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Abstract— In this paper, we deal with a stabilization problem
on quantum spin systems in general dimensions. The spin
systems are supposed under continuous measurement by mutual
interference with laser beams and a magnetic field is applied for
control. The quantum states of spin systems can be estimated
by quantum filtering and the intension of the magnetic field
is controlled according to the estimation. We show that the
global stabilization at arbitrary eigenstates of the spin systems
is possible by continuous control inputs. Our proposing control
input is the sum of two terms: a term which attracts the
quantum states to an objective eigenstate and the other term
which draws apart from the other equilibrium points. We also
demonstrate the results by a numerical simulation.

I. INTRODUCTION

Quantum information technologies have been actively in-

vestigated in the broad fields of physics or information

theory [12]. On of problems for their realization is the

generation or preservation of quantum bit (q-bit) under noisy

environment. Quantum feedback control is indispensable for

those purposes and the theory for it has been constructed.

Belavkin [2] and others [22] showed that the time evolution

of estimated quantum states under continuous measurement

can be described by a classical stochastic differential equa-

tion in the early 1990’s. This is called “quantum filtering.”

After that, research on feedback control by using estimated

quantum states has been actively investigated [21], [4], [23]

and its effectiveness has been also demonstrated by actual

experiments [6].

Quantum spin system is one of possible realizations as the

quantum bits and a recent notable result [19] is on feedback

control of single spin 1/2 systems by using a continuous

control input. This result is important for a possibility or

a theoretical guarantee of feedback control, however its

application is limited by the dimension of the systems. The

generalization of the dimension was attained by Mirrahimi

& van Handel [11]. They proposed a switching control for a

group of atoms to globally stabilize the angular moments at

arbitrary eigenstates. The proof is done by the strict analysis

on the sample paths of the quantum state. This is the first

result to show the global stability for quantum spin systems

in general dimensions.

With those results, our interest naturally moves to a question

on the global stabilizability of the quantum spin systems by
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continuous feedback. From an engineering sense, this prob-

lem is important for the realizability of apparatus because

precise switching is actually difficult and also switching

usually causes undesirable noise. Another, however more

crucial, motivation is that this problem is also significant

from a sense of pure physics and mathematics, and it is the

main subject of this paper.

Recently, Tsumura [16], [17] proved that global stabilizabil-

ity is possible by a continuous control input. This control

scheme was firstly proposed in [9] and its effectiveness

was demonstrated by numerical examples. However, the

target state is limited to the maximum energy eigenstates.

This paper solves this limitation by introducing another

new control input and proves that the global stability at

arbitrary eigenstates of N -dimensional quantum spin systems

is possible by continuous control. The proposing continuous

control signal is a sum of two terms: a control signal which

attracts the quantum states to a target eigenstate and another

signal which draws away from the other equilibrium points.

The related work on an almost global stability was reported

in [1] and global stability except for some special points was

shown to be possible.

This paper is organized as follows. In Section II, we intro-

duce the problem setting and some preliminaries. In Sec-

tion III, we give the main result of this paper and its proof.

The procedure of the proof is similar to that of Mirrahimi

& van Handel [11] and Tsumura [16], [17]. In Section IV,

we show a numerical example in order to demonstrate the

efficiency of our proposing control scheme and we conclude

this paper in Section V.

II. FORMULATION

In this paper, we deal with the system in Fig. 1 [19], [20],

[11] with continuous measurement. A group of atoms is

held in a cavity and the purpose is to control their spin

moment. A laser beam is applied to the atoms to cause

mutual interaction between them and the interacted laser is

observed by a photo detector. The intensity of the interacted

laser brings the information on the angular moment of the

atoms, however the observation of this indirect information

causes an inevitable back action on the quantum state of

the atoms. A magnetic field is also applied to the group

of the atoms and its intension is controlled. By using the

history of the indirectly observed information, the conditional

expectation of the observable can be calculated [2]. This

is called quantum filtering and the time evolution of the
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estimated quantum state; density matrix, becomes a quantum

version of a classical Kushner-Stratonovich equation [2], [3],

[19].

