /K 〈u〉 , where f is a fault vector and its time

derivatives.

Definition 5 Let G, K 〈u〉 be differential fields. A dynamics

with faults is a finitely generated differential algebraic exten-

sion G/K 〈u, f〉, G = K 〈u, f, ξ〉 , ξ ∈ G. Any element of

G satisfies an algebraic differential equation with coefficients

over K in the components of u, f and their time derivatives.

Definition 6 (Algebraic observability condition) A fault

f ∈ G is said to be diagnosable if it is possible to estimate

the fault from the available measurements of the system, i.e.,

f is diagnosable if it is algebraically observable over R〈u, y〉.
Let us consider the class of nonlinear systems with faults

described by the following equation
{

ẋ(t) = A(x, ū)
y(t) = h(x, u)

. (1)

Where x = (x1, . . . , xn)T ∈ R
n is a state vector,

u = (u1, . . . , um) ∈ R
m is a known input vector, f =

(f1, . . . , fµ) ∈ R
µ is an unknown input vector, ū = (u, f) ∈

R
m+µ, y(t) ∈ R

p is the output vector. A and h are assumed

to be analytical vector functions.

Example 3 Let us consider the system






ẋ1 = x1x2 + f + u
ẋ2 = x1

y = x2

. (2)

Since f satisfies the differential algebraic equation f − ÿ +
yẏ+u = 0, then, the system (2) is diagnosable and the fault

can be reconstructed from the knowledge of u, y and their

time derivatives.

Remark 1 The diagnosability condition is independent of

the observability of a system.

Example 4 Let us consider the system














ẋ1 = x1x2 + f + u
ẋ2 = x1

ẋ3 = x3f + u
y = x2

. (3)

In this case f is diagnosable. However, x3 is not algebraically

observable.

III. ON THE NUMBER OF FAULTS AND MEASUREMENTS

The following results from the theory of differential al-

gebraic field extensions are useful to determine whether a

fault can be reconstructed from the knowledge of inputs and

outputs:

Property 1 [19] Let K, L, M, be differential fields such

that K ⊂ L ⊂ M. Then

diff tr do(M/K) = diff tr do(M/L)+diff tr do(L/K)
(4)

Property 1 is an important tool to proof theorems 1 and

2.

Theorem 1 [8] Assume that the system (1) is diagnosable,

then the number of faults is less or equal to the number of

outputs, i.e.

µ ≤ p (5)

�

Another important result in the diagnosis problem is given

as follows.

Theorem 2 [14] The system (1) is diagnosable if and only

if

diff tr d◦ K〈u, y〉/K〈u〉 = µ (6)

�

IV. REDUCED-ORDER OBSERVER

Let consider system (1). The fault vector f is unknown

and it can be assimilated as a state with uncertain dynamics.

Then, in order to estimate it, the state vector is extended

to deal with the unknown fault vector. The new extended

system is given by

ẋ(t) = A(x, ū)

ḟ = Ω(x, ū)
y(t) = h(x, u)

(7)

where Ω(x, ū) is a bounded uncertain function.

Note that a classic Luenberger observer can not be

constructed because the term Ω(x, ū) is unknown. Then,

the above problem is overcome by using a reduced order

uncertainty observer in order to estimate the failure variable

f [6].

Next Lemma describes the construction of a proportional

reduced order observer for (7).
Lemma 1 If the following hypotheses are satisfied:

H1: Ω(x, ū) is bounded, i.e., |Ω(x, ū)| ≤ N.
H2: f(t) is algebraically observable over k 〈u, y〉 .
H3: γ is a C1 real-valued function.

Then the system

.

f̂ = K
(

f − f̂
)

(8)

is an asymptotic reduced order observer for system (7),
where f̂ denotes the estimate of fault f and K ∈ R

+

determines the desired convergence rate of the observer. �

The proof is omitted and it can be followed as in [21]

Remark 1. Sometimes the output time derivatives (which

are unknown), appear in the algebraic equation of the fault,

then it is necessary to use an auxiliary variable to avoid using

them.

Corollary The dynamic system (8) along with

γ̇ = ψ(x, ū, γ), with γ0 = γ(0) and γ ∈ C1 (9)
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constitute a proportional asymptotic reduced order fault

observer for the system (7), where γ is a change of variable

which depends on the estimated fault f̂ , and the state

variables. �

V. SLIDING-MODE OBSERVER

Consider the nonlinear system with faults given by (1),

assuming that the system satisfies definition 6, that is to say,

the fault vector f is algebraically observable over R〈u, y〉
and therefore satisfies a differential algebraic polynomial

ψ̄(f, y,
·

y,
··

y, ...,
(r)
y , u, u̇, ...) = 0 (10)

Where r is the maximum order of the output time derivatives.

