
 

 

 

   

Abstract—Joint stiffness, the dynamic relationship between 

the angular position of a joint and the torque acting about it, 

can be used to describe the dynamic behavior of the human 

ankle during posture and movement. Joint stiffness can be 

separated into intrinsic stiffness and reflex stiffness, which 

are modeled as linear and LNL systems, respectively. For 

most functional tasks, the ankle interacts with a compliant 

load. The joint stiffness can be viewed as being operated in 

closed-loop because the torque is fed back to change the 

position of the ankle. Consequently, standard open loop 

identification methods will give biased results. In this paper, 

we present a new method to estimate intrinsic and reflex 

stiffness from the total torque measured in closed-loop. A 

MOESP (Multivariable Output-Error State-Space) subspace 

system identification method is used to estimate the dynamics 

of each pathway directly from measured data. The past 

reference input is used as an instrumental variable to 

eliminate noise fed back via the controller loop.  Simulation 

and experimental studies demonstrate that the method 

produces accurate results. 

Keywords—ankle dynamics, closed-loop system 

identification, subspace method, MOESP algorithm 

I. INTRODUCTION 

he concept of dynamic joint stiffness is used to study 

the mechanical behavior of the mechanisms acting 

about the ankle. Joint stiffness is defined as the dynamic 

relationship  between the angular position of a joint and the 

torque acting about it. Joint stiffness plays an important role 

in control of the posture since it is the joint stiffness that 

produces the resistance to an external perturbation.  

Joint stiffness can be separated into two components: 

intrinsic and reflex stiffness. The intrinsic component is due 

to the mechanical properties of the joint, passive tissue, and 

active muscle fibers; the reflex component is due to muscle 

activation in response to the activation of stretch receptors 

in the muscle. Ref. [1] found that the parallel cascade model, 

shown in Figure 1, could describe joint dynamic stiffness 

well.  

 

 
Manuscript received March 13th, 2008 Supported by grants from the 

Natural Sciences & Engineering Research Council of Canada, and the 

Canadian Institutes of Health Research. 

Y. Zhao is with the Department of Biomedical Engineering, McGill 

University, Montreal, QC, Canada, H3A 2B4 (phone: 514-398-7461, fax: 

514-398-7461, e-mail: yong.zhao@mcgill.ca).  

D. Ludvig is with the Department of Biomedical Engineering, McGill 

University, Montreaql, QC, Canada, H3A 2B4 

R. E. Kearney is with the Department of Biomedical Engineering, 

McGill University, Montreal, QC, Canada, H3A 2B4 

 
Figure 1 Parallel-cascade structure of ankle dynamics. 

ITQ  and 

RTQ denote intrinsic torque and reflex torque. The position signal is the 

input signal to the parallel-cascade method, while the torque signal, the 

sum of the intrinsic and reflex torques, is the measured output. Intrinsic 

stiffness is modeled as a linear system. Reflex stiffness is modeled by a 

series connection of a differentiator, a delay, a static nonlinearity and a 

linear low-pass system.   

 

For perturbations about an operating point, intrinsic 

stiffness can be modeled well by a second-order, 

quasi-linear system with transfer function [1]: 

( )
( )

2
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I
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TQ s
H s Is Bs K

P s
= = + +                                 (1) 

where 
I

TQ  is the intrinsic torque,  

P is the position, 

I, B, and K are the position-dependent inertial, 

viscous, and elastic parameters, respectively [1]. 

The reflex component is due to muscle activation in 

response to the activation of stretch receptors in the muscle. 

Reflex stiffness has a LNL structure, a series connection of 

differentiator and a static non-linearity followed by a 2nd or 

3rd order low-pass system in series with a delay [1]. 

Equation 2 shows the transfer function for the 3rd order 

low-pass filter for reflex stiffness. 
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where 
R

TQ  is reflex torque,  

( )
R

V s  is half-wave rectified joint angular velocity, 

R
G  is reflex gain,  

n
ω  is 2nd order natural frequency,  

ξ is damping parameter,  

p is 1st order cut-off frequency,  

τ is reflex delay. 

The intrinsic and reflex torque cannot be distinguished 

experimentally; only their sum can be measured. Thus, a 

direct estimation of ( )
IS

H s  and ( )
RS

H s  is not feasible. 

A number of tools have been developed to separate the 

intrinsic and reflex components of the net torque. A parallel 
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cascade method [1] takes advantage of the delay in reflex 

pathway, and estimates the intrinsic and reflex torques 

iteratively. A real-time algorithm [2] uses a specially 

designed input sequence to eliminate the correlation 

between the reflex torque and intrinsic torque. Recently, we 

developed a subspace-based method to estimate the 

intrinsic and reflex torque directly from the measured net 

torque in a one-step procedure. A state space model for 

overall ankle dynamics [3][4] is estimated directly from 

measured data. The intrinsic and reflex torques are then 

estimated by simulating the estimated state space model 

with appropriate inputs.  