-
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Fig.1: Quantum spin system under continuous measurement

A density matrix ρt represents the quantum state on the

spin. When the number of atoms is n, the dimension of

the quantum state on the angular moment is N = 2J + 1
where J = 1

2
n is the absolute value of the moment. When

we observe the angular moment on z-axis and apply the

magnetic field along y-axis, the corresponding quantum filter

becomes a nonlinear Itô stochastic differential equation of ρt:

dρt = − iut[Fy, ρt]dt − 1

2
[Fz, [Fz, ρt]]dt

+
√

η(Fzρt + ρtFz − 2tr (Fzρt)ρt)dWt, (1)

dy =2
√

ηtr (Fzρ)dt + dWt (2)

where

S : {ρ ∈ CN×N : ρ = ρ∗, tr (ρ) = 1, ρ ≥ 0},
ρt : ρt ∈ S, a quantum state at time t,

dWt : an infinitesimal Wiener increment satisfying

E[(dWt)
2] = dt, E[dWt] = 0,

ut : control input (ut ∈ R),

yt : output (yt ∈ R),

η : the detector efficiency (0 < η ≤ 1),

Fy: the angular momentum along the axis y of the

form [10]:

Fy =
1

2i










0 −c1

c1 0 −c2

. . .
. . .

. . .

c2J−1 0 −c2J

c2J 0










,

cm =
√

(2J + 1 − m)m, (3)

Fz: the angular momentum along the axis z of the

form [10]:

Fz =










J
J − 1

. . .

−J + 1
−J










. (4)

This is called SME (stochastic master equation) and it has

been mainly investigated in the research field of quantum

control. It should be noted that the solution of (1) is contin-

uous in time [13] if ut is continuous. We also define some

notations:

ψi := [0 · · · 0 1
︸︷︷︸

i−th

0 · · · 0]∗, (5)

ρψi
:= ψiψ

∗
i , (6)

V I
ρf

(ρ) := 1 − tr (ρρf), (7)

V II
ρf

(ρ) := 1 − (tr (ρρf))
2, (8)

V III
ρf

(ρ) := λi − tr (Fzρ), (9)

λi := J − (i − 1), (10)

where ρf ∈ S is one of eigenstates ρψi
, i = 1, 2, . . . , N .

Note that 0 ≤ V I
ρf

(ρ) ≤ 1 (0 ≤ V II
ρf

(ρ) ≤ 1), and V I
ρf

(ρ) = 0
(V II

ρf
(ρ) = 0) iff ρ = ρf . Moreover, for ǫ > 0, define

S<ǫ
ρf

:=
{
ρ | 0 ≤ V I

ρf
(ρ) < ǫ

}
, (11)

Sǫ
ρf

:=
{
ρ |V I

ρf
(ρ) = ǫ

}
, (12)

Sǫ<
ρf

:=
{
ρ | ǫ < V I

ρf
(ρ)

}
. (13)

The control objective is to globally stabilize the quantum

state ρt on an eigenstate ρf = ρψi
by controlling the intensity

ut of the magnetic field, which is a function of ρt or its

record.

We define the stochastic stability of (1) as follows.

Definition 2.1: [8] Let ρe be an equilibrium point of (1), i.e.

dρt|ρt=ρe
= 0. Then

1. the equilibrium ρe is said to be stable in probability if

lim
ρ0→ρe

Pr

(

sup
0<t<∞

‖ρt − ρe‖ ≥ ǫ

)

= 0, ∀ǫ > 0, (14)

where ‖ · ‖ is an arbitrary norm of a matrix in CN×N .

2. The equilibrium ρe is globally stable if it is stable in

probability and additionally

Pr
(

lim
t→∞

ρt = ρe

)

= 1, ∀ρ0 ∈ S. (15)

For showing the stochastic stabilities of (1), a stochastic

version of the Lyapunov theorem is available. At first define

a nonnegative real-valued continuous function V (·) on S.

