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Abstract— It is well-known that tracking and regulation
control objectives can be achieved independently. This paper
focuses on the synthesis of the feedforward part of a two-degree-
of-freedom LPV/LFT controller. Here, the feedforward filter
synthesis, which includes a constraint on the control signal,
is cast as an L2 full-information minimization problem. The
effectiveness of the proposed approach is demonstrated on the
design of an LPV/LFT missile autopilot.

Index Terms— LPV and LFT systems, full-information con-
trol law, L2 gain, tracking, two-degree-of-freedom LPV con-
trollers, LPV feedforward filter synthesis, missile control.

I. INTRODUCTION

This paper addresses the design of the tracking part of

a two-degree-of freedom controller for LPV systems. This

is the so-called feedforward filter part of a two-degree-of-

freedom controller which aims at improving the tracking

and/or the measurable disturbance rejection performance of

the feedback loop. The design of LTI feedforward controllers

in the presence of uncertainties was considered in e.g. [4].

As shown in [12] in the case of LTI and polytopic systems,

an important property of a two-degree-of-freedom controller

synthesis, which is exploited here, is that tracking controller

and output feedback regulator syntheses are two independent

control problems. In addition, the former reduces to a simple

static state-feedback or full-information controller synthesis.

This paper extends the feedforward filter synthesis ideas

proposed in [12] to a class of parameter-dependent systems,

namely, the class of LPV systems which can be represented

as the feedback interconnection of a linear system and a

matrix with measurable time-varying entries [13], [10], [9].

Here, the feedforward synthesis is formulated as a full-

information L2 control law synthesis. From a practical point

of view, the approach of this paper presents the following

interesting properties:

• the feedforward filter is designed to improve the track-

ing performance of an existing feedback loop; the

feedforward filter synthesis algorithm does not requires

the explicit knowledge of the feedback regulator.

• the feedforward filter synthesis reduces to synthesize a

simple (i.e. a static) state-feedback or a full-information

control law.

The paper is structured as follows. Section II reviews some of

the basics of L2 performance for parameter-dependent sys-

tems. Sections III and IV present and detail the synthesis of
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the feedforward filter for a parameter-dependent system. The

effectiveness of the gain-scheduling feedforward synthesis is

illustrated in Section V on a non-linear longitudinal axis

missile control problem. Conclusions are given in Section

VI.

The notation used is standard: R
m×n denotes the set of

real m × n matrices, I is the identity matrix and In is the

n × n identity matrix. 0n×p is the n × p zero matrix. A

diagonal matrix with entry di, i = 1, . . . , n, on its diagonal

is denoted diag(d1, . . . , dn). AT is the transpose of matrix

A. For a square matrix A, det(A) is the determinant of A.

For a symmetric matrix, A = AT , A > 0 means that A
is a positive definite matrix. L

l
2[0,∞) is the space of R

l-

valued signals w(t) : [0,∞) → R
l of finite energy ‖w‖2 =

∫

∞

0
w(t)T w(t)dt. The L2 gain of an operator H is given by

‖H‖ = sup{‖H(w)‖/‖w‖ : w ∈ L
l
2[0,∞), w 6= 0}. Tzw

is the mapping w 7→ z relating the two real-valued signals z
and w.

II. PRELIMINARIES

This section introduces some definitions and a technical

result. Let us consider a parameter-dependent system P(∆)
given by

ẋ = A(∆(t))x + B(∆(t))w
z = C(∆(t))x + D(∆(t))w

(1)

where x(t) ∈ R
n is the state vector, w(t) ∈ R

nw is the

system input disturbance and z(t) ∈ R
nz is the output error.

A, B, C, D are real-valued continuous functions of ∆(t) ∈
∆ where ∆ is assumed to be a polytope of nq×np matrices

defined by its vertices {∆1, . . . ,∆r}. The assumptions made

here are quite general since ∆ is not supposed to be square

and diagonal and the polytope is not restricted to be a hyper-

rectangle.

A. Linear Fractional Representations

Throughout this paper, we make the following assump-

tions:

A1. The plant P(∆) can be expressed as the following

Linear Fractional Transformation representation (LFT)

P(∆) :















ẋ = Ax + Bqq + Bww
p = Cpx + Dpqq + Dpww
z = Czx + Dzqq + Dzww
q = ∆(t)p, ∆(t) ∈ ∆

(2)

where p ∈ R
np , q ∈ R

nq with the assumptions that

det(I + Dpq∆(t)) 6= 0 for all ∆(t) ∈ ∆ (well-

posedness) and ∆(t) is available in real-time.

