
Factory-Level Control Consolidation Using Event-Condition-Action:
Case Study on the Reconfigurable Factory Testbed

Lindsay V. Allen, Jing Zhang, James Moyne, and Dawn M. Tilbury

Abstract— During its lifetime, a manufacturing system often
has added functionalities or significant changes to its control
system that can result in a broken control hierarchy, causing
problems with debugging and reconfiguration. For the up-
and-coming field of Reconfigurable Manufacturing Systems,
poor reconfigurability is especially problematic. A procedure
for restructuring a standard control hierarchy is presented,
including how to decide where to move particular logic and
preserve Event-Condition-Action (ECA) based structure, when
originally present. This procedure is applied to an ECA-
based case study — the Reconfigurable Factory Testbed at the
University of Michigan — to demonstrate its use. Additional
lessons learned about ECA’s role in restructuring are also
presented through the case study.

I. INTRODUCTION

A good hierarchical control system can provide many
desirable properties for a manufacturing system, including
clearly defining the control scope of components and isolat-
ing different levels of control, which can aid in reconfigura-
bility. Breaks in the control hierarchy can occur, however,
resulting from the original design process or modification
of an existing system. If a manufacturing system’s control
system has components from different vendors or subsystems
developed by different teams, a broken hierarchy can result.
This difficulty can be avoided through careful planning early
in the design process, such as defining the interface through
which the components or subsystems will communicate and
clearly outlining each of their roles and responsibilities.
When an existing system is upgraded or modified, the control
hierarchy can be preserved if the modification is invisible to
the rest of the system. Otherwise, temporarily breaking the
control hierarchy may be necessary if the modification affects
the hierarchy. For example, if the control system has one
overarching controller that handles both enterprise and fac-
tory level control and the enterprise control is to be improved
by adding a controller dedicated solely to the enterprise level,
then temporarily there would be an enterprise controller and
an enterprise-factory controller, breaking the hierarchy.

Although manufacturing systems lacking a clear control
hierarchy may still be made to run properly, their jumbled
structures can cause difficulty in debugging, leading to exces-
sive down-time, and poor reconfigurability. It may be difficult
to coordinate disparate resources to work together to achieve
factory goals. Restructuring the system can address these

This work was supported in part by the National Science Foundation–
ERC for Reconfigurable Manufacturing Systems under Grant EEC95-92125.

Authors are with the University of Michigan, Ann Arbor, MI
48109-2125 USA (e-mail lzallen, jingzh, moyne,
tilbury@umich.edu)

issues. A variety of methods and paradigms for designing
a new control system have been proposed, such as the
hierarchical/heterarchical blended structure in [7] and bionic,
fractal, and holonic manufacturing concepts reviewed in [14].
Upgrades and retrofits to replace obsolete parts, improve
efficiency or completely replace the control system are all
discussed in industry journals, see [6], [8], and [15] for
example. Less discussed, however, is how to restructure
an existing control hierarchy to fix or improve it. Such
restructuring may be a better approach than replacing the
entire control system in some cases, and may be especially
advantageous when the system must be down for other
maintenance or upgrade reasons.

This paper focuses on the evolution and restructuring
of control hierarchies, with emphasis on Event-Condition-
Action (ECA) based control hierarchies. An ECA system
consists of a set of rules. The rules are triggered by events,
check whether certain conditions are satisfied, and, based on
these conditions, perform certain actions [16]. A case study
system that evolved into having an ECA-based control with
unclear hierarchy is described in Section II. Some guidelines
related to performing a consolidation of a control hierar-
chy, including communication restructuring, are discussed in
Section III. How these guidelines applied to the case study
system’s control hierarchy are the basis of Section IV. The
communication restructuring is applied to the case study sys-
tem in Section V. Lessons learned from the implementation
of the consolidation thus far are shared in Section VI. Section
VII provides conclusions and a description of future work on
the case study system’s consolidation. To assist the reader,
after the References section there is an appendix describing
acronyms commonly used throughout this paper.

II. CASE STUDY SYSTEM

The Reconfigurable Factory Testbed is a near-industrial
grade, reconfigurable manufacturing system at the University
of Michigan Engineering Research Center. It is used for
research, teaching, and technology transfer purposes [11].

