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Abstract— An extension to balanced truncation is presented.
Balanced truncation is a standard method for model reduction
and it has many good properties, such as preservation of model
stability and a priori error bounds. Balanced truncation is
done using controllability and observability Gramians. The
Gramians can be found by solving a set of linear matrix
inequalities. In this paper, we show that these linear matrix
inequalities can be extended so that the number of decision
variables are at least doubled. This leads to the concept of
extended Gramians. It is shown that all the good properties of
balanced truncation also hold for extended balanced truncation.
It turns out that extended balanced truncation is especially
useful when there are additional structure constraints in the
model to be reduced. This is useful in frequency-weighted
reduction, for example.

I. INTRODUCTION

Model reduction is about systematic simplification of com-
plex models. This is a topic that has received a great deal of
interest at least since the early 1980’s, but still hard problems
remain to be solved. In particular, most available methods
that are guaranteed to deliver good approximations only
apply to linear systems, and these methods are usually not
structure preserving. In this paper, we propose an extension
to balanced truncation that increases the chance of preserving
structures.

Balanced truncation is a standard method to reduce the
order of linear systems. The method was introduced in [1]
and it was later shown in [2] how stability of models is
preserved, and in [3], [4] that simple a priori error bounds
hold. These results were all shown for continuous-time
models. In discrete time, the corresponding results were
shown in [5]. For balanced truncation, the controllability
and observability Gramians are needed. They are obtained
from solving two Lyapunov equations. In [6], it was shown
that if the Lyapunov equations are replaced by linear matrix
inequalities, the error bounds in [5] can be improved. In this
paper, we build upon this idea and introduce more general
(extended) inequalities. The extended inequalities are more
likely than the normal inequalities to have Gramians of
block-diagonal structure. Block-diagonal Gramians are im-
portant for controller reduction [7], for uncertain systems [8],
and for reduction of structured and interconnected systems
[9]–[11].

Extending linear matrix inequalities the way that it is done
in this paper was first proposed in [12], [13]. In [12], [13], the
applications were stability analysis and controller synthesis
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for parameter-dependent models. The same type of extension
was also used in [14], [15] to construct distributed estimators.
Here we use the idea for model reduction.

The organization of the paper is as follows: In Section II,
we introduce the model structure and define what we mean
by model truncation. In Section III, the normal and extended
Gramians are defined, and their equivalence is discussed.
In Section IV, it is shown how the extended Gramians can
be used to prove approximation error bounds and preserve
stability for truncated models. In Section V, it is shown how
one can balanced the extended Gramians, which is required
for the error bounds to apply. Finally, in Section VI extended
and regular balanced truncation is applied to two different
models, and the results are discussed.

II. PRELIMINARIES

We consider linear finite-dimensional discrete-time sys-
tems G, with realization

G
{

x(k + 1) = Ax(k) + Bu(k), x(k) ∈ R
n, u(k) ∈ R

m,

y(k) = Cx(k) + Du(k), y(k) ∈ R
p.

For simplicity, we leave out the time index k in the notation
in the following, and use the notation x+ := x(k + 1), x :=
x(k), u := u(k) etc. Thus, the model is written

G
{

x+ = Ax + Bu, x ∈ R
n, u ∈ R

m,

y = Cx + Du, y ∈ R
p,

in the following. The transfer function G(z) is defined by

G(z) = D + C(zI − A)−1B =:
[

A B
C D

]
,

and the H∞-norm by

‖G‖∞ := sup
z∈C\D̄

|G(z)|.

With ‖u‖[k1,k2] we mean

‖u‖[k1,k2] =

√√√√ k2∑
k=k1

u(k)T u(k)

and ‖u‖ := ‖u‖[0,∞]. Square-summable sequences, ‖u‖ <
∞, belong to the Hilbert space �2. We know that ‖G‖∞ =
sup(u�=0)∈�2

‖y‖
‖u‖ .

To solve the model-reduction problem we should find a
new linear system Ĝ with r < n states such that ‖G − Ĝ‖∞
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is small. This is done by truncating the realization, in this
paper. We use the partition

A =
[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, A11 ∈ R

r×r, B1 ∈ R
r×m,

C =
[
C1 C2

]
, C1 ∈ R

p×r.