A2. The polytope ∆ contains the origin.
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The well-posedness of (2) guarantees the equivalence be-

tween the system representations (1) and (2).

B. L2 Performance for LPV/LFT Systems

Theorem 1: (Dual quadratic L2 performance characteriza-

tion). If there exist multipliers

ΠP =

[

0 P
P 0

]

, P ∈ R
n×n, P > 0,

Πγ =

[

γ2Inz
0

0 −Inw

]

,

Π =

[

Q S
ST R

]

= ΠT , Π ∈ R
(np+nq)×(np+nq)

such that

V T diag(ΠP ,Πγ , Π)V > 0, (3)
[

−∆T
i

I

]T

Π

[

−∆T
i

I

]

< 0, i = 1, . . . , r, (4)

Q > 0,

where

V =
[

ST
x ET

x ET
z ST

w ET
1 ST

1

]T
,

with




Sx

S1

Sw



 = −





AT CT
z CT

p

BT
q DT

zq DT
pq

BT
w DT

zw DT
pw



 ,

and




Ex

Ez

E1



 =





In 0 0
0 Inz

0
0 0 Inp



 ,

then the L2 gain of Tzw is less than or equal to γ, for all

values of the parameter ∆(t) ∈ ∆.

A proof for the primal version of Theorem 1, i.e. obtained

with a Lyapunov function of the form V (x) = xT Px,

P > 0, can be found in [13]. The dual form given here

is obtained by applying the dualization Lemma [13] to the

set of primal inequalities. The approach taken here is more

general and less conservative than the approach given in

[15] where it is assumed that ∆ is square and the multiplier

positive definite (see [15] for details). This result can also

be demonstrated using the concepts of implicit systems and

quadratic separator analysis given in [5]. A relatively simple

proof of Theorem 1, can be derived using the S-procedure

[1] within the IQC analysis framework [7]. An alternative

analysis result, in line with the work of [15], is given in

[11].

Parameter-dependent Lyapunov functions allow to con-

sider time-varying parameters with bounded rates of vari-

ations and so, they have the potential to yield less conser-

vative results than those obtained with a single quadratic

Lyapunov function. Sufficient conditions using parameter-

dependent Lyapunov functions could be used to tackle the

L2 performance analysis problem of this paper e.g. [5],

[15] and [16]. The simplest choice would be to use affine

parameter-dependent Lyapunov functions [3], [15]. However,

if we adopt the approach of [15] then, it can be shown

that, when the parameter set and the set of the parameter

rates of variations are symmetric with respect to the origin

(this is common in practice) then affine parameter-dependent

Lyapunov functions do not offer any improvements over

single quadratic Lyapunov functions [15]. More general

parameter-dependent Lyapunov functions, represented by

LFTs, have been used in e.g. [5] and [16]. Unfortunately,

no general procedure exists for selecting the Lyapunov

function structure (i.e. its LFT parameters). Hence, the use

of parameter-dependent Lyapunov functions, for the general

class of LPV/LFT systems, remains, to this date, an open

question.

III. TRACKING FOR LFT SYSTEMS

The feedforward filter synthesis is illustrated in the inter-

connection diagram of Figure 1. Gp is the nominal model

of the parameter dependent plant. TM is a reference model

which may be an LTI or a parameter dependent. TM rep-

resents the desired closed-loop transfer matrix between the

set point r and the actual output Eym where, the matrix E
selects the plant model outputs to be controlled. W1 may be

constant, LTI or a parameter dependent weight. W1 is used

to penalize the error between the reference model output

and the plant output subset. W2 is used to penalize the

control action required to achieve the tracking objectives.

In addition, a measurable disturbance, represented by d in

Figure 1 can be rejected by a suitable choice of W1. This can

achieved by replicating in W1 the frequency content of the

disturbance (Internal Model Principle). Disturbance rejection

m?
-

?
--

6

-

?