Also define ρρι

t := ρt for ρ0 = ρι, a level set Qǫ := {ρ ∈
S : V (ρ) < ǫ}, τǫ := inf{t : ρρι

t /∈ Qǫ}, ρ̃ρι

t := ρρι

t∧τǫ

where t ∧ τǫ := min(t, τǫ), L: infinitesimal operator, and

Lǫ: restriction of L on ρ̃ρι

t , respectively. Then, we get the

following propositions.
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Proposition 2.1: [8] Suppose LǫV ≤ 0 in Qǫ. Then, the

following hold:

1. limt→∞ V (ρ̃ρι

t ) exists a.s., so V (ρρι

t ) converges for a.e.

path remaining in Qǫ.

2. Pr–limt→∞ LǫV (ρ̃ρι

t ) = 0, so LǫV (ρρι

t ) → 0 in

probability as t → ∞ for almost all paths which never

leave Qǫ.

3. For ρι ∈ Qǫ and α ≤ ǫ, we have the uniform estimate

Pr

(

sup
0≤t<∞

V (ρρι

t ) ≥ α

)

=Pr

(

sup
0≤t<∞

V (ρ̃ρι

t ) ≥ α

)

≤ V (ρι)

α
. (16)

4. If V (ρs) = 0 and V (ρ) 6= 0 for ρ 6= ρs, where ρs ∈ Qǫ,

then ρs is stable in probability.

Definition 2.2: An invariant set I ⊆ S is defined such as

ρρι

t ∈ I, ∀t ≥ 0 whenever ρι ∈ I.

Proposition 2.2: [11] Assume the following:

1. Qǫ is bounded and LǫV (ρ) ≤ 0, ∀ρ ∈ Qǫ.

2. For any bounded scalar continuous function f(ρ) and a

fixed t, E[f(ρρι

t )] is continuous on ρι = ρ0.

3. For any positive real number κ and ρι ∈ Qǫ, Pr(‖ρρι

t −
ρι‖ > κ) → 0, t → 0.

Let Qo be the set of all points within Qǫ where LǫV (ρ) = 0,

and let I be the largest invariant set in Qo. Then, every

solution ρt in Qǫ tends to I as t → ∞.

Here we consider the control problem:

Problem 2.1: For the controlled spin system (1) and (2), find

a globally stabilizing controller ut on an eigenstate ρf = ρψi
.

This is not a trivial problem from the following viewpoints:

(i) (1) is a nonlinear stochastic system, (ii) there exist plural

locally stable equilibrium points when u = 0 because of

the nonlinearity, (iii) because of a kind of symmetry of the

dynamics, many of locally stabilizing control scheme on one

of the equilibrium points also preserve the other equilibrium

points.

On this stabilization problem, van Handel et al. [19] firstly

introduced a globally stabilizing feedback controller for a

special case of single spin 1/2 systems by using a contin-

uous control rule. The limitation on the dimension of the

systems and the difficulties mentioned before were solved

by Mirrahimi & van Handel [11]. They rigorously proved

that there exists a globally stabilizing control scheme for

N -dimensional quantum spin systems on arbitrary target

eigenstates by introducing a switching rule:

Proposition 2.3: [11] Consider the system (1) evolving in

the set S and let γ > 0, ρf = ρψi
and

u1(ρt) := −tr (i[Fy, ρt]ρf). (17)

Moreover, consider the following control scheme:

1. ut = u1(ρt) if V I
ρf

(ρt) ≤ 1 − γ;

2. ut = 1 if V I
ρf

(ρt) ≥ 1 − γ/2;
3. If ρt ∈ B = {ρ : 1 − γ < V I

ρf
(ρt) < 1 − γ/2}, then

ut = u1(ρt) if ρt last entered B through the boundary

V I
ρf

(ρ) = 1 − γ, and ut = 1 otherwise.