Introducing the following change of coordinates

η1 = y, η2 =
·

y, ..., ηr =
(r−1)
y . (11)

Then in a domain D where ∂ψ̄/∂
(r)
y is invertible, the

corresponding input-output representation of (1) and (10) can

be rewritten as follows

·

η1 = η2
·

η2 = η3
...

·

ηr = Φ(η1, η2, ...ηr, u,
·

u, ..
(r−1)
u )

. (12)

Where Φ(.) is considered as an unmodelled dynamics.

The observer structure. The following system is a sliding-

mode asymptotic observer for the system (12).

·

η̂1 = η̂2 +m1sign(y − ŷ)
...

·

η̂r−1 = η̂r +m2sign(y − ŷ)
·

η̂r = mrsign(y − ŷ)
with ŷ = η̂1

(13)

where mj > 0, ∀j = 1, ..., r, and

sign(y − ŷ) =







1 if (y − ŷ) > 0
−1 if (y − ŷ) < 0

undefined if (y − ŷ) = 0
.

Then returning to the original coordinates and taking into

account (10), the fault can be estimated from

ψ̄(f̂ , η̂,
·

η̂,
··

η̂, ...,
(r)

η̂ , u, u̇, ...) = 0 (14)

Observer Convergence Analysis. The goal of implementing

an observer with guarantied convergence properties in the

general case is a complicated task, so in the following part

the case r = 2 is considered, and with m1 = mτ−1,m2 =
m2

1, the observer structure is

·

η̂1 = η̂2 +mτ−1sign(y − ŷ)
·

η̂2 = m2τ−2sign(y − ŷ)
. (15)

In order to analyze the convergence properties of the pro-

posed observer in this case, let the error estimation dynamics

be defined as
e1 = η1 − η̂1

e2 =
η2 − η̂2
m

. (16)

It follows that the estimation error vector e =
[

e1 e2
]T

verify the ordinary differential equation

·

e = Aµ̄e−Ksign(Ce+ δ) + ∆s (17)

Where µ̄ > 0 is a regularizing parameter, and

Aµ̄ =

[

−µ̄ m
0 −µ̄

]

, K = mτ−1

[

1
τ−1

]

,

C =
[

1 0
]

and ∆s =

[

µ̄e1
1
mΦ + µ̄e2

]

is an uncertainty term.

Assumption A1. There exist nonnegative constants L0s,

L1s, such that the following generalized quasi-Lipschitz

condition holds

‖∆s‖ ≤ Los + (L1s + ‖Aµ̄‖) ‖e‖ .
Assumption A2. There exists an additive output bounded

noise δ, that is y = η1 + δ, and

‖δ‖2
Λ := δT Λδ ≤ (δ+)

2
<∞,

where the positive definite matrix Λ = ΛT > 0 is a

normalizing matrix (because different components of the

output may have a different physical nature).

Assumption A3. There exists a positive definite matrix

Q0 = QT
0 > 0, such that the following matrix Riccati

equation

PAµ +ATP + PRP +Q = 0

with

R := Λ−1
s + 2 ‖Λs‖L1sI, Λs = ΛT

s > 0,
Q = Q0 + 2(L1s + ‖Aµ̄‖2

)I

has a positive definite solution P = PT > 0.
Assumption A4. The gain matrix K is selected as K =

kP−1CT , where k > 0.

Theorem 3. If the assumptions A1 to A4 are satisfied then
[

1 − µ̃

V (e)

]

+

→ 0 (18)

Where V (e) = ‖e‖2
P := eTPe,

µ̃ = µ̃(k) :=

(

ρ(k)
√

(kαP )2 + ρ(k)αQ + kαP

)2

,

ρ(k) := 2 ‖Λs‖L2
0s + 4k

√

n ‖Λ−1‖δ+,
αP := λmin(P−1/2CTCP−1/2) ≥ 0,
αQ := λmin(P−1/2QTQP−1/2) > 0

and the function [·]+ is defined as follows

[x]+ =

{

x if x ≥ 0
0 if x < 0

. �

2138



Fig. 1. Schematic diagram of the three-tank system

The proof of this theorem is omitted and can be followed

using some ideas given in [18].

