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Abstract— Model predictive control (MPC) algorithms
achieve offset-free control by augmenting the nominal system
model with a disturbance model. The disturbance vector is used
to predict the mismatch between the measured and predicted
output vectors. In this paper, we consider an offset-free MPC
framework that includes an output disturbance model and a
Kalman filter to estimate the state and disturbance vectors.
Using root locus techniques, we identify sufficient conditions for
a class of nominal systems with at least one real positive pole
for which the closed loop estimator poles cannot be arbitrarily
selected. We present several examples illustrating the limitations
of the closed loop estimator pole locations.

I. INTRODUCTION

The main concept of Model Predictive Control (MPC) is to

use a model of the plant to predict the future evolution of the

system [2], [6]. At each time step t a certain performance

index is optimized over a sequence of future input moves

subject to operating constraints. The first of such optimal

moves is the control action applied to the plant at time t.
At time t + 1, a new optimization is solved over a shifted

prediction horizon.

Steady-state offset refers to asymptotically constant biases

between the controlled output vector and the steady-state

reference vector. MPC algorithms are designed to achieve

offset-free steady-state tracking by augmenting the plant

model with a disturbance model. This disturbance model is

used to predict the bias error between the measured output

vector and the output vector predicted using the nominal

plant model. The general approach of these offset-free MPC

algorithms is, first, to estimate the state and disturbance

vectors using the measured output vector and, second, to

use the estimated state and disturbance vectors to initialize

the MPC optimization problem.

A number of disturbance models have been proposed and

applied in offset-free MPC algorithms [4], [5], [7]–[12].

These disturbance models consist of integrating modes and

are selected to capture the type of uncertainty affecting the

nominal plant model. In this paper, we consider the following

widely used offset-free MPC framework: (i) a discrete linear

time-invariant nominal plant model, (ii) an output integrator

disturbance model, and (iii) a linear time-invariant Kalman

filter. Our experience with the application of this framework
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has shown a consistent limitation in the achievable closed

loop system performance.

The objective of this paper is to present and study the

source of the limitations for this class of offset-free MPC

framework. In particular, we prove that if nominal single

output plant models with at least one real positive pole satisfy

certain conditions, then the resulting closed loop estimator

has one real pole that cannot be arbitrarily selected. Fur-

thermore, this limitation can be independent of the statistics

of the nominal plant and disturbance models. The results of

this paper have been extended to single output and multiple

output augmented systems with postive and negative real

poles in [1].

This paper is organized as follows. In Section II, we

describe the nominal plant model and output disturbance

model. In Section III, we review the steady-state Kalman

filter and formulate the relationship between the closed

loop estimator poles and the nominal plant model poles. In

Section IV, we prove the limitations on the placement of

the closed loop estimator poles for the defined offset-free

MPC framework. In Section V, we present several examples

illustrating the limitations described in Section IV.

II. PROBLEM FORMULATION

We consider the following nominal linear time-invariant

(LTI) system:

xk+1 = Axk + Buk + Gxwx,k, (1a)

zk = Cxk + vk, (1b)

where xk ∈ R
n and uk ∈ R

m are the system state and

input vectors at time k, respectively. zk ∈ R
p is both the

measurement vector and the controlled output vector. wx,k ∈
R

n and vk ∈ R
p are the state process noise and measurement

noise vectors, respectively, and are modeled as zero-mean,

Gaussian, uncorrelated white sequences:

E
[

wx,kwT
x,k

]

= Qx = QT
x ≥ 0

E
[

wx,iv
T
j

]

= 0
E

[

vkvT
k

]

= R = RT > 0
∀i, j, k

(2)

where Qx ∈ R
n×n is the state process noise covariance

matrix and R ∈ R
p×p is the measurement noise covariance

matrix. We assume that (A, B) is stabilizable, (A, Gx

√
Qx)

is stabilizable where Qx =
√

Qx

√
Qx

T
, and (C, A) is

observable.

