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Abstract— In this paper we consider signal reconstruction
over networks where the communication channel can
be modeled as an input switching system (e.g., wireless
communication). In particular, we formulate the design
problem as a prototypical model matching problem where the
various mappings involved belong to a class of input switching
systems. The design interest is placed on minimizing the worst
case performance of this model matching system over all
possible switchings with either ℓ1−induced norm or H2 norm
as the performance criterion. This minimization is performed
over all stable receivers Q in the class of input switching
systems. For the particular set-up at hand and in the case of
matched switching, two convergent sequences to the optimal
solution from above and below respectively are formulated
in terms of linear programs and quadratic programs
respectively for the ℓ1−induced and H2 norm optimizations.
An approximate solution with any given precision is possible
by finite truncation. Also, it is shown that the optimal receiver
Q need not depend on the switching sequence in the cases
of partially matched switching and unmatched switching,
and that it can be obtained as a linear time-invariant (LTI)
solution to an associated ℓ1−induced or H2 norm optimization.

Keywords: signal reconstruction, ℓ1−induced optimality, H2

optimal, worst case switching

I. INTRODUCTION

In recent years, there has been an increasing interest

in communication and control over wireless networks, due

to their low installation/maintenance costs, great physical

mobitlity, ease of replacement and upgrading, and so on

[1]. This research is also motivated by a wide class of

potential applications, such as automated highway systems

[2], environmental monitoring and motion monitoring [3],

home automation [4], unmanned aerial vehicles [5], wireless

and mobile data networks [6]. In these applications, wireless

communication plays a key role in supporting information

exchange between people or devices. Although there has

been a fast development in wireless technology recently,

many technical challenges exist and must be solved to enable

future wireless applications. These challenges extend across

all aspects of the system design, such as energy constraint,
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finite bandwidth, random variations of wireless channels,

security, and cross-layer protocol [7].

Note that most of the works in the literature deal with

wireless communication in stochastic formulations, such as

channel estimation [8], [9] and data reconstruction (estima-

tion) [7], [9], [10], [11]. In these formulations, the usual

performance criterion adopted is the probability of error

decision or mean square error (distortion) under various

assumptions on noise model, fading nature and side infor-

mation of the communication channel. In general it is a hard

problem to optimize the performance criterion and determine

the corresponding channel capacity and optimal transmission

scheme exactly, due to the unpredictable nature of wireless

channels.

Our goal, in this paper, is to consider a class of commu-

nication channels which can be modeled as input switching

systems in Section II and present a worst case optimization

approach of signal reconstruction. Consider a flat fading

channel with nt transmit antennas and nr receive antennas,

which can be characterized by a discrete-time baseband

model as

y = Hx + w (1)

where x ∈ C
nt is the transmitted signal, y ∈ C

nr is the

channel output, w ∈ C
nr is the channel noise, and H ∈

C
nr×nt is the channel gain matrix1. In particular we assume

that the channel gain matrix at time k denoted by H(k) is a

complex matrix and takes values in a finite set {H1, · · · ,Hn}
independent of H(l),∀ l 6= k, where {Hm}n

m=1 can be

viewed as n quantization levels of the channel gain matrix H

or n most possible channel gains identified via some classical

methods [9]. In this case the channel model in (1) can be

equivalently formulated in Figure 1 with n parallel virtual

channels {Hm}n
m=1, where the switching signal σ indicates

the channel status and the transmitted signal at each time can

only be connected to one virtual channel of {Hm}n
m=1.

Based on the input switching model of wireless channels,

we formulate the signal reconstruction problem over wireless

networks as a model matching problem in the class of input

switching systems. The interest is placed on minimizing

the worst case performance of this model matching system

over all possible switchings with either ℓ1−induced norm or

H2 norm as the performance criterion. This minimization is

performed over all stable receivers Q in the class of input

switching systems. For the particular set-up at hand and in

1Cm denotes a complex vector of dimension m and Ck×l denotes a
complex matrix of k rows and l columns.
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Fig. 1. Equivalent formulation of a flat fading channel H

the case of matched switching, two convergent sequences

to the optimal solution from above and below respectively

are formulated in terms of linear programs and quadratic

programs respectively for the ℓ1−induced and H2 norm

optimizations. An approximate solution with any given pre-

cision is possible by finite truncation. Also, it is shown that

the optimal receiver Q need not depend on the switching

sequence in the cases of partially matched switching and

unmatched switching, and that it can be obtained as a linear

time-invariant (LTI) solution to an associated ℓ1−induced or

H2 norm optimization.