Remark 2. The theorem 3 states that the weighted esti-

mation error norm V (e) actually converges to the zone µ̃
asymptotically. In other words, it is ultimately bounded.

VI. APPLICATION TO THE THREE-TANK SYSTEM

A. Description of the three-tank system

The Amira DTS200 is described in figure 1. The corre-

sponding nominal model is given by the following system

[17]

ẋ1 = 1
A (q1 − q13)

ẋ2 = 1
A (q2 + q32 − q20)

ẋ3 = 1
A (q13 − q32)

(19)

where the state vector is chosen as
[

x1 x2 x3

]

=
[

h1 h2 h3

]

, being hi the level in the tank i. A is the

transversal constant section of any of the identical tanks,

and qij represents the water flow from tank i to tank j, (i, j ∈
{1, 2, 3}) which according to the generalized Torricelli’s rule,

valid for laminar flow

qij = aiS sign(∆hij)
√

2g |∆hij | (20)

with q20 = a2S
√

2gh2.

Where ∆hij
△
= hi − hj , S is the transversal area of the

pipe that interconnects the tanks (see figure 1) and ai are

the output flow coefficients,which are not exactly known, so

they are considered as uncertain parameters.

The system (19) has four state regions in which the

corresponding model is differentiable, in this work x1 ≥
x3 ≥ x2 is the only considered region of operation.

B. Considered faults and measurements

The nominal model (19) is transformed into the following,

where two additive faults f1 and f2 (µ = 2) are considered in

the actuators that control the input flows u1 = q1, u2 = q2.

ẋ1 = 1
A (u1 − q13 + f1)

ẋ2 = 1
A (u2 + q32 − q20 + f2)

ẋ3 = 1
A (q13 − q32)

. (21)

C. Diagnosability analysis

In order to determine what is the minimum number of

measurements to be considered for fault reconstruction, we

have to evaluate the algebraic observability condition for the

faults in different cases of measurement availability. We only

consider the region of operation x1 ≥ x3 ≥ x2,

1) Case 0: The easiest case (and the only one reported in

previous works [12]) takes place when we can measure the

complete state vector, that is to say, we have three outputs:

y1 = x1, y2 = x2, y3 = x3; in this case, from (21) we have

f1 = Aẏ1 + a1S
√

2g (y1 − y3) − u1 (22)

f2 = A ẏ2 − a3S
√

2g (y3 − y2) + a2S
√

2gy2 − u2 (23)

it is clear from (22) and (23) that the system is diagnosable,

with p = 3 and µ = 2 (see theorem 1).

2) Case 1: Elimination of x1. In this case we consider

only the two measurable outputs: y2 = x2 and y3 = x3. By

taking into account the third state equation from (21), which

can be rewritten as

Aẏ3 = a1S
√

2g (x1 − y3) − a3S
√

2g (y3 − y2), (24)

we get

x1 = y3 +
1

2ga2
1S

2

(

Aẏ3 + a3S
√

2g (y3 − y2)
)2

(25)

Then, by replacing x1 in (22) we obtain a set of

two differential equations with coefficients in R 〈u, y〉
with two unknowns f1 and f2, this means that

diff tr d◦ R〈u, y〉/R〈u〉 = 2 and therefore, from theorem 2,

the faults are diagnosable with the two considered outputs.

3) Case 2: Elimination of x2. In this case we consider

only the two measurable outputs: y1 = x1 and y3 = x3. By

taking into account (24) we obtain

x2 = y3 −
1

2ga2
3S

2

(

−A ẏ3 + a1S
√

2g (y1 − y3)
)2

(26)

By replacing x2 in (23) in a similar way we can obtain that

diff tr d◦ R〈u, y〉/R〈u〉 = 2 and from theorem 2, the faults

are diagnosable with the two considered outputs.

4) Case 3: Elimination of x3. In this case we consider

only the two measurable outputs: y1 = x1 and y2 = x2. By

taking into account equation (22) we get

x3 = y1 −
1

2ga2
1S

2
(−A ẏ1 + f1 + u1)

2
(27)

By replacing x3 in (23) we can obtain that

diff tr d◦ R〈u, y〉/R〈u〉 = 2 and therefore, from theorem

2, the faults are diagnosable with only the two considered

outputs.
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D. Fault Reconstruction

The reduced-order and the sliding-mode observers have

been used to obtain effective fault estimations [20], [21],

as well as they can be used to estimate time derivatives as

follows.