A candidate approximation Ĝ is given by

Ĝ
{

x̂+
1 = A11x̂ + B1u, x̂1 ∈ R

r, u ∈ R
m,

ŷ = C1x̂ + Du, ŷ ∈ R
p.

We will compare the state x =
[
x1

x2

]
(x1 ∈ R

r, x2 ∈ R
s) of

G to the state x̂1 of Ĝ, and the output y of G to the output ŷ
of Ĝ, when both models are excited with same input u. We
will also use the signal ẑ2 defined by

ẑ+
2 = A21x̂1 + B2u (1)

later in the paper. One can interpret ẑ2 as an estimate of what
x2 is, given that we have the model Ĝ.

The main benefit with balanced truncation is that it shows
how to choose good coordinates x and approximation order
r such that ‖G−Ĝ‖∞ is guaranteed to be small. As we shall
see, extended balanced truncation has the same benefits, and
give some additional degrees of freedom.

III. EXTENDED LYAPUNOV INEQUALITIES

Controllability and observability Lyapunov inequalities,

P − APAT − BBT > 0, P > 0, (2)

Q − AT QA − CT C > 0, Q > 0, (3)

with symmetric Gramians P = PT , Q = QT ∈ R
n×n

have solutions if, and only if, G is asymptotically stable
(ρ(A) < 1). The Gramians contain information about con-
trollability and observability of the realization and are used to
choose coordinate system for balanced truncation [5], [16].
In this paper, we instead use the extended controllability and
observability Lyapunov inequalities⎡

⎣ P AF B
FT AT F + FT − P 0

BT 0 I

⎤
⎦ > 0, (4)

⎡
⎣G + GT − Q GA 0

AT GT Q CT

0 C I

⎤
⎦ > 0, (5)

with extended controllability Gramian (P, F ) and extended
observability Gramian (Q,G). Here P = PT , Q = QT ∈
R

n×n are symmetric and F,G ∈ R
n×n. A key result in this

paper is that (4)–(5) and (2)–(3) in fact are equivalent, see
Theorem 1. The idea of extending inequalities in this way
was first presented by Oliviera et al. in [12], [13]. Similar
equivalences were also stated there. The applications in these
papers were stability analysis and controller synthesis for
parameter-dependent models. Here the focus is on model
reduction.

Theorem 1: The inequalities (2)–(3) have solutions P =
PT , Q = QT if, and only if, the inequalities (4)–(5) have
solutions P = PT , Q = QT and F,G.

Proof: The controllability case is proved in Theorem 1
in [13]. We repeat the idea of the proof here (in the
observability case) since it helps to understand the roles of
P,Q and F,G.

(Necessity) If (2)–(3) holds, choose F = P and G = Q.
In the observability case, using Schur complements [16] we
obtain⎡

⎣ Q QA 0
AT Q Q CT

0 C I

⎤
⎦ > 0 ⇔

[
Q QA

AT Q Q − CT C

]
> 0

⇔
[
Q 0
0 Q − AT QA − CT C

]
> 0.

(Sufficiency) Assume (4)–(5) have solutions. In the ob-
servability case we have that G + GT > Q > 0, and
(G−Q)Q−1(GT −Q) = GQ−1GT −G−GT +Q ≥ 0 and
thus GQ−1GT ≥ G + GT − Q. From (5) it follows⎡

⎣GQ−1GT GA 0
AT GT Q CT

0 C I

⎤
⎦ > 0.

If we multiply this inequality with diag {G−T Q, I, I} from
the right and with the transpose from the left, we obtain⎡

⎣ Q QA 0
AT Q Q CT

0 C I

⎤
⎦ > 0.

Remark 1: If the extended inequalities (4)–(5) are solved,
then the P,Q components of the extended Gramians can
always be used as Gramians in the traditional sense to
solve (2)–(3). For example, for reachability and observability
analysis. The F,G components contain other information.
Their role and use will be shown in the later sections.

If the Lyapunov inequalities (2)–(3) are solved, then the
Gramians P,Q can always be used to construct extended
Gramians (P, P ) and (Q,Q) to solve (4)–(5). However, this
will not give us anything new. The idea is to not choose
F = P,G = Q and utilize the extra degrees of freedom.