Then ∃γ > 0 s.t. ut globally stabilizes (1) around ρf and

E[ρt] → ρf as t → ∞.

This is the first and important result to show the global

stability for quantum spin systems in general dimensions.

The scheme in Proposition 2.3 is a complex switching control

and it should be avoided from the view point of practical use.

Moreover, the essential question whether the quantum spin

systems can be globally stabilized by continuous feedback is

interesting itself in a sense of pure physics or mathematics

and it is one of main research subjects in this field. With this

motivation, Tsumura showed global stabilizability by using

a continuous control signal [16], [17], however, the target

state is limited to the maximum energy eigenstate:

Proposition 2.4: [16], [17] Consider the system (1) evolving

in the set S. Let ρf = ρψ1
and η > 0. Then,

ut = αu1(ρt) + βV I
ρf

(ρt)

α, β > 0 (18)

globally stabilizes (1) around ρf and E[ρt] → ρf as t → ∞
when

β2

8αη
< 1. (19)

The main purpose of this paper is to remove the limitation

of the target state.

III. MAIN RESULT

In this section, we show the stabilizability of (1) with

a continuous feedback by modifying (18) to a new one

and provide the strict proof for the global stabilizability at

arbitrary eigenstates ρf = ρψi
, i = 1, 2, . . . , N . We get the

following theorem:

Theorem 3.1: Consider the system (1) evolving in the set S.

Let ρf = ρψi
, i = 1, 2, . . . , N and η > 0. Then,

ut = αu1(ρt) + βV III
ρf

(ρt)

α, β > 0 (20)

globally stabilizes (1) around ρf and E[ρt] → ρf as t → ∞
when

β2

8αη
< 1. (21)

Remark 3.1: This is the first result to show the global

stabilizability of general finite dimensional quantum systems

at arbitrary eigenstates by continuous feedback for the type

of the master equation (1). Note that α and β are design

parameters and we can always find them satisfying the

condition (21) if η > 0.

We prove Theorem 3.1 in the followings. The procedure

of the proof is similar to that in [11], [16], [17] and it is

composed of showing the following three statements:
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Step 1: ρf = ρψi
is stable in probability.

Step 2: there exists 0 < γ < 1 and almost all sample paths

which never leave the domain S<1−γ
ρf

converge to ρf .

Step 3: for almost all sample paths there exists a finite time

T and after it, they never leave S<1−γ
ρf

.

We prove each statement in the following.

Step 1

In order to show the statement of Step 1, we find a Lyapunov

function which satisfies the conditions of Proposition 2.1

around ρf . We show a key lemma for it.

Lemma 3.1: With the control input (20),

LǫV
II
ρf

≤ 0 (22)

is satisfied in the subsets S<1−γo
ρf

, where

γo =
β2

8αη
< 1. (23)

Proof: By the direct calculation of LV II
ρf

, we get the

following:

LV II
ρf

= − 2tr (ρtρf)ut tr (−i[Fy, ρt]ρf)

− 4η(λi − tr (Fzρt))
2(tr (ρtρf))

2

= − 2tr (ρtρf)(αu1 + βV III
ρf

)u1

− 4η(λi − tr (Fzρt))
2(tr (ρtρf))

2

= − 2tr (ρtρf)
{
(αu1 + βV III

ρf
)u1

+ 2η(λi − tr (Fzρt))
2tr (ρtρf)

}
. (24)

The factor tr (ρtρf) is always nonnegative, therefore, the

factor:

(αu1 + βV III
ρf

)u1 + 2η(λi − tr (Fzρt))
2tr (ρtρf) (25)

should be nonnegative for LV II
ρf

to be nonpositive. It can be

reduced as
(
αu1 + βV III

ρf

)
u1 + 2η(λi − tr (Fzρt))

2tr (ρρf)

= α

(

u1 +
β

α

V III
ρf

2

)2

− β2

α

(V III
ρf

)2

4
+ 2η(V III

ρf
)2tr (ρρf)

= α

(

u1 +
β

α

V III
ρf

2

)2

+ 2η(V III
ρf

)2
(

tr (ρρf) −
β2

8αη

)

.