Reduced order observer. Let us consider the following

time derivative to be estimated

η = ẏ. (28)

According to (8), we propose the observer structure

·

η̂ = K(η − η̂) (29)

introducing the change of variable

η̂ = γ +Ky (30)

and from (29) and (30) we can get γ̇ = −Kη̂, then again

from (30)

γ̇ = −Kγ −K2y (31)

then (31) together with (30) constitute an asymptotic estima-

tor for η.
Sliding-Mode Observer. We introduce the following

change of variables: η1 = y, η2 =
·

η1, then we obtain the

following observer

·

η̂1 = η̂2 +mτ−1sign(y − η̂1)
·

η̂2 = m2τ−2sign(y − η̂1)







(32)

which can be used to estimate η2 from the knowledge of y.

E. Identification of the uncertain parameters

As it was mentioned, the output flow coefficients ai

are not exactly known, but as it can be easily verified,

they are algebraically identifiable [12], that is to say, they

satisfy differential algebraic equations in R 〈u, y〉. Indeed by

considering available the complete state vector (y1 = x1,
y2 = x2, y3 = x3), in the region of operation, we can obtain

from (19) the following relationships:

a1 =
q1 −Aẏ1

S
√

2g(y1 − y3)
, (33)

a2 =
q1 + q2 −A (ẏ1 + ẏ2 + ẏ3)

S
√

2gy2
, (34)

a3 =
q1 −A (ẏ1 + ẏ3)

S
√

2g(y3 − y2)
. (35)

VII. EXPERIMENTAL RESULTS

We verified the real time performance of the proposed

estimators by using the Amira DTS200 system. The known

parameter values for the utilized system are: A = 0.0149
m2, S = 5× 10−5 m2 and the unknown parameters are a1,
a2 and a3. The sample time in all the experiments was 0.001
s. The experimental results are described as follows
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Fig. 2. Fault diagnosis for unknown h1 using the reduced-order observer:
a) Levels. b) Actual and estimated f1. c) Actual and estimated f2.

A. Identification results

With no presence of faults, equations (33), (34) and (35)

along a period of 1000s were computed while maintaining

q1 = 0.000025 m3/s and q2 = 0.000020m3/s, for 1000 s,
the estimated values for the flow parameters are

â1 = 0.418, â2 = 0.789, â3 = 0.435. (36)

B. Fault estimation results

In all the experiments described in this subsection the

input flows were maintained constant as q1 = 0.00002 m3/s
and q2 = 0.000015 m3/s, also two faults were artificially

generated through the following expressions:

f1 = 0.00005
[

1 + sin
(

0.2te−0.01t
)]

U(t− 220),
f2 = 0.00005

[

1 + sin
(

0.05te−0.001t
)]

U(t− 300),

where U(t) is the unit step function.

The two proposed schemes for fault estimation were

evaluated for x1 not measurable.

The two outputs y2 = x2 and y3 = x3 were taken

into consideration, for this reason an estimation for the

unknown state x1 was necessary to be obtained. In figure 2

we show the resulting estimations achieved with the reduced-

order observer. A low-pass filter was necessary in order to

reduce the effect of the measurement noise, here we propose

a second-order Butterwort filter whose transfer function is

given by

Gf (s) =
1

32s2 + 8s+ 1
. (37)

The gain values chosen for the fault observers were k1 =
2, k2 = 2 and for x1, kx1

= 0.3. As we can observe, the

estimation results with this scheme are good (see figure 2). A

sliding-mode observer was also tested in this case. In figure

3 the corresponding results achieved with the sliding-mode

observer are shown. It is worth to mention that with this
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Fig. 3. Fault diagnosis for unknown h1 using the sliding-mode observer:
a) Levels. b) Actual and estimated f1. c) Actual and estimated f2.

observer it was not necessary to include the reducing noise

filter providing the inherent robustness of this observer. The

gain values chosen for the fault observers were τ1 = τ2 = 1,
m1 = m2 = 0.1 and for x1 : τx1

= 1, mx1
= 0.1. As

we can observe, this scheme also provides good estimation

results (see figure 3).

VIII. CONCLUDING REMARKS

The differential algebraic approach for fault estimation

was presented. The usefulness of theorem 2 was shown in

the determination of the minimal number of measurements

needed for fault diagnosis in the Amira DTS-200 three-

tank system (p = 2), this allowed the estimation of two

simultaneous faults with less measurements than in previous

reported works. The theoretical and simulation results were

tested in a real-time experimental setting. The experimental

results for the two different observers showed similar perfor-

mance, nevertheless the proposed sliding-mode observer is

more robust against measurement noise, as it was expected.
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