The objective of controller design is to formulate a control

law that enables the controlled output vector to track an
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asymptotically constant reference vector zref , where zref ∈
R

p. To achieve steady-state offset-free tracking of zref ,

we augment the nominal system (1) with an integrator

disturbance model:

xk+1 = Axk + Buk + Bddk + Gxwx,k, (3a)

dk+1 = dk + Gdwd,k, (3b)

zk = Cxk + Cddk + vk, (3c)

where dk ∈ R
nd is the disturbance vector and wd,k ∈ R

nd

is the disturbance process noise vector at time k. The vector

wd,k is modeled as a zero-mean, Gaussian, white sequence

uncorrelated with vk:

E
[

wd,kwT
d,k

]

= Qd = QT
d > 0, ∀k GdQdG

T
d > 0,

E
[

wd,iv
T
j

]

= 0, ∀i, j,
(4)

where Qd ∈ R
nd×nd is the disturbance process noise covari-

ance matrix. We assume that the state and input constraints

are inactive at steady-state throughout this paper.

Remark 1: We refer the reader to [11] for a description

of the augmented system (3).

We denote In as the identity matrix belonging to R
n×n

and assume the following:

Assumption 1: We consider the output integrator distur-

bance model with nd = p, Cd = Ip, and Bd = 0 in (3).

The augmented system (3) with Assumption 1 can be

compactly written as:

Xk+1 = ΦXk + B̄uk + Γwk, (5a)

zk = HXk + vk, (5b)

where Xk ∈ R
n+nd is the augmented state vector at time

k:

Xk =
[

xT
k dT

k

]T
, (6)

wk ∈ R
n+nd is the augmented process noise vector:

wk =
[

wT
x,k wT

d,k

]T
,

E
[

wkwT
k

]

= Q ,

[

Qx 0
0 Qd

]

,
(7)

and

Φ =

[

A 0
0 Ind

]

, B̄ =

[

B
0

]

, Γ =

[

Gx 0
0 Gd

]

,

H =
[

C Ip

]

.
(8)

We assume that (Φ, Γ
√

Q) is stabilizable where Q =√
Q
√

Q
T

and (H, Φ) is observable. Necessary and sufficient

conditions for the observability of the augmented system (5)

are given in the following proposition.

Proposition 1: The augmented system (5) is observable if

and only if (C, A) is observable and
[

A − In 0
C Ip

]

has full column rank. (9)

Proof: See [8], [11].

Remark 2: In Assumption 1, we require nd = p. In [11] it

was proven that this condition guarantees offset-free steady-

state tracking of zref . We refer the reader to [11] for a

description of offset-free tracking for the case nd < p.

Remark 3: To satisfy condition (9) of Proposition 1, the

nominal system cannot have integrating modes.

III. STEADY-STATE KALMAN FILTER

This section describes the steady-state Kalman filter used

to estimate the augmented state vector governed by (5) and

the frequency domain relationship between the steady-state

closed loop estimator poles and the nominal system poles.

The term steady-state will be dropped when describing the

closed loop estimator poles because the following analysis

applies at steady-state.

We use a Kalman filter [3] to estimate the augmented state

vector. A steady-state Kalman filter exists for the augmented

system (5) because the matrices Φ, Γ, H , Q, and R are

time-invariant, Q ≥ 0, R > 0, (Φ, Γ
√

Q) is stabilizable, and

(H, Φ) is observable. The closed loop estimator equations

can be written as [3]:

X̂k+1 = Φ(In+nd
− KH)X̂k + B̄uk + ΦKzk,

K = P∞HT (HP∞HT + R)−1,
P∞ = ΦP∞ΦT + ΓQΓT−

−ΦP∞HT (HP∞HT + R)−1HP∞ΦT ,
(10)

where K is the Kalman gain, P∞ ≥ 0 is the solution to

the discrete algebraic Riccati equation, (HP∞HT + R) is

nonsingular, and |λi(Φ(In+nd
− KH))| < 1 for all i =

1, . . . , n + nd where λi(M) denotes the i-th eigenvalue of

the matrix M .