IV. MODEL TRUNCATION USING EXTENDED GRAMIANS

We start out this section by making the bold assumption
that the F,G components of the extended Gramians have the
block-diagonal structure

F =
[
F1 0
0 Is · σ

]
> 0, G =

[
G1 0
0 Is · σ

]
> 0. (6)

In Section V, it is shown how it is possible to fulfill this
assumption. No special structure is assumed for the P,Q
components, apart from them being symmetric positive-
definite matrices.

Let us first study the extended observability Lyapunov
inequality (5). After an application of the Schur lemma [16]
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we obtain the inequality[
G + GT − Q GA

AT GT Q − CT C

]
> 0. (7)

If we assume the structure (6) for G, and multiply (7) from
the right and left with properly chosen state vectors, we
obtain,⎡

⎢⎢⎣
−

(
x1 − x̂1

x2

)+

(
x1 − x̂1

x2

)
⎤
⎥⎥⎦

T [
G + GT − Q GA

AT GT Q − CT C

]

×

⎡
⎢⎢⎣
−

(
x1 − x̂1

x2

)+

(
x1 − x̂1

x2

)
⎤
⎥⎥⎦ ≥ 0

⇐⇒
[
x1 − x̂1

x2

]T

Q

[
x1 − x̂1

x2

]
−

[
x1 − x̂1

x2

]+T

Q

[
x1 − x̂1

x2

]+

+ 2x+T
2 ẑ+

2 σ − |y − ŷ|2 ≥ 0, (8)

where ẑ2 is defined in (1), and we have used the identities

A

[
x1 − x̂1

x2

]
=

[
x1 − x̂1

x2 − ẑ2

]+

, C

[
x1 − x̂1

x2

]
= y − ŷ,

[
x1 − x̂1

x2

]+T

G

[
x1 − x̂1

x2 − ẑ2

]+

=
[
x1 − x̂1

x2

]+T

G

[
x1 − x̂1

x2

]+

− x+T
2 ẑ+

2 σ.

Similarly, if we define

F̃ := F−1 =
[
F−1

1 0
0 Is · σ−1

]
,

P̃ := F̃T PF̃ ,

we can multiply the extended controllability Lyapunov in-
equality (4) from the left with diag {F̃ , F̃ , I}T and from
the right with diag {F̃ , F̃ , I}, and we obtain the equivalent
inequality ⎡

⎣ P̃ F̃T A F̃T B

AT F̃ F̃ + F̃T − P̃ 0
BT F̃ 0 I

⎤
⎦ > 0. (9)

Using the structure of F̃ , we have
⎡
⎢⎢⎢⎢⎣
−

(
x1 + x̂1

x2

)+

(
x1 + x̂1

x2

)
2u

⎤
⎥⎥⎥⎥⎦

T ⎡
⎣ P̃ F̃ T A F̃ T B

AT F̃ F̃ + F̃ T − P̃ 0

BT F̃ 0 I

⎤
⎦

×

⎡
⎢⎢⎢⎢⎣
−

(
x1 + x̂1

x2

)+

(
x1 + x̂1

x2

)
2u

⎤
⎥⎥⎥⎥⎦ ≥ 0

⇐⇒

(
x1 + x̂1

x2

)T

(F̃ + F̃T − P̃ )
(

x1 + x̂1

x2

)

−
(

x1 + x̂1

x2

)+T

(F̃ + F̃T − P̃ )
(

x1 + x̂1

x2

)+

− 2x+T
2 ẑ+

2 σ−1 + 4|u|2 ≥ 0, (10)

where we have used the identities

A

(
x1 + x̂1

x2

)
+ 2Bu =

[
x1 + x̂1

x2 + ẑ2

]+

,

[
x1 + x̂1

x2

]+T

F̃

[
x1 + x̂1

x2 + ẑ2

]+

=
[
x1 + x̂1

x2

]+T

F̃

[
x1 + x̂1

x2

]+

+ x+T
2 ẑ+

2 σ−1.

If we assume that x(0) = 0 and x̂(0) = 0 and sum the
inequalities (8) and (10) over the time interval [0, T ] we have
that (note the canceling terms)

2σ

T+1∑
k=1

(xT
2 ẑ2)(k) ≥

∣∣∣∣
(

x1 − x̂1

x2

)
(T + 1)

∣∣∣∣
2

Q

+ ‖y − ŷ‖2
[0,T ]

(11)
and

− 2σ−1
T+1∑
k=1

(xT
2 ẑ2)(k) + 4‖u‖2

[0,T ]

≥
∣∣∣∣
(

x1 + x̂1

x2

)
(T + 1)

∣∣∣∣
2

F̃+F̃ T −P̃ ,

(12)

where |x|2Q means xT Qx. Using these inequalities we have
the following lemma that bounds the input-output approxi-
mation error.