A. Basics of the Testbed

The testbed consists of hardware and software resources
that communicate via networks, as shown in Figure 1, and
are coordinated by a factory-wide ECA-based management
system called the Control Workflow Manager (CWM) [16].

The CWM is part of the Software Infrastructure which also
includes middleware, software modules, and programs called
trackers which interact with the RFID system. A Human
Machine Interface is used to place orders for the testbed. A

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeC14.4

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 1715

Fig. 1. Reconfigurable Factory Testbed Components

set of RFID antennas reads part and pallet numbers through
their RFID tags and provides this information to the rest of
the testbed system via the database. A system level controller
(SLC) coordinates all of the hardware, including the serial-
parallel line, virtual factory, and wheel processing station.

The hardware resources include milling machines, robots
and a conveyor. These resources form a serial-parallel manu-
facturing line consisting of two cells, each of which has one
robot and two milling machines, which are connected by a
conveyor. The conveyor also connects the cells to the Supply
Cell, where parts are loaded, and to the Virtual Factory,
where assembly of finished parts is simulated. The wheel
processing station emulates the production of wheels for the
system, while the database tracks the wheel inventory and
triggers an event to produce more when the inventory is low.

B. Event-Condition-Action Paradigm

The testbed’s control system is Event-Condition-Action
(ECA) based. An ECA rule is triggered by the arrival of
an event; the conditions are checked by querying software
modules, a database, or controllers (possibly several itera-
tions of queries and responses); and the rule terminates in
an action (or lack thereof) on the outside environment. An
advantage of using ECA is that it can separate behavior from
state — the ECA rules describe behavior and can receive
from or query other sources for state information on which to
base that behavior. Adopting ECA rules is also advantageous
in providing reconfigurability of event-driven systems as
demonstrated in implementing low-level logic controllers
[1][2] and high-level management and control systems [16].
The ECA paradigm (or more generally the event/action
paradigm) is widely adopted in many different areas, such as
active database [3][13], logic control [1][2][16], and semantic
web [4]. For a detailed survey on the event/action paradigm
see [12].

C. Evolution of Control Hierarchy

The testbed’s control system was developed by several
different groups simultaneously, as often happens in industry.
The SLC was created in a non-ECA form at the same time

as, but by a different group than, the ECA-based CWM.
Later on, the SLC was transformed to an ECA-based system
to move the entire control system more towards ECA. As
a result of this parallel development process, the resulting
control hierarchy was not clear, the component interactions
were not plainly separated, and system goals were not fully
aligned.

The existing control hierarchy is shown in Figure 2, where
it consists of separate control levels. In general, manufac-
turing control systems have four levels: enterprise, factory,
cell, and machine. The testbed does not have enterprise level
control, but does have the other three.

Factory Level
Control

SLC

Cell Level Control

C1C C2C
Supply

Controller
Assembly
Controller

....

Machine Level Control

Milling
Machine

Controller

Robot
Controller

CWM

Inventory
Managemnt

Factory Level
Managemnt

Software Module

Train
Design

Informer
....

Fig. 2. ECA-Based Control Hierarchy of Testbed System

Having these three separate control levels separated by
well-defined interfaces isolates the levels from one another
so that problems can be more easily debugged and recon-
figuration performed. The SLC performs aspects of both
factory-level control and cell level control, which breaks the
ECA-based control hierarchy and causes the debugging and
reconfiguring problems associated with the lack of separate
levels and well-defined interfaces.

D. Testbed Controllers

At the factory control level of the testbed, there is a soft-
ware control system (the CWM) and a logic controller (part
of the SLC). At the cell control level, there are controllers
for Cells 1 and 2, Supply Cell, Assembly, RFID, Conveyor
and the other part of the SLC. The machine control level
consists of all the machine and robot controllers.

The Cell 1 and 2 Controllers coordinate the milling
machines and robots inside Cells 1 and 2, respectively. They
receive instructions from the SLC/CWM and send their own
instructions to the machine controllers and robot controllers.
The Cell 1 Controller (C1C) is a research platform written
in Modular Finite State Machine (MFSM) and running in
Java [5]. The Cell 2 Controller (C2C) is a Siemens soft
PLC running sequential function charts and ladder logic. The
Cell Controllers’ programming language should not matter
to controllers at other levels so long as the interfaces between
the levels are well-defined.