Although these methods can separate the intrinsic and 

reflex torque from the net torque, they require the 

experimental data be collected in an open loop experiment 

in which the net torque, TQ , doesn’t change the joint 

position, θ. This requirement is usually satisfied when the 

experiment is operated under position control mode, where 

the actuator operates as a position servo and drives the 

subject’s ankle position to follow the command input.  

To study ankle dynamics when the subject makes 

voluntary movements, an impedance controller is used to 

allow the subject to move the ankle against a simulated 

compliant load, subject to disturbance torque. The torque is 

fed back by the impedance controller to change the position. 

Therefore, under impedance control the system forms a 

closed-loop system, as Figure 2 [5] shows. Thus identifying 

the ankle dynamics becomes a closed-loop system 

identification problem. 

 

 
Figure 2. Simplified block diagram of the closed-loop ankle-actuator 

system. ( )impH s  represents dynamics of the impedance controller. 

( )ISH s  and ( )RSH s  represent transfer functions for intrinsic and reflex 

stiffness.  INP, TQ and θ represent input perturbation, torque and position 

signals. U and V represent torque and position error signals. 

 

A direct application of the open loop identification 

methods to data from closed-loop system will produce 

biased results [6]. Specifically, to identify the ankle 

dynamics, the parallel cascade method and the real-time 

algorithm require the measurement noise to be uncorrelated 

with the input signal. However, in closed-loop experiments, 

the input signal, θ, will contain feedback measurement 

noise that is correlated the noise in the measured torque. 

Thus, the parallel cascade method and the real-time 

algorithm will produce biased estimates.   

The subspace method, however, can estimate the ankle 

dynamics in closed-loop. We showed previously that a 

subspace method, EIV-MOESP [7] could separate the 

intrinsic and reflex torque from the net torque when the 

experiment was conducted under impedance control mode 

[8]. Past input and past output were used as instrumental 

variables. Although this method provides unbiased 

estimates for ankle dynamics in closed-loop, it is not 

efficient in computation since a large number of 

instrumental variables are constructed [8].  

In this paper, we present a more efficient way to separate 

the torque from the intrinsic stiffness and that from the 

reflex stiffness with compliant loads. The past reference 

signal is used as an instrumental variable to eliminate noise 

feedback. The MOESP structure is used to estimate the 

state space model of the ankle dynamics. The intrinsic and 

reflex torque is obtained by simulating the estimated state 

space model for the ankle dynamic with proper inputs.  

This paper is structured as follows. Section II presents 

the state space model for ankle dynamics. Section III 

describes the past reference input method of MOESP 

family. Sections IV and V provide simulation examples and 

experimental results to test and validate the algorithm. 

Section VI summarizes the contribution of this paper.  

II. STATE SPACE MODEL FOR ANKLE DYNAMIC 

A. State Space Model for Intrinsic Stiffness  

For perturbations about an operating point, intrinsic 

stiffness can be described as a linear relationship between 

position and torque, which is modeled well by a 

second-order quasi-linear system with the transfer function 

of Equation 1. Alternatively, the intrinsic stiffness can be 

described by Equation 3 using the inputs P P P  
� �� , 

where P is measured position, P� is the differentiated 

position and P��  is second-order differentiated position. 

I

K
TQ

P P P B
P

I

 
  =    
  

� ��                                            (3) 

Thus, a state space model relating the inputs 

P P P  
� ��  to the output TQI  is,  

1

l l

k l k l i k

l

I k l k l i k

X A X BU

TQ C X DU

+ = +

= +
                                      (4) 

where TQI  is the intrinsic torque,  

ik
U  represents the constructed inputs P P P  

� ��  

l

k
X  is the state vector for this state space model, 

Al , Bl  and Cl  matrices will be zero. 
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B. State Space Model for Reflex Stiffness 

Reflex stiffness has a LNL structure comprising a series 

connection of a differentiator, a static non-linearity and a 

linear dynamic system. If velocity is used as the input, the 

reflex stiffness can be described by a Hammerstein system. 