Lemma 1: Assume that G and Ĝ initially are at rest, and
that the F,G components of the extended Gramians have
the structure (6). Then for all inputs u ∈ �2 it holds that
‖y − ŷ‖ ≤ 2σ‖u‖, that is

‖G − Ĝ‖∞ ≤ 2σ.

Proof: Multiply inequality (12) with σ2, and add it to
inequality (11). Notice that the sums containing the sign-
indefinite terms xT

2 ẑ2 cancel. All the remaining terms are
positive and the result follows as T → ∞.

Hence, if we truncate states and have block-diagonal F,G
components in the extended Gramians, then the input-output
approximation error is easily bounded. As we see next,
asymptotic stability is also preserved and we can apply the
results recursively.

Lemma 2: Assume that G has extended Gramians in the
form

P =
[
P11 P12

PT
12 P22

]
, P22 ∈ R

s×s, F =
[
F1 0
0 Is · σ

]
,

Q =
[
Q11 Q12

QT
12 Q22

]
, Q22 ∈ R

s×s, G =
[
G1 0
0 Is · σ

]
.
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Then the truncated system Ĝ has extended Gramians
(P11, F1) and (Q11, G1). Furthermore, Ĝ is asymptotically
stable (ρ(A11) < 1).

Proof: We only show the result in the controllability
case. Multiply the extended controllability inequality (4)
from the right with⎡

⎢⎢⎢⎢⎣

(
Ir

0s×r

)
0n×r 0n×m

0n×r

(
Ir

0s×r

)
0n×m

0m×r 0m×r Im

⎤
⎥⎥⎥⎥⎦

and with the transpose from the left. Then we obtain⎡
⎣ P11 A11F1 B1

FT AT
11 F1 + FT

1 − P11 0
BT

1 0 I

⎤
⎦ > 0.

That is, (P11, F1) is an extended Gramian for Ĝ. Since P11

is a normal Gramian satisfying (2) for Ĝ, asymptotic stability
follows.

V. BALANCED EXTENDED GRAMIANS

In this section, we justify the assumption (6) about block-
diagonal F,G components in the extended Gramians. This
leads to the concept of balanced extended Gramians.

Let us consider coordinate transformations x̄ = Tx, T
invertible. We know that the realization transforms as

Ā = TAT−1, B̄ = TB, C̄ = CT−1, D̄ = D.

How the extended Gramians transform is shown in the next
lemma.

Lemma 3: Under coordinate transformations x̄ = Tx, the
extended Gramians transform as

P̄ = TPTT , F̄ = TFTT ,

Q̄ = T−T QT−1, Ḡ = T−T GT−1.
Proof: Replace A,B,C in (4)–(5) with T−1ĀT ,

T−1B̄, C̄T . If (4) is multiplied with diag {TT , TT , I} from
the right, and with the transpose from the left, then we can
identify P̄ and F̄ . A similar technique is used to prove the
observability case.

The F and G components transform just as the normal
Gramians P and Q. In particular, the eigenvalues

λi(PQ) = λi(P̄ Q̄),
λi(FG) = λi(F̄ Ḡ),

are invariant under coordinate transformations. The numbers
σi =

√
λi(PQ) are often called Hankel singular values. It

is well known that there is a coordinate transformation T
that makes P̄ and Q̄ equal and diagonal [1], [16]. Since F
and G transform in the same way, one could hope that F̄
and Ḡ can also be made equal and diagonal. However, if F
and G are not symmetric, such a coordinate transformation
may not exist. But we can always sacrifice some degrees of
freedom in F and G and make them symmetric.

Lemma 4: Let the F,G components of the extended
Gramians be symmetric. Then there exist a coordinate trans-
formation x̄ = Tx such that

F̄ = Ḡ = Σe = diag {σe,1, . . . , σe,n},
where σe,i :=

√
λi(FG) > 0 are the extended Hankel

singular values of G.
Proof: The transformation T is constructed as in

Theorem 7.5 in [16] using the substitutions P = F and
Q = G.