The SLC is implemented as a set of communicating ECA
MFSMs, where an ECA MFSM is an MFSM that has one
main module with ECA rules and other peripheral modules

1716

that hold state information [2]. Part of the SLC’s logic
belongs to Factory Level Control, since it coordinates the
Cell Level controllers, while the other part belongs to Cell
Level Control, since it keeps track of the states of the cells
and only passes along requests that it knows the cells can
currently perform. As previously mentioned, the SLC breaks
the leveled control hierarchy of the testbed, motivating its
elimination which would make the CWM the sole factory
level controller.

III. DISCUSSION OF RESTRUCTURING GUIDELINES

To restructure a broken control hierarchy, several guide-
lines should be followed. The control structure must be
rearranged so that the levels are distinct and separated by
clear interfaces; a procedure for doing so is described below.
In addition, changing the control structure will also require
making modifications to the communication flow and issues
associated with that are also discussed.

A. Control Hierarchy

The first step in performing a control consolidation or
restructuring is identifying the current control hierarchy and
any deviations from the standard form, as done in Section
II for the case study ECA-based system. These deviations
can be addressed by moving elements of the logic of the
non-conforming controller either up to the higher level or
down to the lower level of control. Deciding whether to
move particular logic up or down should not be arbitrary, but
rather based on the following basic procedure. The procedure
begins with specifying the control hierarchy by identifying
the interfaces between distinct control levels, the basic capa-
bilities provided at each level, and the information exchange
across the interfaces between levels. The decision as to where
to partition the hierarchy is largely implementation-specific
and often governed by legacy implementation and capabil-
ities provided by off-the-shelf components integrated into
the control hierarchy (such as PLCs). Practically, partitions
should be chosen that allow for the push-up and push-down
of functionalities that can be supported by these legacy and
off-the-shelf components.

For each controller that straddles two control levels, its
functionalities should be identified and framed as methods
with well-defined input/output interfaces. Viewing the con-
troller as a collection of methods allows each method to be
moved to its appropriate control level independently of the
others. For each method, one should determine whether it
performs factory, cell, or machine level control and move it
to the appropriate level. This determination can be straight-
forward if the interface of each control level is well-defined,
because then the method’s I/O simply needs to be matched
with an interface’s I/O. If a method produces outputs that
are consistent with information specified as being produced
at the factory/cell interface by the factory component, then
the method should be moved up. If the method’s outputs,
however, are consistent with information specified as being
produced at that interface by the cell component, then the
method should be moved down.

In this manner, all of the functionalities of the non-
conforming controllers will be moved elsewhere, thus elimi-
nating these controllers. Following this procedure will yield a
control hierarchy that has the same interfaces as the original
hierarchy but conforms to the standard level divisions. Also
if the original system is ECA-based, this procedure can pre-
serve that characteristic in the resulting system by combining
the ECA rules of each method with the ECA rules of the con-
troller they are being merged into. More information about
how to combine the ECA rules is described in Section VI.
In making these changes to the control hierarchy, however,
any communication that previously went through the now-
eliminated controllers will need to be redirected, a procedure
described in the next section.

B. Communication Structure

Restructuring the control hierarchy requires modifying the
communication structure to accommodate the changes. The
modification of the communication structure can be largely
implementation specific. The testbed control consolidation
process (discussed in Section IV) revealed that, once a
formalism for control consolidation is established, the re-
configuration of communication to support the consolidation
can become one of the most difficult tasks. Following the
guideline for moving controller logic, however, can assist
in providing direction for the communication restructuring.
In using this guideline, the controller to be eliminated was
framed as several methods, each with their own inputs and
outputs, which collectively should be all of the inputs and
outputs for the entire controller. Thus, inputs and outputs
associated with a particular method should move with that
method to its new location — for example if a method M
was moved to a cell level controller CLC, then all inputs and
outputs of M should become inputs and outputs of CLC.
There may be some inputs used by several methods, in
which case a copy of those inputs must be routed to the
new locations of each of the methods that use it.

When rerouting communication, special attention should
be paid to the communication protocols used by the con-
trollers affected by the consolidation. If a method is moved
to a controller with a different communication protocol (i.e.
TCP/IP, OPC tags, XML etc.), then the inputs to that method
may need to be converted from their original protocol to
the protocol of the method’s new controller. Likewise, the
method’s outputs may need to be converted before going to
their final destination. If the controller to be eliminated has
special communication subsystems to support it, these also
need to be eliminated as part of the consolidation.