W1

Gp

TM

+

−
Σ

z2

z1

ymr

um

d

E

W2

Fig. 1. Interconnection structure for the feedforward filter design: the
reference tracking and disturbance rejection problem

(of the measurable disturbance d) and tracking objectives can

be cast as a standard L2 minimization problem by defining

wT = [rT , dT ] and zT = [zT
1 , zT

2 ] in the setting of Figure

1. Now, we suppose that the interconnection diagram of

Figure 1 is a parameter dependent system with state-space

representation:

FW (∆) :































ẋ = Ax + Bqq + Bww + Buum,
p = Cpx + Dpqq + Dpww + Dpuum,
z = Czx + Dzqq + Dzww + Dzuum,
um = Fxx + Fww,
ym = Cyx + Dyqq + Dyww + Dyuum,
q = ∆(t)p, ∆(t) ∈ ∆.

(5)
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The plant matrices A, Bq etc., in the above state-space

representation can be obtained from the parameter dependent

state-space realizations of TM , W1, W2 and Gp. These state-

space matrices are given in the Appendix for the tracking

problem. They could also be computed with the Maltab LFR

Toolbox [6]. The synthesis problem consists of computing

a control law such that the L2 gain between w and z is

less than or equal to a positive number γ (typically, but not

necessarily, the weights are selected so that the objectives

are met if γ is less than 1), for all ∆ in ∆. Because all the

systems in Figure 1 are simulation models the state vectors of

TM , the weights and Gp are available for feedback. Hence,

the feedforward filter can be obtained with a full-information

control law which minimizes the L2 gain of Tzw over the

polytope of matrices ∆.

IV. FEEDFORWARD FILTER SYNTHESIS

A. L2 Full-Information Synthesis

More precisely, the feedforward filter synthesis consists

of computing the full-information controller such that the

L2 gain of Tzw in (5) is less than or equal to γ over the

whole parameter trajectory set.

Corollary 1: (Feedforward synthesis) Consider the system

(5). If there exist a matrix P > 0, a positive scalar γ, a matrix

Y ∈ R
nu×n, a matrix Fw ∈ R

nu×nw and a symmetric

multiplier

Π =

[

Q S
ST R

]

∈ R
(np+nq)×(np+nq),

with Q < 0, such that

L(P, Y, Fw, γ) :=









L11 L12 L13 L14

⋆ L22 L23 L24

⋆ ⋆ L33 L34

⋆ ⋆ ⋆ L44









< 0

R + ST ∆T
i + ∆iS + ∆iQ∆T

i > 0, i = 1, . . . , r

with L11 = AP +PAT +BuY +Y T BT
u +BqRBT

q , L12 =
PCT

z +Y T DT
zu+BqRDT

zq , L13 = PCT
p +Y T DT

pu+BqS
T +

BqRDT
pq , L14 = Bw + BuFw, L22 = −γInz

+ DzqRDT
zq ,

L23 = DzqS
T + DzqRDT

pq, L24 = Dzw + DzuFw, L33 =
Q + SDT

pq + DpqS
T + DpqRDT

pq, L34 = Dpw + DpuFw,

L44 = −γInw
, then the full-information control law um =

Fxx + Fww, with Fx = Y P−1, is such that the L2 gain of

Tzw is less than or equal to γ, for all values of the parameter

∆(t) ∈ ∆.

Proof: Corollary 1 follows from Theorem 1 if one ap-

plies the later to the system FW (∆) given in (5). The 4-by-

4-block synthesis inequality L(P, Y, Fw, γ) is then obtained

by applying the Schur complement formula to inequality (3)

divided by γ.

The control signal um and the controlled output ym are the

outputs of the feedforward filter while r and d will consist

of its inputs. um is the ‘ideal’ control signal which if applied

to the plant, in the presence of signals r or d, will produce

the ‘ideal’ control output ym. That is a guarantee of an

attenuation of the effect of d on Eym, and the guarantee

that Eym follows the reference signal r.

The full-information control law is static, but note that

the feedforward filter in Figure 1 is a parameter-dependent

system. The feedforward filter is never used alone. It must

be implemented on an existing feedback control loop as

follows; Let yc and uc denote, respectively, the input and

the output of the feedback regulator K (which may be an

LTI or a parameter-dependent feedback regulator). The two-

degree-of-freedom controller (made of the association of K
and of the feedforward filter) is obtained by adding the

feedforward control input signal um to uc, and yc is obtained

by subtracting ym to the plant output measurement y. In the

presence of uncertainty, y ≈ ym, u ≈ um providing that the

regulator can cancel the error between the ideal reference

signal ym and the output measurement y (see [12] for more

details).