The extended Gramians are called balanced extended
Gramians if the F,G components have the form Σe. The
main theorem of the paper can now be stated.

Theorem 2: Suppose that

G(z) =

⎡
⎣ A11 A12 B1

A21 A22 B2

C1 C2 D

⎤
⎦ , A11 ∈ R

r×r,

is asymptotically stable and has balanced extended Gramians
(P,Σe) and (Q,Σe) where Σe = diag {Σe,1,Σe,2} and

Σe,1 = diag {σe,1, . . . , σe,r},
Σe,2 = diag {σe,r+1, . . . , σe,n}.

Then the truncated system

Ĝ(z) =
[

A11 B1

C1 D

]
,

is asymptotically stable, has balanced extended Gramians
(P11,Σe,1) and (Q11,Σe,1), and

‖G − Ĝ‖∞ ≤ 2
n∑

i=r+1

σe,i.

Proof: The theorem follows by iteratively applying
Lemma 1 and Lemma 2 to the balanced realization. The
error bound then follows from the triangle inequality.

Remark 2: It is the F,G components of the extended
Gramians that provide the input-output error bound in The-
orem 2. Obviously, if we use F = P and G = Q, the result
reduces to standard balanced truncation, see Theorem 7.11
in [16]. The point is that the normal Gramians P,Q do not
appear in the result here other than as extra decision variables
in the extended inequalities. Thus we could expect that the
reduced models coming from extended balanced truncation
are at least as good as those coming from regular balanced
truncation.

VI. EXAMPLE

Here we apply balanced truncation and extended balanced
truncation to two different linear systems. The Gramians
are computed using SeDuMi [17] and YALMIP [18]. For
balanced truncation, we solve

min Tr P subject to (2)
min Tr Q subject to (3)

4657



TABLE I

COMPARISON OF REGULAR (Ĝb) AND EXTENDED (Ĝeb) BALANCED

TRUNCATION IN EXAMPLE 1.

r ‖G − Ĝb‖∞ Upper bound ‖G − Ĝeb‖∞ Upper bound
1 3.84 · 10−1 5.42 · 10−1 3.85 · 10−1 5.04 · 10−1

2 5.63 · 10−2 7.55 · 10−2 5.58 · 10−2 7.12 · 10−2

3 3.18 · 10−3 4.41 · 10−3 3.04 · 10−3 4.71 · 10−3

4 5.72 · 10−5 8.19 · 10−5 5.52 · 10−5 1.46 · 10−4

and for extended balanced truncation we solve

min Tr F subject to (4) and F = FT

min Tr G subject to (5) and G = GT .

The conditions F = FT and G = GT are there to guarantee
that the extended Gramians can be balanced, see Lemma 4.
We have chosen to minimize the trace of the Gramians for
simplicity. One could consider more complicated objective
functions since we really want to make the (non-convex)
singular values σ2

i = λi(PQ) and σ2
e,i = λi(FG) small.

The minimization of the trace of Gramians can be justified
as in [19]. We have that

n∑
i=1

σ2
i = Tr (PQ) ≤ (Tr P )(Tr Q),

n∑
i=1

σ2
e,i = Tr (FG) ≤ (Tr F )(Tr G),

(13)

see Proposition 1 in [19]. If the traces of the Gramians are
small, then the singular values are small. The number of
decision variables in extended balanced truncation is twice
as large as for balanced truncation (P, F,Q,G vs. P,Q). This
increases the computation time, but can also lead to better
reduced models. Since the set of admissible F is greater or
equal to the set of admissible P (Theorem 1), we know that
min Tr F ≤ min Tr P , and similarly min Tr G ≤ min Tr Q.
Hence the upper bound in (13) is smaller for extended
balanced truncation. However, this does not mean that the
extended Hankel singular values necessarily are smaller than
the regular Hankel singular values, since this is just an
upper bound (see Example 1). An interesting problem is to
find better objective functions that ensure smaller extended
singular values.

Example 1: In [5], balanced truncation is applied to the
model

G(z)

=
(−1.7328 · 10−3)(z + 1.8381)(z − 0.3321)(z − 0.2813)(z − 0.1667)

(z − 0.7125)5
,

and we use the same model here. In Fig. 1, the regular
and extended Hankel singular values are shown. We note
that σe,i < σi for i = 1, 2, 3. For i = 4, 5, σe,i is slightly
larger than σi. Even if Tr F ≤ Tr P and Tr G ≤ Tr Q it
can happen that particular extended singular values are larger
than the regular ones.