The communication involved in material handling presents
particular difficulty. Although the control structure is made
hierarchical through the consolidation, for practical purposes,
the communication structure may not be. With material
handling, there are often a number of hand-shaking type
interactions among controllers and software modules at the
same level, and if this communication had to be routed up to
the parent control level and then back down, it could cause
performance degradation. Thus, for performance reasons, one

1717

may allow controllers and software modules at the same level
to communicate directly for material handling purposes.

IV. CONTROL RESTRUCTURING CASE STUDY

The starting configuration for the case study system is
shown in Figure 2, where the SLC breaks the desired
structure by performing both factory and cell level control.
The structure will be consolidated by eliminating the SLC
and moving all of its logic either up to the CWM (factory
level control) or down to the cell level controllers. The
resulting control structure will be similar to that in Figure 2
but with the SLC removed.

Applying the procedure of Section III.A, the SLC can be
viewed as a collection of methods, each of which performs
a function or set of functions, of the SLC. As shown in
Figure 3, the SLC is composed of a set of communicating
ECA MFSMs, each of which are responsible for a distinct
subsystem, making it easier to identify the SLC’s equivalent
methods.

ECA MFSM ECA MFSM ECA MFSM

ECA MFSM

ECA MFSM

ECA MFSM

Cell2
Main

Transit
Main

Cell1
Main

Assembly
Main

Conveyor
Main

Supply Cell
Main

RFID
Cell2

RFID
Transit

RFID
Cell1

Cell2
Controller

RFID
Assembly

Cell

AGV
Controller

Virtual
Assembly
Controller

Virtual
MFTG

Controller

Virtual
Inspection
Controller

Conveyor
Motion

Pallet
Stop1

Pallet
Stop2

Pallet
Stop3

Pallet
Stop4

RFID
Conveyor

RFID
Supply
Cell

HMI

Diagnostic
Database

Cell1
Controller

Fig. 3. SLC Structure

Using the push up/down criteria, the logic of each method
of each ECA MFSM in the SLC can be appropriately moved
to its new location in the control hierarchy. To demonstrate
how the criteria works, it is applied to moving the methods in
the Cell 1 ECA MFSM of the SLC (push-down) and moving
the RFID subsystem (push-up).

A. Push-Down Example

The Cell 1 ECA MFSM of the SLC, called SLC-C1, keeps
track of whether Cell 1 is in a fault state, whether the robot in
Cell 1 is near the conveyor, whether there is a finished part in
Cell 1 waiting to be unloaded, and which parts, if any, Cell 1
is currently processing. SLC-C1 uses this state information to
filter requests from the software infrastructure (SWI), which
includes all of the software such as the CWM and trackers.
These requests are filtered such that only requests that Cell
1 can currently accommodate are passed along to the Cell 1
Controller (C1C). This function can be considered the first

method, M1. Additionally, SLC-C1 tells the C1C which part
to unload if Cell 1 currently has two finished parts waiting
and an empty pallet available, which can be seen as the
second method, M2. Beyond these methods, the SLC-C1
simply passes information between the SWI and the C1C,
called method M3. All of the Cell 1 ECA MFSM’s methods,
including their I/O, are summarized in Table I.

TABLE I
METHODS FOR CELL 1 ECA MFSM OF SLC

Name Function Input
(from)

Output (to) Moved

M1 On pallet ar-
rival, check if
C1C available;
if so pass on
request, if not
tell SWI re-
jected

PartDataReady
(SWI),
LoadPart1/2
(SWI)
RobotAway
(C1C)

LoadPartAck
(SWI),
PartNotTaken
(SWI),
Part1/2Taken
(SWI),
Start1/2
(C1C)

Down
to C1C

M2 Tells C1C
when an
empty pallet is
available and
which part to
unload

LoadPart0
(SWI),
unload1/2
(C1C)

unload part1/2
(C1C)

Down
to C1C

M3 Passes
messages
between C1C
and SWI

done1/2
(C1C)

Part1/2Finished
(SWI)