The paper is organized as follows. In Section II, we

introduce the preliminaries and formulate the design prob-

lem; in Section III, we deal with three kinds of switchings:

matched switching, partially matched switching, and un-

matched switching; formulate two linear programming prob-

lems converging to the optimal solution respectively in the

matched case with an arbitrary precision, and propose two

dual ℓ1−induced norm optimization problems which solve

the rest two cases; we also show that the final solutions in the

rest two cases can be determined through solving standard

ℓ1 optimization problems; in Section IV, we consider the

model matching problem with H2 norm as the performance

criterion, and produce similar results to those in Section III;

in Section V we conclude.

The notation in the paper is as follows: For a matrix A

with real entries, A
′

denotes its transpose and the Frobenius

norm of matrix A is ‖A‖F =
√

tr(AA
′). ‖x‖1 :=

∑

k |x(k)|
is the ℓ1 norm of a real valued sequence x = {x(k)}∞k=0.

For a vector-valued signal x = [x1, x2, . . . , xn]′, the ℓ1 norm

of x is defined as ‖x‖1 :=
∑n

m=1 ‖xm‖1 . For a multi-input

multi-output (MIMO) system T (which may be time-varying

or nonlinear), ‖T‖ = supx6=0
‖Tx‖1

‖x‖1
is the ℓ1-induced norm.

T is stable if ‖T‖ < ∞; Λk denotes the k−step delay opera-

tor while Λ−k the k−step advance operator (note Λ−kΛk =
I); LTV denotes all stable causal time-varying systems while

LTI denotes its subset of time-invariant systems. If T is

an LTI system having unit impulse response {T (k)}∞k=0, T
′

denotes the LTI system
∑∞

k=0 T (k)
′

λk, [RT ]t denotes the

(block) row matrix [T (t) · · ·T (0)], and the ℓ1 norm of T is

defined as

‖T‖1 = sup
t

max
m

∑

k

| ([RT ]t)mk |

Fig. 2. Structure of system T ∈ Tn

where ([RT ]t)mk is the (m, k)th (scalar) entry of [RT ]t.
For two integers m and k, m ∨ k denote max{m, k} and

m ∧ k denotes min{m, k}. For a random variable x, E(x)
denotes the expectation. Z

+ denotes the set of nonnegative

integers. For a linear time-varying (LTV) system P with a

lower (block) triangular representation [12]










P (0, 0)
P (1, 0) P (1, 1)
P (2, 0) P (2, 1) P (2, 2)

...
. . .

. . .
. . .











(2)

where P (t, r) denotes the linear mapping from the input at

time r to the output at time t, let [CP ]kt denote the truncated

tth (block) column in the infinite matrix representation of P ,

i.e.,

[CP ]kt =











P (t, t)
P (t + 1, t)

...

P (k, t)











.

Also, [MP ]kt will denote the lower (block) triangular matrix










P (t, t)
P (t + 1, t) P (t + 1, t + 1)

...
. . .

. . .

P (k, t) . . . . . . P (k, k)











,

which is the truncated input-output mapping of P over time

[t, k]. In the definitions of [CP ]kt and [MP ]kt , we assume

implicitly that k ≥ t, which is also true in the rest of this

paper. The ℓ1−induced norm of LTV system P with a lower

(block) triangular representation (2) is defined as is

‖P‖ = sup
t

sup
k

‖[MP ]kt ‖

= sup
t

sup
k

‖[CP ]kt ‖

= sup
t

sup
k

max
m2

∑

m1

∣

∣

∣

(

[CP ]kt
)

m1m2

∣

∣

∣
.