V. DESIGN EXAMPLE

A. Missile Model

We consider the longitudinal model taken from [8]. The

system state-space representation is given by

α̇ = f1(α, q, δ,M)

≡ KαMCn(α, δ,M) cos(α) + q, (6)

q̇ = f2(α, δ,M) ≡ KqM
2Cm(α, δ,M), (7)

η = h1(α, δ,M) ≡ KηM2Cn(α, δ,M), (8)

where the aerodynamics coefficients are, for positive values

of the angle of attack α, given by

Cn(α, δ,M) = anα3 + bnα2 + cn(2 − M/3)α + dnδ,

Cm(α, δ,M) = amα3 + bmα2 + cm(−7 + 8M/3)α + dmδ.

Plant variables and numerical values are given in table I.

The variables η and q are measured variables available for

feedback and the input to the plant is the tail deflection δ.

The tail deflection actuator is modelled as a second order

system with a damping factor of 0.7 and a natural frequency

of 150 rad/s. In addition, we will suppose that the Mach

number (M ) and angle of attack (α) are estimated on-line.

α and M will be used for scheduling purposes. The missile

autopilot performance requirements are as follows:

• The autopilot must ensure stability and performance

over the operating range 0 < α ≤ 35o and 2 ≤ M ≤ 4.

• Track step demands in vertical acceleration with time

constants no greater than 0.35s. Overshoot no greater

that 10%. Steady-state error less than 1%.

It can be shown that plant linearizations at constant operat-

ing conditions exhibit non-minimum phase zeros and badly

damped modes [8], [2]. This is typical of a tail controlled

missile; acceleration has unstable zero dynamics with respect

to the control deflection input. The non-minimum phase char-

acteristics of a missile lead to control difficulties. Unstable

zero dynamics impose bandwidth limitations and prevent the

direct use of non-linear dynamic inversion control strategies.
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Variables Description

α Angle of attack [rad].
q Pitch rate [rad/s].
M Mach number.
δ Commanded Tail deflection [rad].
η Normal acceleration [g].

g = 32.2 Gravity acceleration [ft.s−2]
Kα = 0.0207 Normal force coefficient
Kq = 1.2320 Pitching moment coefficient
Kη = 0.6659 Load factor coefficient

an = 19.34 [rad−3] am = 40.485 [rad−3]
bn = −31.008 [rad−2] bm = −64.166 [rad−2]
cn = −9.7174 [rad−1] cm = 2.922 [rad−1]
dn = −1.9481 [rad−1] dm = −11.803 [rad−1]

TABLE I

VARIABLE DESCRIPTION AND NUMERICAL VALUES

B. LFR Missile Model

This section briefly explains how a linear fractional repre-

sentation of the longitudinal missile axis model is obtained.

We follow the ideas already proposed in the LFR Matlab

toolbox. The LFR Toolbox [6] provides a collection of

Matlab functions to simplify the construction and the analysis

of linear fractional models.

Define x = [α, q]T , f = [f1, f2]
T , h = [h1, q]

T . The

missile state-space matrices resulting from linearization are

given by

A(α, M, δ) =
∂f

∂x
, B(α, M) =

∂f

∂δ
, (9)

C(α, M) =
∂h

∂x
, D(M) =

∂h

∂δ
. (10)

Now, if one considers the equilibrium surface corresponding

to a zero angular acceleration about the pitch axis, i.e. q̇ =
f2(α, M, δ) = 0, one gets

δ = −[amα3 + bmα2 + cm(8M/3 − 7)α]/dm. (11)

The parameter-dependent missile state-space matrices are

obtained by substituting the value of δ given in (11) into

the evolution matrix given in (9). The trigonometric function

cos(α) in (6) is approximated by a 2nd order Taylor series

at the mid-range value α0 = 17.18◦, i.e.:

cos(α) ≈ cos(α0)− sin(α0)(α−α0)−
1

2
cos(α0)(α−α0)

2.