For a steady-state Kalman filter implemented for an LTI

system, the frequency domain can be used to analyze the

relationship between the closed loop estimator poles and the

nominal system poles. We first define the following three

transfer functions for analysis purposes. We denote ∆(z) as

the characteristic polynomial of the augmented system (5):

∆(z) = |zIn+nd
− Φ| = |zIn − A||zInd

− Ind
| =

= |zIn − A|(z − 1)nd ,
(11)

where | ◦ | refers to the determinant of (◦). We denote

∆cl(z) as the characteristic polynomial of the closed loop

estimator (10):

∆cl(z) = |zIn+nd
− Φ(In+nd

− KH)|
= |In+nd

+ ΦKH(zIn+nd
− Φ)−1||zIn+nd

− Φ|
= |In+nd

+ H(zIn+nd
− Φ)−1ΦK|∆(z)

We denote G(z) as the transfer function of the augmented

system from w̄k to zk where wk =
√

Qw̄k and w̄k is a white

noise vector with unit covariance matrix:

G(z) = H(zIn+nd
− Φ)−1Γ

√
Q =

Hadj(zIn+nd
−Φ)Γ

√
Q

|zIn+nd
−Φ|

,
NG(z)
∆(z) .

(12)

The Chang-Letov equation [3] can be used to establish the

relationship between ∆(z), ∆cl(z), and G(z) and analyze the

locations of the steady-state closed loop estimator poles:

∆cl(z)∆cl(z
−1) =

∣

∣G(z)GT (z−1) + R
∣

∣ · ∆(z)∆(z−1) ·
·
∣

∣HP∞HT + R
∣

∣

−1
, (13)
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∆cl(z)∆cl(z
−1) =

∣

∣H(zIn+nd
− Φ)−1ΓQΓT (z−1In+nd

− Φ)−T HT + R
∣

∣ · ∆(z)∆(z−1) = ∆(z)∆(z−1)
∣

∣

[

C Ind

]

[

zIn − A 0
0 zInd

− Ind

]−1 [

GxQxGT
x 0

0 GdQdG
T
d

]

[

z−1In − A 0
0 z−1Ind

− Ind

]−T [

CT

Ind

]

+ R

∣

∣

∣

∣

∣

(14)

∆cl(z)∆cl(z
−1) =

∣

∣

∣

∣

Cadj(zIn − A)GxQxGT
x adj(z−1In − AT )CT

|zIn − A||z−1In − AT | +
GdQdG

T
d

(z − 1)(z−1 − 1)
+ R

∣

∣

∣

∣

∆(z)∆(z−1) (15)

∆cl(z)∆cl(z
−1) =

∣

∣−z−1N(z)NT (z−1)(z − 1)2 + GdQdG
T
d |zIn − A||z−1In − AT |+

+ R|zIn − A||z−1In − AT |(z − 1)(z−1 − 1)
∣

∣

1

|zIn − A|p−1|z−1In − AT |p−1
(16)

where |HP∞HT +R| is a scaling factor and will be ignored

in the following analysis. We will rewrite (13) using these

three transfer functions and then explain its importance.

If (12) is substituted into (13), then ∆cl(z)∆cl(z
−1) can be

rewritten as:

∆cl(z)∆cl(z
−1) =

∣

∣

∣

∣

NG(z)NT
G(z−1)

∆(z)∆(z−1)
+ R

∣

∣

∣

∣

∆(z)∆(z−1)

=

∣

∣NG(z)NT
G(z−1) + R∆(z)∆(z−1)

∣

∣

∆(z)p−1∆(z−1)p−1

(17)

The right hand side of (17) is a polynomial whose

stable roots are the closed loop estimator poles. Note

that in (17) the term 1
∆(z)p−1∆(z−1)p−1 simplifies

with the polynomial resulting from the computation of
∣

∣NG(z)NT
G(z−1) + R∆(z)∆(z−1)

∣

∣.