The Hammerstein system can be identified using an 

extended subspace method [9] as follows. Assume the static 

nonlinearity nRS (⋅)  can be approximated by a basis 

expansion g(⋅) , so that: 

  

zk = g(uk ,τ ) = τ igi (uk )

i=1

r

∑

= τ1 � τ r[ ]

g1(uk )

�

gr (uk )

 

 

 
 
 

 

 

 
 
 

                                   (5) 

where  gi (uk ) are the terms of the basis function 

i
τ  are the scale factors for each basis function term, 

uk  and zk  denote the input to the nonlinearity and 

the output from the nonlinearity.  

  A state space model can be used for ( )
RS

H s , the linear 

part of the reflex stiffness: 

1

r r

k r k r k

r

Rk r k r k

X A X B z

TQ C X D z

+ = +

= +
                                         (6) 

where 
R

TQ  is the reflex torque,  

k
z  is the output from the static nonlinearity,  

r

k
X  is the state vector for linear part of the reflex 

Stiffness 

, , ,
r r r r

A B C D  are the system matrices for ( )
RS

H s . 

From Equation 5, the output from the nonlinearity is the 

product of a row vector containing nonlinear parameters 

and a column vector containing the kernel of the basis 

function. If we define: 

[ ]

[ ]

[ ]

1

1

1

,

,

( ), ( )

r

r

T

r k k r k

B B B

D D D
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τ τ

τ τ

=

=

=

� �

� �
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                                      (7) 

the Hammerstein system can be rewritten as  

1

h h

k h k r k

h

Rk h k r k

X A X BU

TQ C X DU

+ = +

= +

�

�
                                   (8) 

where 
R

TQ  is the torque from the reflex stiffness 

Xk
h

 is the internal state vector, 

Ah ,Ch ,  represent the system matrices for reflex 

 stiffness. 

Thus, once a basis function has been chosen, the static 

nonlinearity and the SISO linear system of the 

Hammerstein system can be described by a MISO linear 

state space model using 
  
Uk = g1(uk ), � gr (uk )[ ]

T
. 

To describe the nonlinearity in the reflex stiffness, we 

opted to use a Chebyshev polynomial [10] to avoid the 

conditioning problems associated with the high order 

components in regular polynomials. The constructed input 

matrix becomes: 

1 2( ) ( ) ( )
N

T

rk nU T x T x T x =  �
                         (9) 

where the Chebyshev polynomials are given by: 

1

2

1 2

( ) 1

( )

( ) 2 ( ) ( )

k

n k n n

T x

T x v

T x v T x T x− −

=

=

= ⋅ ⋅ −

                           (10) 

C. State space model for joint stiffness 

A direct estimate of separate state space models for 

intrinsic and reflex is not possible. However, a state space 

model for the overall parallel cascade model of ankle 

dynamics can be estimated because the measured torque 

TQ  is the sum of the torques from the intrinsic and reflex 

stiffness (i.e. 
I R

TQ TQ TQ= + ). Specifically, Equation 4 

and Equation 7 can be combined to give: 

1 0
i k

k h k

r k

ik

h k l

r k

U
X A X B

U

U
TQ C X D D

U

+

 
 = +   

 

 
 = +   

 

�

�

                         (11) 

where TQ  is the measured net torque,  

h
A , B� ,

h
C , D� are the system matrices for reflex 

stiffness in Equation 7, 

l
D  is the system matrices for intrinsic stiffness in 

Equation 4, 

i k
U  is the constructed input to intrinsic stiffness 

r k
U  is the constructed input to reflex stiffness. 

For this state space model, the input 
i k

r k

U

U

 
 
 

 can be 

constructed from the measured input, and the output TQ  is 

obtained directly from the measured data. The state space 

model of Equation 8, can be estimated from input 
i k

r k

U

U

 
 
 

 to 

output TQ .  

 

III. IDENTIFICATION 

This section presents the algorithm to estimate the state 

space for ankle dynamics when the data is collected from a 

closed-loop system.  

The difficulty with closed-loop system identification is 

feedback noise. Instrumental variables can be used to 

eliminate these noise terms. An instrumental variable 

should be uncorrelated with the noise, but correlated with 

the states. Thus, the noise term will be eliminated using the 

instrumental variable, while the information of the internal 

states will be preserved. The requirements for the 
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instrumental variables, Θ , are as follows: 

, ,

1
lim 0

i j N
N

v
N→∞

Θ =                                                (12)  

, ,

1
lim 0

i j N
N

w
N→∞

Θ =                                                      (13) 

,

1
rank( lim )

i N
N

X n
N→∞

Θ =                                          (14) 

where 
,i N

X  is the state vector, 

, ,i j N
w  and 

, ,i j N
v  are the Hankel matrices for the 

process noise and measurement noise respectively. 

The Hankel matrix for a signal r has the form. 