With this approximation, the state-space matrices entries are

multivariate polynomials in M and α and hence they have

linear fractional representations. In this model, the mid-value

point for Mach number is taken as M0 = 3 and M is such

that M = M0 + M̄ , |M̄ | ≤ 1. Similarly, the mid-value

point for the angle of attack is selected as α0 = 17.18◦

and α is such that α = α0 + ᾱ, |ᾱ| ≤ 17.18◦. In this

representation, the parameter vector is θ = [ᾱ, M̄ ]T . With

the actuator dynamics added, the linear fractional missile

representation Gp(θ) has 4 states, ∆(θ) = diag(ᾱI4, M̄I7)
and the polypope of matrices ∆, which contains all the

possible values of ∆, has 4 vertices corresponding to the

4 combinations of the extreme values of M̄ and ᾱ. For more

detail on how such LFR model is numerically constructed the

reader is referred to the LFR Toolbox documentation [6].

C. Feedforward Synthesis

A second order response is required for the closed-loop

transfer Tηr. To meet the tracking requirements, the reference

model was chosen as

TM =
−0.05s + 1

s2/ω2
na

+ 2sξa/ωna
+ 1

where ξa = 1 and ωna
= 14 rad/s. Note that an instable zero

was added to TM . This is because the vertical acceleration

channel presents a non minimum phase characteristic. If the

plant is non minimum phase, adding an instable zero in

the reference model turns out to be useful in preventing

unnecessary control activity about the frequency of the

unstable zero. The weights were chosen as:

W1 =
120

s + 0.01
, W2 =

0.15s + 0.006

0.00625s + 2
.

The tuning of the weights is similar to that used in a

standard mixed-sensitivity H∞ controller synthesis, see e.g.

[14] for more information on the selection and the tuning of

frequency performance weights. W1 was selected to ensure a

small steady-state error and to enforce tracking performance

in the frequency range [0, 50] rad/s approximately and W2

is used to penalize the fin deflection. Because the tracking

requirement is on the vertical acceleration, E = [1, 0].
With the weighting functions defined above, the LMI

optimisation synthesis algorithm of Section IV gives an

L2 performance of about 5.32 and the corresponding full-

information control law is:

Fx = 1000 × [−1.4770,−5.3286, 0.2587, 9.2841, ...

−61.2416,−2.0663,−2.8142,−9.4081],

Fw ≈ 0.

D. LPV Feedforward Time Responses

The time responses of the feedforward filter, for 10 values

of Mach numbers in the interval [2, 4] and for a −12g step

demand in the vertical acceleration are shown in Figure 2.

We can see that the time responses meet the requirements

for Mach numbers higher than 2.2. The responses for Mach

numbers less than 2.2 are just slightly slower than required.

Observe that angle of attack and control deflection increase

as Mach number decreases. This is because the control

surfaces, at low mach number, are less effective than they are

at high Mach numbers. The responses of Figure 2 compare

extremely well with the responses given in [6], [2], [8]. As

seen in Figure 2, the feedforward filter responses wary non-

linearly with the parameters. They reflect the physical non-

linear changes in the controlled missile dynamics. Therefore,

it is expected that such a parameter-dependent feedforward

filter will provide superior tracking performance than it

would normally be the case with a simple low-pass LTI

filtering strategy of the acceleration demand.

E. Full Non-linear Missile Time Responses with a Two-

degree-of-freedom LPV/LFT Controller

An LPV/LFT output feedback controller K(∆) was de-

signed according to the LPV synthesis given in [11]. The
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Fig. 2. Feedforward LFV/LFT filter responses to a step demand of -12g;
Acceleration [g] and corresponding pitch rate [deg.s−1], fin deflection [deg]
and angle of attack [deg], for 10 values of Mach number in the interval [2, 4].

LPV synthesis in [11] extends the loop shaping design

procedure of McFarlane and Glover to LPV/LFT plants,

takes advantage of the full knowledge of the parameter poly-

tope’s description and makes use of unstructured multipliers

allowing the least possible conservatism if arbitrarily fast

parameter variation is allowed. The LPV output feedback

regulator was obtained with the pre and post open-loop

compensators W1s = 150
s+150 and W2s = diag( 5

s
, 0.6),

see [11] for details. The one degree-of-freedom controller

K(∆) provides fast responses across the full flight envelop.

However, the closed-loop responses provided by K(∆)
suffer from large overshoots, especially in the acceleration

channel. To overcome this problem, we are going to use

the feedforward filter of this section. Figure 3 shows the

Simulink structure of the whole control system based on

the two-degree-of-freedom (2dof) LPV/LFT controller made

of K(∆) and FW (∆). Note that the feedforward filter is

outside the feedback loop and so does not require the missile

output measurements. Actually, FW (∆) uses its internal

states, in this case ᾱ, and the external parameter M̄ to update

(schedule) its state-space matrices.