(26)

Therefore, when β2

8αη
< 1 is satisfied, we can set

γo :=
β2

8αη
(27)

and for the case: γo < ρii ≤ 1, we conclude LV II
ρf

≤ 0. This

implies

L1−γo
V II

ρf
≤ 0, ∀ρ ∈ S<1−γo

ρf
. (28)

From Lemma 3.1, the statements in Proposition 2.1 are

concluded in the subset S<1−γo
ρf

. In particular, ρ = ρf is

stable in probability.

Step 2

At first, we show the following lemma:

Lemma 3.2: The largest invariant set in {ρ | L<1−γo
V II

ρf
=

0} in the subset S<1−γo
ρf

is {ρf}.

Proof: In the proof of Lemma 3.1, the case

L<1−γo
V II

ρf
= 0 in the subset S<1−γo

ρf
is only when

tr (ρρf) = 0 or V III
ρf

= 0. However, {ρ | tr (ρρf) = 0, ρii 6=
1} is not an invariant set of (1) from Lemma A.2. Similarly,

{ρ |V III
ρf

(ρ) = 0, ρii 6= 1} is not also an invariant set of (1)

from Lemma A.1. On the contrary, we can check V II
ρf

= 0,

L<1−γo
V II

ρf
= 0 at ρ = ρf and it is an invariant set of (1).

Then, the key lemma in this step is given as follows.

Lemma 3.3: The solution ρt of (1) converges to ρf as t → ∞
for almost all paths that never exit the set S<1−γo

ρf
.

Proof: From Lemma 3.1, the master equation (1) with

the control input (20) satisfies the conditions in Proposi-

tion 2.2, therefore, with Lemma 3.2, the sample paths which

never leave the subset S<1−γo
ρf

converge to ρf in probability.

Moreover, V II
ρf

converges almost surely from Proposition 2.1.

With this, the boundedness of V II
ρf

and Lebesgue’s dominated

convergence, we can show that almost all paths converge

to ρf by employing the similar discussion in the proof to

Lemma 4.9 in [11].

Step 3

We finally examine the behavior of the paths when they leave

S<1−γo
ρf

or the initial state is outside it. We get the following

lemma:

Lemma 3.4: The solution ρρι

t of (1) where ρ0 = ρι ∈
S>1−γo

ρf
satisfies

sup
ρι∈S>1−γo

ρf

E[min t : ρρι

t /∈ S>1−γo

ρf
] < ∞. (29)

For the proof of this lemma, we introduce the following two

propositions:

Proposition 3.1: [15], [7] Consider a Stratonovich stochastic

differential equation:

dϕt = f0(ϕt, t)dt +
n∑

l=1

fl(ϕt, t) ◦ dW l(t). (30)

Assume that the coefficients fl(x, t), l = 0, 1, 2, . . . , n are of

the class Ck+1,δ
b for some k ≥ 2 and δ > 0 (see Appendix

for the definition of Ck+1,δ
b ). Let ϕt be the Brownian flow

determined by (30). Then the support of ϕ(t) = ϕt as the

Ck−1-flow is equal to the closure {ϕt : ξ ∈ Ξ} of

dϕt

dt
= f0(ϕt, t) +

n∑

l=1

fl(ϕt, t)ξ
l(t) (31)
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in the space Wk−1, where Ξ is the set of all deterministic

piecewise smooth function and Wk = C([0, T ] : Ck).

Proposition 3.2: [5] Consider diffusion process xt ∈ E
starting from x where E is the domain of xt. Let Γ be a

subset of E and τx(Γ) be the first exit time of xt from Γ.