, ,

( ) ( 1) ( 1)

( 1) ( 2) ( )

( 1) ( ) ( 2)

i j n

r i r i r i n

r i r i r i n
R

r i j r i j r i j n

+ + − 
 + + + =
 
 

+ − + + + − 

�

� �

�

            

(15) 

where  i is the left upper entry of the Hankel matrix, 

j is the number of the rows, 

n is the number of columns. 

The past reference input is an excellent candidate as the 

instrumental variable to identify the ankle dynamics in 

closed-loop. Equations 12 and 13 are easily satisfied since 

the wi, j,N  and vi, j,N  are white noise and voluntary 

movement. The voluntary movement is generated by the 

subject, and it is uncorrelated with the external perturbation. 

Finally, if the reference input is chosen to be persistently 

exciting [6], Equation 14 will be satisfied.  

Therefore, a member of the MOESP family of 

algorithms, namely PR-MOESP [11] (MOSEP using Past 

Reference input as instrumental variables), is well suited 

for closed-loop system identification. The past reference 

input is used as instrumental variables to eliminate the 

correlation between the input signal and noise terms in the 

output signals. Using PR-MEOSP, a state space method 

can be estimated for the joint stiffness from the constructed 

input 
i k

r k

U

U

 
 
 

 to the measured torque TQ . 

Identifying the state space model of Equation 11 does not 

estimate the intrinsic stiffness and the reflex stiffness 

directly. However, simulating the estimated system with the 

appropriate inputs permits the torque from the intrinsic and 

reflex stiffness to be estimated. Specifically, the output 

from the simulation with the input signal 
0

i kU 
 
 

 is an 

estimate of the intrinsic torque TQI . Similarly, the 

response to the input 
0

r k
U

 
 
 

 will estimate the torque from 

the reflex stiffness 

IV. SIMULATION STUDY 

To test and validate the algorithm, simulated data were 

generated using Matlab’s Simulink. Intrinsic stiffness was 

modeled as a second-order, quasi linear system with 

transfer function: 

2( )
0.015 0.8 150

( )

ITQ s
s s

sθ
= + +                               (16) 

where θ is joint angle,  

I
TQ  is torque from the intrinsic stiffness.  

Reflex stiffness was modeled by a series connection of a 

differentiator, a delay for 40ms [1], a half-wave rectifier 

and a second order low-pass filter as 

2

( ) 3200

( ) 80 1600

R

R

TQ s

V s s s
=

+ +
                                      (17) 

where 
R

TQ  is reflex torque,  

R
V  is half-wave rectified joint angular velocity. 

A Pseudorandom Binary Sequence Signal (PRBS) was 

used as the external position input. These perturbations 

were similar to those used previously to identify ankle 

dynamics [1]; they moved rapidly between two values at 

random multiples of the switching interval. The 

perturbation signal had peak-to-peak amplitude of 0.04 rad 

and a switching interval of 100 ms. Gaussian white noise 

with SNR as 10 dB was used to as the measurement noise. 

Another Gaussian noise, filtered by a second order Bessel 

low pass filter with cut-off frequency of 2 Hz, was used to 

simulate the voluntary torque. The net torque was fed back 

via an impedance controller [8].  

The percentage Variance Accounted For (%VAF) was 

used to measure how well the identified torque predicted 

the true torque. The VAF between the true and identified 

torque was calculated as: 

var iance( )
%VAF 1 100%

variance( )

est
y y

y

− 
= − × 
 

           (18) 

The PR-MOESP was implemented by modifying the 

Matlab SMI 2.0 Toolbox [12].  

The parallel-cascade method [1], EIV-MOESP [5] and 

PR-MOESP were used to estimate the intrinsic and reflex 

torque. The results are shown in Table 1. The first column 

lists the torque being compared, while the first row lists the 

method that was used to provide estimate. This simulation 

study shows that the new algorithm provides good 

estimates for the intrinsic torque, reflex torque and net 

torque. 
 PR-MOESP EIV-MOESP Parallel-cascade 

Net torque 92% 90% 90% 

Intrinsic torque 98% 97% 56% 

Reflex torque 97% 97% 66% 

Table 1. Comparison of three identification methods using simulated data 

 

Figure 3 shows the estimated torques and the measured 

torques from the PR-MOESP and parallel-cascade method. 

Clearly, the parallel-cascade method provided biased 
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estimate for intrinsic and reflex torques. The PR-MOESP 

estimated the intrinsic and reflex torques accurately.  
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Figure 3 Comparison of estimated and observed torques 

 

Next, we investigated the performance of PR-MOESP 

and parallel-cascade method with different reflex gain. No 

noise was added to the simulation. 20 Monte-Carlo 

simulations were conducted, each with different reflex gain 

from 10 to 30 with an increment of 1. Each Monte-Carlo 

simulation contained 100 trials, each lasting for 50 seconds. 