II. PRELIMINARIES AND PROBLEM DEFINITION

In this section we introduce a class Tn of input switching

systems. Each switched system T in Tn is associated with

({Tm}n
m=1, σ) as shown in Figure 2, where {Tm}n

m=1 is a

set of LTI systems and σ : Z
+ → {1, · · · , n} is a switching

2614



Fig. 3. Connection structure of a switching system Hσ − QσVσ

signal. For each LTI system Tm, let {Tm(k)}∞k=0 denote its

unit impulse response. We assume that Tm(k) has real entries

∀m∀k, which can also model communication channels with

complex entries in (1), as shown in [13]. Given an input

x = {x(t)}∞t=0 and a switching trajectory {σ(t)}∞t=0 of σ,

the output y = {y(t)}∞t=0 of T is defined as

y(t) = (Tx)(t)

=

t
∑

k=0

Tσ(t−k)(k)x(t − k),

where Tσ(t−k)(k) = Tm(k) if σ(t − k) = m ∈ {1, · · · , n}.
This means that y(t) depends on the switching signal up

to time t, i.e., {σ(k)}
t
k=0 . It also shows that T is a causal

mapping in time from (x, σ) → y. For a specific trajectory

{σ(t)}∞t=0 of the switching signal σ, let Tσ denote the LTV

system with a lower (block) triangular representation










Tσ(0)(0)
Tσ(0)(1) Tσ(1)(0)
Tσ(0)(2) Tσ(1)(1) Tσ(2)(0)

...
...

...
. . .











.

Given this notation, the problem of interest is shown in

Figure 3, where H, V, and Q in Tn are associated with

({Hm}n
m=1, σH

), ({Vm}n
m=1, σV

), and ({Qm}n
m=1, σQ

) re-

spectively. For simplicity of notation, let σ denote the triplet

of switching signals (σ
H

, σ
V
, σ

Q
) in the following. The

precise design problem can be stated as follows.

Find a switched system Q in Tn solving

ν(Ξ) := inf
{Qm}n

m=1

µ(Q,Ξ) (3)

where µ(Q,Ξ) := sup
σ ∈ Ξ

‖H −QV ‖, and Ξ denotes the set

of admissible switching trajectories.

Here Q depends only on the switching signal σ
Q

ex-

plicitly, and its dependence on switching signals σ
H

, σ
V

is explored in the following sections through the specified

relations among σ
H

, σ
V

and σ
Q
, which affect the explicit

formulation of Ξ (for details, see Section III) and hence the

achievable reconstruction performance. The switching signal

σ
Q

is included in the supremizing parameter σ because the

focus of this paper is on the case of uncontrolled switching,

as usually happens in related applications. Given a system

Q ∈ Tn, according to our previous notation µ(Q) can be

also expressed as

µ(Q) = sup
σ∈Ξ

‖Hσ − QσVσ‖,

where in an abuse of notation Hσ, Vσ, Qσ refer to

Hσ
H

, Vσ
V

, Qσ
Q

respectively since each time-varying sys-

tem T (= H, V, or Q) depends only (causally in time) on

the corresponding switching signal σ
T

in σ.

In accordance with the notation in the control literature,

herein we use system V to model the channel dynamics and

system H to indicate the dynamics of a reference model.

Both H and V can be memoryless gain matrices or finite

impulse response (FIR) filters. If each LTI component of

system V is a FIR filter, the effects of transmitted signal x(k)
on the channel output will depends only on the channel status

σ(k) via the channel gains {V (k, k), V (k + 1, k), · · · , }. If

Hm = λL (L ≥ 0) for all m ∈ {1, · · · , n}, the model

matching problem (3) is equivalent to finding an optimal

receiver with L−step delays.

The model matching setup depicted in Figure 3 can

encompass the signal reconstruction problem in wireless

communication as indicated in Section I where channel

variations and noise are present.

III. SIGNAL RECONSTRUCTION OVER ℓ1

In this section we consider the model matching problem

(3) over ℓ1, i.e., we adopt the worst case ℓ1−induced norm

as the performance criterion. Note that for different relations

among the switching signals σ
H

, σ
V

and σ
Q

, the set Ξ
of admissible switching trajectories is different and hence

the optimal performance is different. To proceed, we first

introduce the following definitions.

For two switched systems T, T̃ ∈ Tn, σ
T

= σ
T̃

if

σ
T
(t) = σ

T̃
(t), ∀t ≥ 0; σ

T
and σ

T̃
are independent

if ∀t ≥ 0, (σ
T
(t), σ

T̃
(t)) can assume any value in the

set {(j, k) | j ∈ {1, · · · , n}, k ∈ {1, · · · , n}} . The distance

between σ
T

and σ
T̃

is

d(σ
T
, σ

T̃
) =

∞
∑

t=0

1{

σ
T

(t) 6=σ
T̃

(t)
} ,

where 1A = 1 if statement A is true and 1A = 0 otherwise.