Down
to C1C

The first method, M1, involves declining to process a
part or rejecting an empty pallet as unnecessary and should
be handled by the C1C because it only involves Cell 1,
and not coordination among various cells or subsystems.
To confirm this conclusion, the interfaces that would result
from pushing M1 up and down can be compared to see
which better separates the factory and cell level control
functions. If method M1 were moved up to the CWM in
the SWI, then the I/O between M1 and SWI would become
internal and the factory-cell interface between CWM and
C1C would be: CWM tells C1C to start processing a part
that has arrived (Start1/2) and C1C responding only to say
that the robot has moved (RobotAway), not what was done
with pallet and/or part. If, however, method M1 is moved
down to C1C, then that factory-cell interface would be:
CWM tells C1C when a part has arrived (PartDataReady),
which part it is and requests its processing (LoadPart1/2), and
the C1C acknowledges a part arrival and processing request
(LoadPartAck), and responds with what is done with the
part (PartNotTaken or Part1/2Taken). Clearly, the interface
resulting from pushing M1 down to C1C better separates
the factory and cell level control functions.

The second method, M2, keeps track of which finished part
should be unloaded first from Cell 1 and is also clearly a Cell
1 task and should be moved down. It is less clear whether
M3 should be pushed up or down based on its function and
I/O, but practical implementation issues can be considered as
well. Because it has been decided already that M1 and M2
should be pushed down, and the three methods are currently
integrated together, it is simpler to keep M3 with M1 and

1718

M2. Thus M3 will also be moved down to C1C.

B. Push-Up Example

The RFID, as a subsystem in the testbed, is responsible
for part tracking. It is a stand-alone subsystem and its control
infrastructure is not part of the factory-wide software control
infrastructure. The incorporation of the RFID subsystem into
the factory-wide software control infrastructure is an example
of a push-up of logic in the testbed consolidation.

The current functionalities of the RFID include tracking
the parts and pallets and providing the tracking information
to the lower level controllers through OPC. The RFID
system does not perform much control work. Rather it is an
information collector and provider that assists the controllers,
which is why the RFID does not appear in Figure 2. Instead,
its role is illustrated in Figure 4, where it can be seen that
the RFID system communicates with both logical controllers
and the software control infrastructure to provide tracking
information.

Before the consolidation, a typical control flow involving
the tracking information from the RFID was as follows
(where the cell level controllers communicated via their
respective parts of the SLC):

• Conveyor Controller sends “pallet stopped” event to
Cell 1 Controller (C1C);

• C1C queries the RFID whether the pallet contains part
1, part 2, or no part (is empty);

• C1C controls the manufacturing process based on the
query results;

• C1C sends a “process done” or “part damaged” event
to Conveyor Controller;

• Conveyor Controller releases the pallet.
The CWM is not involved in the above control flow. With

the CWM participating in the above manufacturing process,
the new control flow is as follows:

1) Conveyor Controller sends “pallet stopped” event to
CWM;

2) CWM fires an ECA rule whose trigger is “pallet
stopped” and whose condition and action are calls to
proper software modules;

3) The software module called by this condition is a
“production module” which queries RFID about the
presence of parts, determines the resources needed to
process the part, and the order in which the resources
are invoked. The software module called by this ac-
tion is a “communication module” which coordinates
invoking of the resources;

4) C1C sends “process done” or “part damaged” event to
the CWM;

5) CWM fires another ECA rule whose trigger is “process
done/part damaged” event and whose condition and
action are calls to software modules.

6) The module called by this condition is the “production
module” which is able to check if the pallet can
be released. The module called by this action is the
“communication module” which can instruct Conveyor
Controller to “release pallet”.

In general, other control flows involving the RFID are
similar to this example. Therefore, in order to enable the
CWM to control these flows, there need to be new rules
processing events from Cell 1/2 Controllers (e.g., step 5)
and events from Conveyor Controller (e.g., step 2).

TABLE II
NEW RULES FROM PUSH-UP OF RFID

Event From To Condition Action
“pallet
stopped” at
some cell

Conveyor
Controller

CWM Call
“production
module”

Call “com-
munication
module”

“process
done”
or “part
damaged”

Cell Con-
troller

CWM Call
“production
module”

Call “com-
munication
module”

Table II summarizes the two rules processing these two
types of events. Furthermore, two new software modules
— “production module” and “communication module” —
need to be built as shown in Table III. Both of them are
called by the CWM during the firing of new ECA rules. The
production module will be used by the CWM to query the
RFID system (e.g. steps 3 and 6) and allocate resources. The
communication module is called to coordinate the invocation
of these resources, (e.g., the instructions for the Cell 1/2
Controllers and Conveyor Controller in the steps 3 and 6).
In Table III are the inputs, outputs and functionalities of these
two new modules.