The Chang-Letov equation (17) can be used to ana-

lyze the location of the closed loop estimator poles. As

R → 0, the NG(z)NT
G(z−1) term predominates. There-

fore, the closed loop estimator poles approach the stable

roots of
|NG(z)NT

G(z−1)|
∆(z)p−1∆(z−1)p−1 which are the stable zeros of

G(z)GT (z−1) when p = nd = 1. As R → ∞, the

∆(z)∆(z−1) term predominates. Therefore, the closed loop

estimator poles approach the stable zeros of ∆(z)∆(z−1)
which are the stable poles of G(z)GT (z−1). In other

words, the closed loop estimator poles approach either the

augmented system’s stable poles or the reflections of the

augmented system’s unstable poles inside the unit circle

because the closed loop estimator is stable. Unstable poles

are reflected inside the unit circle by taking their inverse.

The polynomial ∆cl(z)∆cl(z
−1) can be written explicitly

as a function of the augmented system matrices by substitut-

ing (8) into (13). The resulting equation, (14), is written at

the top of the page. By explicating the inverse of the matrix

in (14), we obtain (15) which can be compactly written

as (16) where

N(z) = Cadj(zIn − A)Gx

√

Qx. (18)

Equation (16) is written as the top of the page.

IV. MAIN RESULT

We have often observed a limitation in the closed loop

estimator performance when using the Kalman filter (10) to

estimate the augmented state vector governed by (5). This

section identifies and describes this performance characteris-

tic by considering the root loci of the closed loop estimator

poles. We consider nominal systems with at least one real

pole.

Assumption 2: There exists an i such that λi(A) ∈ R.

We define the following quantities for analysis purposes.

We denote Λr as the set of real eigenvalues of A and their

inverses, Λr = {λi, 1/λi | λi ∈ R, i = 1, . . . , n}. We de-

note λmax,r as the largest stable eigenvalue in Λr, λmax,r =
max|λ|<1 λ ∈ Λr. We denote Z(z) as ∆cl(z)∆cl(z

−1)
from (16) when R = 0. Z(z) is given in equation (20) at the

top of the next page.

In the following, we consider a class of single output

augmented systems with λmax,r > 0. For these systems, we

provide general results regarding the root loci of the closed

loop estimator poles, i.e., the stable roots of ∆cl(z)∆cl(z
−1)

as 0 → R → ∞. In particular we show that there are

branches of the root loci that lie on the real axis and that

these branches correspond to either slow or fast closed loop

estimator poles which are independent of R. The existence

of these branches is related to the assumption that the stable

roots of Z(z) lie within certain segments of the real axis.

For this class of augmented systems, we provide sufficient

conditions on Z(z) that guarantee the existence of such roots.

Theorem 1: Consider the class of augmented systems (5)

with p = 1 that satisfy Assumption 2. If λmax,r > 0 and the

following condition is satisfied:

∃z̄ ∈ R | λmax,r < z̄ < 1 and Z(z̄) = 0, (19)

then, for all R > 0, there exists λcl ∈ R such that ∆cl(λcl) =
0 and λmax,r ≤ λcl ≤ 1.

Proof: As discussed in Section III, the branches of

the root locus of ∆cl(z)∆cl(z
−1) move from the zeros of

G(z)GT (z−1) to the poles of G(z)GT (z−1) as 0 → R →
∞. These branches have the following properties: (1) they

must begin at a zero (which can include ∞) and end at a
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Z(z) ,

∣

∣−z−1N(z)NT (z−1)(z − 1)2 + GdQdG
T
d |zIn − A||z−1In − AT |

∣

∣

|zIn − A|p−1|z−1In − AT |p−1
. (20)

pole, (2) a real branch lies to the left of an odd number of

real poles and zeros [13], (3) the branches are symmetric

about the real axis, (4) the branches are inversely symmetric

about the unit circle because if g(z) = 0 is a branch, then

g(z−1) = 0 is a branch, and (5) a branch can not cross

the unit circle because the closed loop estimator is stable.

G(z)GT (z−1) has exactly two poles at z = 1 (one pole

from the disturbance model, one pole from its inverse, and

no other poles at z = 1 from Remark 3). Property 1 indicates

that two branches of the root locus must end at z = 1.