VAFs between the simulated and predicted intrinsic, reflex 

and net torque were computed. Figure 4 shows the mean of 

the VAFs as a function of reflex gain. It is evident that the 

parallel cascade method provided biased result, especially 

when the reflex gain was high. Indeed, the parallel-cascade 

method is a correlation-based identification method. The 

reflex torque is viewed as noise when estimating the 

intrinsic torque. In closed-loop, the reflex torque is fed 

back by the controller. Thus, the position is correlated with 

the reflex torque. Therefore, the estimate the intrinsic 

stiffness is biased. The PR-MOESP used the instrumental 

variable to eliminate the effects from the noise. Clearly, the 

PR-MOESP estimates the intrinsic, reflex and net torques 

regardless the value of the reflex gain. The estimate the 

intrinsic stiffness depends the correlation between the As 

the reflex gain increased, the performance of the parallel 

cascade method decreased. 
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Figure 4 Mean VAF between simulated and predicted torque as a function 

of reflex gain. 

V. EXPERIMENTAL STUDIES 

Experimental data was used to test and validate the 

algorithm. The subject was a 25 year-old-female with no 

history of muscular disease. The experiment was done 

under impedance control mode, where the subject moved 

the ankle against a simulated compliant load. The 

experiment trial lasted for 60 seconds. The input and output 

data were recorded at a sampling rate of 1KHz and then 

decimated to 100 Hz. Details of the experiment are 

available in [1]. Using the algorithm, we estimated the net 

torque, intrinsic torque and reflex torque respectively. The 

results are shown in Table 2. 

Figure 5 shows the measured torque and the estimated 

torques. The estimated net torque fit the measured torque 

with VAF of 85%. The estimated intrinsic torque 

contributed 49% in VAF to the net torque, while the 

estimated reflex torque contributed 43% in VAF to the net 

torque. The parallel cascade method was also applied to the 

same data. The estimated net torque fit the true measured 

torque with VAF of 66%. The estimated reflex torque 

contributed 52% to the net torque and the estimated 

intrinsic torque contributed 20% for the total torque. This 

result shows that the new subspace method provides better 

estimate of the net torque, intrinsic torque and reflex torque 

than the parallel cascade method.  
 PR-MOESP EIV-MOESP Parallel-cascade 

Net torque 85% 83% 66% 

Intrinsic torque 49% 50% 52% 

Reflex torque 43% 38% 20% 

Table 2. Comparison of three identification methods from the 

experimental data 
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Figure 5 Comparison of estimated and observed torque 

VI. CONCLUSION AND DISCUSSION 

In this paper, we presented a new subspace method to 

estimate ankle dynamics with compliant loads. The parallel 

cascade model of ankle dynamics is described by a MISO 

state space model with constructed inputs from the 

measured position signal and terms of the basis function. 

Using the past reference input as an instrumental variable, 

the MOESP algorithm was modified to estimate the MISO 

state space model for ankle dynamic. Simulating the 

estimated model with appropriate inputs allows the intrinsic 

and reflex torques to be estimated.  

In the simulation study, we compared the result of the 

PR-MOESP and the results from EIV-MOESP and 

parallel-cascade method. It is not surprising that parallel 

cascade method provided biased estimates for intrinsic and 

reflex torque though the estimate of the net torque was good. 

That is because the parallel cascade method uses the 

estimate of the net torque as the only criteria to monitor the 

iteration of the algorithm. The algorithm stopped when the 

algorithm couldn’t improve the estimate for the net torque. 

If the data was collected in open-loop, the estimate of 

intrinsic and reflex torque improves when the estimate of 

net torque improves. However, when the data is collected 

from closed-loop system, the estimate of the intrinsic and 

reflex torque by parallel cascade method is highly biased 

even if the algorithm improves the estimate of net torque.  

The results from the PR-MOESP and EIV-MOESP were 

similar. However, PR-MOESP has two advantages over 

EIV-MOESP. First, PR-MOESP is more economic. 

EIV-MOESP uses past input and past output as 

instrumental variables. For ankle dynamic, three inputs are 

needed for intrinsic stiffness, and five inputs are needed for 

reflex stiffness if a fifth order basis function is chosen. Thus, 

nine columns of instrumental variables were required for 

EIV-MOESP. PR-MOESP uses the past reference input as 

the instrumental variable. The external position 

perturbation is the reference input to the experiment. Only 

one column of instrumental variable is required. 
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