TABLE III
NEW MODULES FROM PUSH-UP OF RFID

Module
Name

Input Output Functions

Production -OPC tags in
OPC servers
-Variables in
database

-Resources
needed
in manu-
facturing
process
-An order
in which
resources
are invoked

-Query RFID
system about
presence of parts
and readiness of
releasing pallets;
-Determine
resources needed
by manufacturing
procedure;
-Determine order in
which resources are
to be invoked

Communication -Resources
needed
-An order
in which
resources are
invoked

Coordinated
invocation
of
resources

Coordinate instruc-
tion and resource
invocation for the
Cell 1/2 Controllers
and Conveyor Con-
troller

C. Logic Decisions for All Parts of SLC

Applying the same procedure to the other parts of the
SLC yields a push-up or push-down decision for each,
as summarized in Table IV. Although each of these ECA
MFSMs are split into methods and a push up/down decision
made for each method, Table IV shows a single decision for
all methods of each ECA MFSM because in this example
case, all methods within each ECA MFSM were moved to
the same location.

1719

TABLE IV
DECISIONS FOR MOVING SLC LOGIC

ECA
MFSM

Moved Reasoning

Cell 1 Down to
C1C

Only cell 1 involved in filtering its
requests and keeping its unload order

Cell 2 Down to
C2C

Only cell 2 involved in filtering its
requests and keeping its unload order

Transit Up to CWM Passes RFID info to Conveyor – co-
ordinates subsystems

Supply Cell Up to CWM Communicates with human machine
interface to release pallet – coordi-
nates subsystems with software

Assembly Up to CWM Coordinates cell level controllers –
AGV and virtual factory

Conveyor Up to CWM Coordinates conveyor controller with
Cell 1 and 2 controllers

V. COMMUNICATION RESTRUCTURING OF CASE STUDY

Moving the individual inputs/outputs to the same locations
as their associated methods is a relatively straight-forward
process. Eliminating communication subsystems associated
with the controller(s) to be eliminated is a more difficult
problem, one which can benefit from discussing the case
study’s removal of the trackers. In the testbed system, the
tracking of parts and pallets is currently done by two
subsystems: RFID and trackers. The RFID system has three
antennas, one PLC, one server holding OPC tags and one
client polling the server and sending out notification. A
typical working cycle of the RFID starts with the detection of
pallets and parts by the antennas. Upon detection, the server
reads data from the PLC. When the server gets the data, the
client will send notification to the SLC through the trackers.

Figure 4 shows the communication flow in the testbed,
and illustrates that all of the components can be roughly
segmented into three groups: software infrastructure, logic
control, and data storage (which includes the OPC server
and database). Data storage plays a central role in the com-
munication flow because most of the information exchanged
between the software infrastructure and logic control goes
through it, with only one exception, namely the customized
information for carving and cutting the part — “letter to be
carved” and “depth of cut” — which circumvent the data
storage.

A communication flow shown as a double line with
arrows illustrates the notification sent from the RFID to the
CWM through the Middleware which is in charge of all the
communications to and from the CWM. This newly added
communication flow will replace the old flow from the RFID
to the SLC through trackers.

In order to eliminate the SLC, the tracking system needs
to be modified. The communication flow in the old tracking
subsystem starts from the OPC servers through the trackers
to the SLC. To remove the SLC, one must first determine the
new recipient of the notification. In the testbed, the CWM is
the only controller at a higher level than the SLC. Therefore,
the CWM should handle notification from the tracking sub-
system because this is a high level task. However, consider-
ing that not all the tracking information needs to be handled