Properties 4 and 5 indicate that one branch lies inside the

unit circle and the second branch lies outside the unit circle.

Property 3 indicates that these two branches must lie on the

real axis. Property 2 indicates that the stable branch must

begin at the largest zero of G(z)GT (z−1), z̄max, that satisfies

condition (19). Therefore, there is a stable, real branch of the

root locus of ∆cl(z)∆cl(z
−1) that begins at z̄max and ends

at z = 1. 2

Proposition 2: If p = 1, λmax,r > 0, and

N(λmax,r)N
T (λ−1

max,r) > 0, (21)

then there exists a z̄ satisfying condition (19) in Theorem 1.

Proof: Evaluate the right hand side of Z(z) in (20) at

z = λmax,r and z = 1:

Z(z)|z=λmax,r
= −λ−1

max,rN(λmax,r)N
T (λ−1

max,r)(λmax,r−1)2,
(22)

Z(z)|z=1 = GdQdG
T
d |In − A||In − AT |. (23)

Equation (22) and hypothesis (21) imply that Z(λmax,r) <
0. Equation (23) implies that Z(1) > 0 because GdQdG

T
d >

0 from (4). The polynomial Z(z) is continuous for all z > 0
and, thus, it must have a real root between z = λmax,r and

z = 1. 2

The results of Theorem 1 have been extended to single

output and multiple output augmented systems with both

positive and negative real poles in [1].

In summary, Theorem 1 applies to single output aug-

mented systems that have at least one positive eigenvalue,

λmax,r. By definition, λmax,r corresponds to the slowest

non-oscillating mode of either the nominal system’s stable

modes or the reflection of the nominal system’s unstable

modes inside the unit circle. Theorem 1 shows that if

condition (19) holds, then the closed loop estimator always

has a real pole between λmax,r and z = 1 for all R.

Therefore, the poles of the closed loop estimator cannot be

arbitrarily changed by tuning R and the closed loop estimator

will always have a non-oscillating mode slower than λmax,r.

Finally, we remark that, from a practical viewpoint, it

might be simpler to test the existence of the slow and

fast modes in Theorem 1 by a direct numerical verification

process where the closed loop estimator poles are computed

for a large selection of weights R, Qx and Qd within given

bounds.

V. EXAMPLES

Example 1: Single State, Single Output Nominal Model.

Consider the following augmented system (5):

Xk+1 =

[

λ 0
0 1

]

Xk +

[

1 0
0 1

]

wk, (24)

zk =
[

c 1
]

Xk + vk (25)

where λ > 0, c, Qx, Qd, R ∈ R, ∆(z) = (z − λ)(z − 1),
and N(z) = c adj(z − λ)

√
Qx = c

√
Qx.

We denote the stable eigenvalue in Λr as a =
min {λ, 1/λ}. Therefore, |N(a)NT (a−1)| = c2Qx > 0 for

all Qx > 0. From Proposition 2 and Theorem 1 we can

conclude that the closed loop estimator always has a real

pole between z = a and z = 1 for all R > 0. In particular,

the closed loop estimator will have a stable, real branch of

the root locus of ∆cl(z)∆cl(z
−1) that begins from a < z̄ < 1

and ends at z = 1 where z̄ = min{z1, z
−1
1 } and:

z1 = 2c2Qx+(1+a2)Qd

2c2Qx+2aQd
+

[(a−1)2Qd[4c2Qx+(a+1)2Qd]]
1/2

2c2Qx+2aQd
.

(26)

Therefore, the closed loop estimator always has a non-

oscillating mode slower than z = a. The root locus plot

is shown in Figure 1. The zeros of G(z)GT (z−1) are

represented by circles and the poles of G(z)GT (z−1) are

represented by crosses.

Fig. 1. Root locus plot for Example 1

Example 2: Multiple State, Single Output Nominal Model.