Then d(σ
T
, σ

T̃
) denotes the number of mismatches between

σ
T

and σ
T̃

.

A. Matched switching

In this section we consider the case of matched switching

where σ
H

= σ
V

= σ
Q

, i.e., the set of admissible switching

trajectories is

Ξ1 = {σ | ∀t ≥ 0, σ
H

(t) = σ
V
(t) = σ

Q
(t) ∈ {1, · · · , n}}.

Let ν1 denote the corresponding system performance of

(3), i.e., ν1 = ν(Ξ1). As is well-known, system stability

and performance optimization under arbitrary switching are

very difficult to handle. Although the whole system under
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arbitrary switching here is guaranteed to be stable, there

is no simple algorithm that can provide a precise solution

to the worst case model matching problem (3). Instead,

we will formulate two sequences of linear programs with

increasing complexity, the solutions to which provide a

convergent sequence to the optimal solution from below and

a convergent sequence to the optimal solution from above,

as stated in Theorem 3.1.

Towards this goal, define for each i (≥ 0)

ν̄i = inf
{Qm(l)}n

m=1=0

∀l>i

sup
t

sup
k

sup
σ∈Ξ1

∥

∥[MHσ−QσVσ
]kt

∥

∥ ,

νi = inf
{Qm}n

m=1

sup
t

sup
σ∈Ξ1

∥

∥[MHσ−QσVσ
]it
∥

∥ .
(4)

By the definitions of ν̄i and νi, it is easy to show that

ν̄i ≥ ν̄i+1 ≥ ν∗, and νi ≤ νi+1 ≤ ν∗, ∀ i

where

ν∗ = inf
{Qm}n

m=1

sup
t

sup
k

sup
σ∈Ξ1

∥

∥[MHσ−QσVσ
]kt

∥

∥ .

First, we need to prove the following lemma.

Lemma 3.1: ν1 = ν∗.

Proof of Lemma: For details, see [18].

Next, we show that

Lemma 3.2:
{

supσ∈Ξ1

∥

∥[CHσ−QσVσ
]kj

∥

∥

}k

j=0
is a decreas-

ing sequence in j for a given integer k.

Proof: For details, see [18].

By Lemma 3.2, it follows that

sup
σ∈Ξ1

∥

∥[MHσ−QσVσ
]kt

∥

∥ = sup
σ∈Ξ1

∥

∥[CHσ−QσVσ
]kt

∥

∥ ,

hence the formulations of ν̄i and νi can be simplified as

ν̄i = inf
{Qm(l)}n

m=1=0

∀l>i

sup
j

sup
σ∈Ξ1

∥

∥

∥
[CHσ−QσVσ

]j0

∥

∥

∥
,

νi = inf
{Qm}n

m=1

sup
σ∈Ξ1

∥

∥[CHσ−QσVσ
]i0

∥

∥ .

Let Φi =







Φi
0

...

Φi
i






denote [CHσ−QσVσ

]i0, then for each k ∈

{0, · · · , i}

Φi
k = Hσ(0)(k) −

k
∑

m=0

Qσ(m)(k − m)Vσ(0)(m).

Note that for a given Q ∈ Sn, Φi depends on both σ(i) and

{σ(t)}i−1
t=0, and hence supσ∈Ξ1

∥

∥Φi
∥

∥ is a linear programming

optimization over all the ni+1 trajectories of {σ(t)}i
t=0. This

will be in general intractable since there is no explicit finite

bound on i and the number of constraints ni+1 will increase

exponentially to ∞ as i → ∞. Fortunately, in most wireless

networks the channel dynamics V can be chosen to be an

FIR filter of certain order τ (≥ 0). More generally, since

{Vi}
n
i=1 are in LTI , they can always be approximated by

FIR filters, and thus V itself can be approximated as an FIR

mapping in Tn. In this case the complexity is manageable,

as we indicate in what follows.