OPC Tag in Place Holder/RFID Server

Database

Trackers

SLC

Cell Controller

Machine Level Controller

O
P
C

HMI

SQL

Train Design

Informer

X
M

L

Middleware

O
P
C

O
P
C

O
P
C

SQL

RFID Antenna

O
P
C

S
Q

L
/O

P
C

S
Q

L

XML

Software Infrastructure

CWM

Part-Order

Scheduler

X
M

L

Depth of Cut

X
M

L

 D
e
p
th

 o
f
C
u
t

Letter To Be Carved

 L
e
tt

e
r

T
o
 B

e
 C

a
rv

e
d

SQL

X
M

L

Logic Control

SQL/XML

Fig. 4. Communication Flow of Testbed

by high level logic which is enforced by the CWM, we add
an ECA based software module named next-state-mapper on
the communication path from the OPC servers to the CWM.
The next-state-mapper can process tracking information and
also filters it before it goes to the CWM. It receives the
events of OPC tag changes. In response to the events, it
updates some other OPC tags on the OPC servers and/or
updates the database and/or notifies the CWM of the changes.
Since the next-state-mapper does not necessarily notify the
CWM every time there is an OPC tag change, it serves as
an event filter and improves the performance of the system
by only passing to the CWM the tracking information which
really needs to be processed by high level logic. Therefore,
the new flow path starts from the OPC servers through a
datahub and the next-state-mapper to the CWM, where a
datahub is a software application which collects the OPC
tag changes on multiple OPC servers and records the changes
in the database. As can be seen from Figure 4, in the old
path, the information exchange format between OPC servers
and trackers and the information exchange format between
trackers and SLC are both OPC. When the new path is
established, the information exchange format between OPC
servers and datahub is OPC; the information exchange format
between datahub and next-state-mapper is SQL queries; the
information exchange format between next-state-mapper and
CWM is XML.

VI. LESSONS LEARNED FROM CASE STUDY SYSTEM

In planning the consolidation of the case study system
and the implementation thus far, several lessons were learned
that can be transferred to other ECA consolidation projects.
Having the control logic distributed by functionality within
a controller makes shifting that logic much simpler. Because
the SLC consisted of a group of communicating ECA
MFSMs, rather than one all-encompassing ECA MFSM,
preparing its methods for push up or push down only
required re-routing their communication through the software
infrastructure. In this manner, individual ECA MFSMs could
be moved independently of one another, allowing the con-
solidation project to occur incrementally while maintaining

1720

a functioning control system. If the SLC had been a single
ECA MFSM, then separating the methods would have been
more complicated and might have required that all of the
SLC’s methods be moved before the control system was
functional again.

In pushing down SLC-C1 into the new Cell 1 controller,
it was noted that having an ECA control structure made the
consolidation process much easier, in agreement with the
prediction in [2]. Although the original Cell 1 controller was
in MFSM form, the portion being merged with the SLC-C1
to form the resource allocation control part of the new C1C
was relatively easily converted into ECA MFSM form. With
both the SLC-C1 and portion of the C1C to be moved into
the resource allocation control section in ECA MFSM form,
merging them involved simply combining their ECA rules
and not having to change any of the peripheral modules.
Because ECA rules only involve external input as a trigger
and external output as a final action, merging two sets of
rules from different ECA MFSMs involves two scenarios.
First, a rule from one of the source ECA MFSMs is neither
triggered by nor triggers any rules in the other ECA MFSM,
in which case this rule is added directly to the new rule set.
Second, a rule is triggered by the output of a rule from the
other ECA MFSM, in which case the first rule is appended
to the end of the second, with the previously external output
action and input trigger removed, and this rule added to the
new rule set. This procedure is executed for all rules in the
two ECA MFSMs to be merged. Once the rules are merged
into a new rule set, all that is left to merge the ECA MFSMs
is to gather their peripheral modules in one file and write a
new system description file.

In eliminating the SLC from the tracking information flow,
a straightforward solution is to make the CWM take over the
processing work of the tracking information previously done
by the SLC. However, when we examined the performance
of this solution, we found out that not all the tracking
information needs to be handled by a high level controller
like the CWM. Therefore, we introduced an ECA based soft-
ware module on the path of the tracking information to the
CWM. This software module handles tracking information
and filters it before it goes to the CWM. Thus, the traffic
to the CWM is reduced and the CWM only needs to handle
tasks where the high level logic control is really needed.

VII. FUTURE WORK AND CONCLUSIONS

This paper presented some guidelines to follow when
consolidating a control hierarchy to make it conform to
the standard structure, and in particular, doing so for an
ECA-based system. These guidelines were applied to a
case study system, the Reconfigurable Factory Testbed, and
some lessons presented from the implementation of the
consolidation. Future work includes further formalizing this
ECA consolidation procedure and completing the testbed’s
consolidation to address the problems caused by its broken
hierarchy.