Consider the transfer function:

F (z) =
z + 0.3

z3 − 1.804z2 + 1.626z − 0.670
(27)

The state-space matrices of (1) are extracted from F (z) in a

controller canonical form. The nominal system’s eigenvalues

are λ(A) = 0.4930 ± 0.7592j, 0.8180 so that the largest

stable eigenvalue in Λr is λmax,r = 0.8180. The remaining

matrices and statistics of the augmented system (5) were

selected as Gx = I3, Gd = 1, Qx = αI3 where α > 0,
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Qd = 1, and R ∈ R. For R = 0, the closed loop estimator

poles are λ(Φ(In+nd
−KH)) = 0.1812±0.3767j, 0, 0.9203.

By direct computation, N(z)NT (z−1) = α(0.3165z2 −
0.9871z + 5.524 − 0.9871z−1 + 0.3165z−2), and, thus,

N(λmax,r)N
T (λ−1

max,r) = 4.195 > 0 for all α > 0.

From Proposition 2 and Theorem 1, we can conclude that

the closed loop estimator always has a real pole between

z = λmax,r and z = 1 for all α, R > 0. Therefore, the closed

loop estimator always has a non-oscillating mode slower than

z = λmax,r. The root locus plot is shown in Figure 2. One

stable real branch of ∆cl(z)∆cl(z
−1) begins at z = 0.9203

and ends at z = 1
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Fig. 2. Root locus plots for Example 2

Example 3: Multiple State, Single Output Nominal Model.

Consider the transfer function:

F (z) =
z − 0.9

z5 + 0.496z4 − 1.923z3 + 1.987z2 − 0.566z − 0.402
(28)

The state-space matrices of (1) are extracted from F (z) in a

controller canonical form. The nominal system’s eigenvalues

are λ(A) = −2.000, 0.4930 ± 0.7592j, 0.8180,−0.3000 so

that the largest stable eigenvalue in Λr is λmax,r = 0.8180.

The remaining matrices and statistics of the augmented

system (5) were selected as Gx = I5, Gd = 1, Qx =
diag[0.001, 0.1, 1, 1, 0.1], Qd = 1, and R ∈ R. For R = 0,

the closed loop estimator poles are λ(Φ(In+nd
− KH)) =

0.5002± 0.6299j,−0.5193, 0, 0.0209, 0.8178.

By direct computation, N(z)NT (z−1) = 1.076z3 −
1.935z2−2.222z+6.165−2.222z−1−1.935z−2+1.076z−3,

and, thus, N(λmax,r)N
T (λ−1

max,r) = −0.001 < 0. This

system violates the hypothesis of Theorem 1 because

N(λmax,r)N
T (λ−1

max,r) < 0 and Z(z) has no roots between

z = λmax,r and z = 1 for R = 0. It should be noted that

Proposition 2 and Theorem 1 are sufficient conditions. A real

branch of the closed loop estimator can approach and cross

λmax,r, and then move toward z = 1 for R > 0 regardless of

the location of the closed loop estimator poles when R = 0.

The root locus plot is shown in Figure 3 and illustrates this

very characteristic.
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Fig. 3. Root locus plots for Example 3

VI. CONCLUSION

In this paper, we considered an offset-free MPC frame-

work with a discrete LTI nominal system model, an output

disturbance model, and a steady-state Kalman filter. We

identified sufficient conditions for a class of systems with at

least one postive real pole for which the closed loop estimator

pole locations could not be arbitrarily selected. In particular,

using root locus techniques, we showed that the closed loop

estimator always has a non-oscillating mode slower than the

slowest, stable, positive nominal system real mode. These

limitations on the closed loop estimator poles restrict the

locations of the closed loop MPC poles and, thus, restrict

the closed loop controller performance.

The limitations on the closed loop estimator pole locations

are a result of using the Kalman filter for the defined offset-

free MPC framework. A different observer design method

might not lead to these limitations. For example, in [10],

the observer gain matrix was designed by H∞ techniques

and limitations on closed loop estimator pole locations were

not reported. We also remark that the limitations on the

closed loop estimator pole locations are a characteristic of the

proposed disturbance model. These limitations may not exist

if other types of disturbance models are used to augment the

nominal system model.
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