Then for all T ≥ 0, x ∈ E,

E[τx(Γ)] ≤ T

1 − supx∈E Pr{τx(Γ) > T} . (32)

Proof of Lemma 3.4 At first, we claim that the support

of V I
ρf

(ρt) contains [0, γ] when V I
ρf

(ρ0) = γ by using

Proposition 3.1.

By employing Proposition A.1 on the Stratonovich form of

(1), the corresponding deterministic differential equation of

ρt is

d

dt
ρt = DFz

(ρt) −
1

2
η (−2EFz

(ρt)HFz
(ρt) + KFz

(ρt))

+ uGFy
(ρt) +

√
ηHFz

(ρt)ξ (33)

where ξ is an associated input. With this (33), we get

d

dt
V I

ρf
(ρ) = − tr

(
dρ

dt
ρf

)

= − tr

({

−1

2
η(−2EFz

(ρ)HFz
(ρ) + KFz

(ρ))

+ uGFy
(ρ) +

√
ηHFz

(ρ)ξ

}

ρf

)

. (34)

The term which includes ξ in (34) is

tr (HFz
(ρ)ξρf) = tr ((Fzρ + ρFz − 2tr (Fzρ)ρ)ρf)ξ

= 2 (λi − tr (Fzρ)) tr (ρρf)ξ

= 2V III
ρf

(ρ)ρiiξ. (35)

The case (35) = 0 for ξ 6= 0 is when ρii = 0 or V III
ρf

(ρ) =
0. When ρii = 0 and V III

ρf
(ρ) 6= 0, V I

ρf
(ρ) = 1 and u =

V III
ρf

(ρ) 6= 0, however, it is known that {ρ |V I
ρf

(ρ) = 1} is

not an invariant set of (1) when ut 6= 0 [11]. Next, {ρ | ρii 6=
1, V III

ρf
(ρ) = 0} is not an invariant of (1) from Lemma A.1.

Finally, when ρii = 1 (V II
ρf

(ρ) = 0), ρ = ρf and it is the

target point. In the other cases, (35) except for ξ is nonzero.

From above and Proposition 3.1, the assertion that the sup-

port of V I
ρf

(ρt) contains [0, γ] when V I
ρf

(ρ0) = γ. Therefore,

for any finite time T , there exists a measurable set of

sample paths ρt, which leave S>1−γ0

ρf
in [0, T ]. Finally with

Proposition 3.2, we can conclude the statement [11]. ¥

By using Lemma 3.4 and employing the similar discussion

of [11], we can derive the following lemma.

Lemma 3.5: For almost every sample path of ρt there exists

a time T < ∞ after which the path never exits the set

S<1−γo
ρf

.

We omit the proof.

Proof of Theorem 3.1 By unifying the results of Step 1–3,

we can conclude the convergence of the solution to the

target point. The convergence of the expectation can be also

derived by dominated convergence. ¥

IV. NUMERICAL EXAMPLE

We demonstrate the efficiency of the proposing continuous

feedback by using a numerical simulation. Here we consider

a spin system where N = 4. The initial and the target states

are

ρ0 =







1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







, ρf =







0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0







,

respectively. We simulate the solution ρt with η = 0.8, α =
1, and β = 1, 10 times. This case satisfies the condition

(21) and the global stability is guaranteed. Fig. 2 shows the

average of 10 transitions of V I
ρf

, which indicates the gap

between the target ρf and ρt (V I
ρf

(ρ) = 0 means ρ = ρf ),

with the above case.

0 20 40 60 80 100

0
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0.9

1

V
I ρ
f

t

Fig. 2: Average of 10 transitions of V I
ρf

with η = 0.8,

α = 1, β = 1

From the simulation, we can confirm the efficiency of our

proposing continuous feedback. Note that (21) is a sufficient

condition for the global stability, therefore, even if it is not

satisfied, the system may be stable. However, we recognized

the significance of the condition (21) with respect to the con-

vergence rate of ρt to the target points by several simulations.