The approximation error and the upper bounds for Ĝb

(balanced truncation) and Ĝeb (extended balanced truncation)
are shown in Table I for various approximation orders r. In
this example, extended balanced truncation gives a smaller

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

i

 

 
σ

i

σ
e,i

Fig. 1. The Hankel singular values and the extended Hankel singular values
in Example 1.

approximation error in all cases, except when r = 1 when
it is 0.3% larger. The error bounds are not always tighter,
however.

Example 2: In this example, normal and extended bal-
anced truncation is applied to a frequency-weighted model
reduction problem. This is a simple example of a structured
model reduction problem, see [10]. The model we would like
to reduce is a resonant 16-th order system,

G(s) =
8∑

k=1

ω2
k

s2 + 2ξωks + ω2
k

,

where ωk ∈ {1, 2, 10, 20, 30, 40, 45, 50} and ξ = 0.1. The
frequency weight W(s) is here a band-pass filter, W(s) =
s/(s/5 + 1)2. To get discrete-time models, G(s) and W(s)
are discretized using ”matched” sampling in Matlab with
the sampling period 0.05. With slight abuse of notation, the
sampled models are denoted G(z) and W(z). The problem
is now to find a reduced order system Ĝ such that ‖W(G −
Ĝ)‖∞ is small. We realize the weighted system as

W(z)G(z) =

⎡
⎣ AG 0 BG

BWCG AW 0
0 CW 0

⎤
⎦ =:

[
A B
C 0

]
,

where (AG , BG , CG) and (AW , BW , CW) are realizations of
G(z) and W(z), respectively. One way to solve the problem
is to use a discrete-time version of the method in [11] and
search for Gramians with small trace that satisfy (2)–(3) with
the structure P = diag {PG , PW}, Q = diag {QG , QW},
where PG , QG ∈ R

16×16 and PW , QW ∈ R
2×2. The

components PG , QG are then used to balance the realization
of G(z) which then can be truncated as before, and the
singular values are computed as σi =

√
λi(PGQG). The

a priori error bound becomes ‖W(G−Ĝ)‖∞ ≤ 2
∑n

i=r+1 σi.
Using extended balanced truncation, we search for Grami-

ans with small trace that satisfy (4)–(5) with the structure
F = diag {FG , FW}, G = diag {GG , GW}, where FG , GG ∈
R

16×16 and FW , GW ∈ R
2×2. The components P and Q

are full matrices. The components FG , GG are then used to
balance the realization of G(z), and the extended Hankel sin-
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Fig. 2. The normal and extended Hankel singular values in Example 2.
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Fig. 3. The weighted approximation error in Example 2 for various
approximation orders.

gular values are given by σe,i =
√

λi(FGGG). The a priori
error bound becomes ‖W(G − Ĝ)‖∞ ≤ 2

∑n
i=r+1 σe,i.

In Fig. 2, the Hankel singular values from the two methods
mentioned above are plotted. It is noted that the largest
extended Hankel singular values, σe,i, are much smaller than
the largest Hankel singular values σi. The singular values
can be used to bound the weighted error for various approx-
imation orders r. Approximation errors for the methods are
shown in Fig. 3 for various numbers of truncated states. For
comparison, Enns’ method [3] is also included. As can be
seen, extended balanced truncation delivers approximations
that are about as good as the ones from Enns’ method and
often much better than the ones from the method in [11].
It should be noted that even though Enns’ method gives as
good approximations in this case as the extended method,
the extended method also comes with a simple error bound.
No simple error bounds exist for Enns’ method, which is
also not guaranteed to deliver good approximations.

VII. CONCLUSIONS

An extension to the balanced truncation method has been
presented. All important properties of balanced truncation,
such as stability preservation and a priori error bounds, hold
in the extended case also. In two examples, it was shown that
extended balanced truncation generally gives better approx-
imations. More important, it is more likely that extended
balanced truncation can preserve internal structures in the
reduced models. This is important in controller reduction
and in model reduction of networked systems, and this will

be further investigated in future work. Another interesting
problem is to find better objective functions of the extended
Gramians to be minimized.
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