Acknowledgments

The authors would like to acknowledge the contributions
of all the students on the RFT team, and in particular, those
of Krishnakumar Ramamoorthy and Shyam Gala for their
work on the RFID conversion process.

REFERENCES

[1] E. Almeida, J. Luntz & D. Tilbury. Modular Finite State Machines
Implemented As Event-Condition-Action Systems. Proceedings of the
16th IFAC World Congress, July 2005.

[2] E. E. Almeida, J. E. Luntz, & D. M. Tilbury. Event-condition-
action systems for reconfigurable logic control. IEEE Transatctions
on Automation Science and Engineering, 4: 167-181, 2007.

[3] S. Ceri, R. J. Cochrane & J. Widom. Practical Applications of Triggers
and Constraints: Success and Lingering Issues. Proceedings of the 26th
International Conference on Very Large Data Bases, 2000.

[4] J. Dietrich, A. Kozlenkov, M. Schroeder, & G. Wagner. Rule-Based
Agents for the Semantic Web. Journal on Electronic Commerce
Research Applications, 2003.

[5] E. W. Endsley, E. E. Almeida & D. M. Tilbury. Modular finite state
machines: Development and application to reconfigurable manufac-
turing cell controller generation. Control Engineering Practice, 14:
1127-1142, 2006.

[6] E. Ferro. Nuclear Supplier: Upgrades Controls, Increasing Efficiency,
Production. Control Engineering, 53: IP1-IP5, 2006.

[7] S. S. Heragu, R. J. Graves, B. Kim & A. St. Onge. Intelligent
Agent Based Framework for Manufacturing Systems Control. IEEE
Transactions on Systems, Man, and Cybernetics–Part A: Systems and
Humans, 32: 560-573, 2002.

[8] J. Montague. Software ’bridge’ improves CNC efficiency during
retrofit. Control Engineering, 50: 18, 2003.

[9] J. Moyne, J. Korsakas, C. Milas, T. Hobrla, T. Hong, H. Kim, J.
Priskorn, K. Sukerkar, H. Wijaya, N. Agarwal & D. Tilbury. A
Software Infrastructure for Reconfigurable Manufacturing Systems.
Proceedings of the CIRP International Conference on Reconfigurable
Manufacturing Systems, 2003.

[10] J. Moyne, J. Korsakas & D. M. Tilbury. Reconfigurable Factory
Testbed (RFT): A Distributed Testbed for Reconfigurable Manufactur-
ing Systems. Proceedings of the Japan–U.S.A. Symposium on Flexible
Automation, July, 2004.

[11] J. Moyne, D. Tilbury & H. Wijaya. An Event-Driven Resource-
Based Approach to High-Level Reconfigurable Logic Control and
its Application to a Reconfigurable Factory Testbed. Proceedings of
the CIRP International Conference on Reconfigurable Manufacturing
Systems, 2005.

[12] A. Paschke. The Reaction RuleML Classification of the Event /
Action / State Processing and Reasoning Space. White paper, Reaction
RuleML Technical Group, October 2006.

[13] N. Paton, editor. Active Rules in Database Systems. Springer-Verlag,
1999.

[14] A.Tharumarajahm, A. J. Wells, & L. Nemes. Comparison of the bionic,
fractal, and holonic manufacturing system concepts. International
Journal of Integrated Computer Manufacturing, 9: 217-226, 1996.

[15] Whirpool upgrades with servo motor/drive retrofit. Control Engineer-
ing, 52: 18, 2005.

[16] H. Wijaya, K. Sukerkar, S. Gala, N. Arora, J. Moyne, D. Tilbury & J.
Luntz. Reconfigurable Factory-wide Resource-based System Integra-
tion for Control. Proceedings of the IEEE International Conference
on Electro/Information Technology, May 2006.

Appendix of Acronyms

Acronym Description
C1C Cell 1 Controller (in testbed)
CWM Control Workflow Manager (in testbed)
ECA Event-Condition-Action (paradigm, see [16])
MFSM Modular Finite State Machine (see [1])
OPC Open Process Control, opcfoundation.org
RFID Radio Frequency Identification
SLC System Level Controller (in testbed)
XML Extensible Markup Language, xml.org

1721