V. CONCLUSION

In this paper, we considered control problem of N -

dimensional quantum spin systems and showed that contin-

uous feedback is possible to stochastically globally stabilize

the systems on arbitrary eigenstates. The control scheme

is composed of two distinctive terms and the stability is

proved by following the sample paths of the stochastic master

equation strictly.
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APPENDIX

Definition A.1: The notation Cm,δ
b is the set {f ∈ Ck+1,

Dαf (|α| = m) : δ-Hölder continuous, ‖f‖m+δ < ∞ } and

‖f‖m+δ := ‖f‖m +
∑

|α|=m

sup
Dαf(x) − Dαf(y)

|x − y|δ . (36)

Proposition A.1: [14] The Stratonovich form of (1) is given

by

dρt = DFz
(ρt)dt − 1

2
η (−2EFz

(ρt)HFz
(ρt) + KFz

(ρt)) dt

+ utGFy
(ρt)dt +

√
ηHFz

(ρt) ◦ dW, (37)

where

DFz
(ρ) := − 1

2
[Fz, [Fz, ρ]]

EFz
(ρ) := 2tr (Fzρ)

HFz
(ρ) := Fzρ + ρFz − 2tr (Fzρ)ρ

KFz
(ρ) := F 2

z ρ + 2FzρF ∗
z + ρ(F ∗

z )2

− tr (F 2
z ρ + 2FzρF ∗

z + ρ(F ∗
z )2)ρ

GFy
(ρ) := − i[Fy, ρ]. (38)

Lemma A.1: {ρ |V III
ρf

(ρ) = 0, ρii 6= 1} is not an invariant

set of (1).

Proof: With (33), we differentiate V III
ρf

(ρ) as

d

dt
V III

ρf
(ρ) = − tr

(
dρ

dt
Fz

)

= − tr

({

−1

2
η(−2EFz

(ρ)HFz
(ρ) + KFz

(ρ))

+ uGFy
(ρ) +

√
ηHFz

(ρ)ξ

}

Fz

)

. (39)

The term which includes ξ in (39) is

tr (HFz
(ρ)ξFz) = tr ((Fzρ + ρFz − 2tr (Fzρ)ρ)Fz)ξ

= 2
(
tr F 2

z ρ − (trFzρ)2
)
ξ. (40)

The case eq. (40) = 0 for ξ 6= 0 is only at ρ = ρψj
, however,

when ρ = ρψj
6= ρf , u = βV III

ρf
(ρ) = β(λf−(J−(j−1))) 6=

0. Therefore, ρ = ρψj
6= ρf is not an invariant set of (1)

[11]. With this and from Proposition 3.1, we can conclude

the statement of this lemma.

Lemma A.2: {ρ | tr (ρρf) = 0, ρii 6= 1} is not an invariant

set of (1).

Proof: With (33), we get

d

dt
tr (ρtρf) = tr

({

−1

2
η(−2EFz

(ρ)HFz
(ρ) + KFz

(ρ))

+ uGFy
(ρ) +

√
ηHFz

(ρ)ξ

}

ρf

)

. (41)

The term which includes ξ in (41) is

tr (HFz
(ρ)ξρf) = tr ((Fzρ + ρFz − 2tr (Fzρ)ρ)ρf)ξ

= 2 (λi − tr (Fzρ)) tr (ρρf)ξ

= 2V III
ρf

(ρ)ρiiξ. (42)

The case (42) = 0 for ξ 6= 0 is when ρii = 0 or V III
ρf

(ρ) =
0. When ρii = 0 and V III

ρf
(ρ) 6= 0, V I

ρf
(ρ) = 1 and u =

V III
ρf

(ρ) 6= 0, however, it is known that {ρ |V I
ρf

(ρ) = 1} is

not an invariant set of (1) when ut 6= 0 [11]. Next, {ρ | ρii 6=
1, V III

ρf
(ρ) = 0} is not an invariant of (1) from Lemma A.1.

With this and from Proposition 3.1, we can conclude the

statement of this lemma.
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