The non-linear missile responses obtained with the 2dof

LPV/LFT controller of Figure 3 are given in Figure 4.

The non-linear responses are similar to those obtained with

the LPV feedforward filter of Figure 2. But, the responses

obtained with the two-degree-of-freedom LPV controller are

considerably better than those obtained with the LPV output

feedback regulator alone (those are not shown here due to

a lack a space). Because the feedforward filter is outside

the feedback loop (Figure 3), the tracking performance

improvement, due to FW (∆), does not affect the closed-

loop stability margins.

VI. CONCLUSIONS

In this paper, a simple synthesis of the feedforward filter of

two-degree-of-freedom LPV/LFT controller was presented.
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linear missile equations given at the beginning of Section V. In addition,
the missile block includes actuator and sensors models.
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Fig. 4. Non-linear missile responses to a step demand of -12g obtained with
the 2dof LPV/LFT controller of Figure 3, for 10 values of Mach number
in the interval [2, 4].
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The proposed synthesis is also extremely simple to imple-

ment and has the following merits:

• The feedforward filter synthesis requires only the plant

model. No information on the feedback controller is

required. This is particularly useful if one considers the

usual complexity associated with most output feedback

gain-scheduled controllers.

• The feedforward filter synthesis reduces to solving an

L2 full-information control problem. This makes the

feedforward filter synthesis especially attractive from a

numerical point of view.

• Because the LPV/LFT feedforward filter dynamics vary

with the parameters, superior tracking performance can

be achieved over more conventional LTI filtering strate-

gies.

In the missile autopilot example, almost all the autopilot

objectives were achieved by adding an LPV/LFT feedforward

filter to the LPV feedback loop, however, we believe that

all of the objectives could be met with parameter-dependent

weighting functions.
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VIII. APPENDIX

A. State-Space Matrices for Feedforward Tracking Synthesis

Suppose that W1, W2, Gp and TM are parameter-

dependent systems with linear factional representations S1,

S2, S3 and S4 respectively, where the Sj’s, for j = 1, . . . , 4,

are defined as:

Sj :















ẋj = Ajxj + Bqjqj + Bujuj ,
pj = Cpjxj + Dpqjqj + Dpujuj ,
yj = Cyjxj + Dyqjqj + Dyujuj ,
qj = ∆j(t)pj ,

(12)

Define xT = [xT
1 , xT

2 , xT
3 , xT

4 ], pT = [pT
1 , pT

2 , pT
3 , pT

4 ],
qT =

[

qT
1 , qT

2 , qT
3 , qT

4

]

, zT = [zT
1 , zT

2 ], w = r and ∆(t) =
diag(∆1(t), . . . ,∆4(t)). Using the annotations of Figure 1,

with d = 0, we have u2 = u3, u3 = um, u4 = r, z1 = y1,

z2 = y2, ym = y3, u1 = E(y3 − y4). It is easy to show that

the state-space matrices of the open-loop full-information

interconnection are given by:

A =









A1 0 Bu1ECy3 −Bu1Cy4

0 A2 0 0
0 0 A3 0
0 0 0 A4









,

Bq =









Bq1 0 Bu1EDyq3 −Bu1Dyq4

0 Bq2 0 0
0 0 Bq3 0
0 0 0 Bq4









,

Bw =









−Bu1Dyu4

0
0

Bu4









, Bu =









Bu1EDyu3

Bu2

Bu3

0









,

Cp =









Cp1 0 Dpu1ECy3 −Dpu1Cy4

0 Cp2 0 0
0 0 Cp3 0
0 0 0 Cp4









,

Dpq =









Dpq1 0 Dpu1EDyq3 −Dpu1Dyq4

0 Dpq2 0 0
0 0 Dpq3 0
0 0 0 Dpq4









,

Dpw =









−Dpu1Dyu4

0
0

Dpu4









, Dpu =









Dpu1EDyu3

Dpu2

Dpu3

0









,

Cz =

[

Cy1 0 Dyu1ECy3 −Dyu1Cy4

0 Cy2 0 0

]

,

Dzq =

[

Dyq1 0 Dyu1EDyq3 −Dyu1Dyq4

0 Dyq2 0 0

]

,

Dzw =

[

−Dyu1Dyu4

0

]

, Dzu =

[

Dyu1EDyu3

Dyu2

]

.
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