1) The FIR V case: If there exists a finite τ such that

{Vm(k)}n
m=1 = 0 for all k > τ , then for each k ∈ {0, · · · , i}

Φi
k = Hσ(0)(k) −

k∧τ
∑

m=0

Qσ(m)(k − m)Vσ(0)(m), (5)

and thus Φi will depend on at most τ +1 switching instants,

i.e., {σ(t)}i∧τ
t=0. This means that we only need to concentrate

on the switching sequences over the time period [0, i∧τ ], i.e.,

at most nτ+1 switching sequences. In this case, we formulate

two sequences of linear programs determining νi and ν̄i

respectively as follows.

For an arbitrarily given i, Φi, and hence νi depend only on

{Qm(k)}n
m=1, k = 0, · · · i. The corresponding optimization

problem is:

νi = inf
{Qm(k)}n

m=1, k=0,···i
γi (LP i)

∥

∥

∥

∥

∥

∥

∥







Φi
0

...

Φi
i







∥

∥

∥

∥

∥

∥

∥

≤ γi, ∀σ(t) ∈ {1, · · · , n}, t = 0, · · · , i ∧ τ,

where {Φi
k}

i
k=0 are provided in (5). Note that the number

of constraints in (LP i) is at most nτ+1 independent of

the truncation level i and related optimizing parameters are

{Qm(k)}n
m=1, k = 0, · · · , i with a total number of n(i+1),

which means that problem (LP i) can be solved in polynomial

time for any i.

If {Qm(k)}n
m=1 = 0, ∀ k > i, there are τ + i + 1

terms of Φj depending on the nonzero optimizing parameters

{Qm(k)}n
m=1, k ≤ i, i.e., Φj

0, · · · ,Φj
τ+i when j ≥ τ + i.

Then the upper bound ν̄i is determined as:

ν̄i = inf
{Qm(k)}n

m=1=0, ∀ k>i
γ̄i

sup
j

∥

∥Φj
∥

∥ ≤ γ̄i, ∀σ(t) ∈ {1, · · · , n}, t = 0, · · · , τ

where Φj
k = Hσ(0)(k), k > τ + i

and Φj
k = Hσ(0)(k) −

k∧τ
∑

m=0∨(k−i)

Qσ(m)(k − m)Vσ(0)(m),

if k ≤ τ + i. For a given j (> τ + i), define

bσ(0)(m1) =
∞
∑

k=τ+i+1

nz
∑

m1=1

∣

∣

∣

(

Hσ(0)(k)
)

m1m2

∣

∣

∣
,

bσ(0) = [bσ(0)(1) · · · bσ(0)(nw)],

where nz, nw are the dimensions of the output and input of

the time-varying system H respectively. Then the equivalent

formulation to determine ν̄i is

ν̄i = inf
{Qm(k)}n

m=1, k=0,··· ,i
γ̄i (LP i)

∥

∥

∥

∥

∥

∥

∥

∥

∥











Φj
0

...

Φj
r+i

bσ(0)











∥

∥

∥

∥

∥

∥

∥

∥

∥

≤ γ̄i, ∀σ(t) ∈ {1, · · · , n}, t = 0, · · · , τ.
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Note that problem (LP i) can also be solved in polynomial

time for any i since there are at most nr+1 constraints

independent of the truncation level i and n(i+1) optimizing

parameters {Qm(k)}n
m=1, k = 0, · · · , i. The solution to

problem (LP i) is independent of j as long as j > τ+i, since

Φj
τ+i, · · · , Φj

0 are the only terms relating to the optimizing

parameters {Qm(k)}n
m=1, k = 0, · · · , i. The other constants

are summed up as vector bσ(0), and the optimization is

considered over all nr+1 switching sequences, independent

of σ(0).
Following the proofs of Theorem 6.1 and 6.2 in [17], we

can show that

ν̄i ց ν1, νi ր ν1, as i → ∞.

Summarizing we have

Theorem 3.1: For matched switching and V FIR of order

τ , the model matching problem (3) is solved by the two

sequences of linear programs in ( LP i) and ( LP i).

B. Partially matched switching

In this subsection we consider the case where σ
H

= σ
V

and there are some mismatches (at least one) between σ
H

and σ
Q

. First, define the auxiliary optimization problem

ν2 : = inf
Z∈LT I

max
1≤m≤n

‖Hm − ZVm‖ , (6)

which equals

inf
Z ∈ LTI

‖[H1 · · ·Hn] − Z[V1 · · ·Vn]‖ ,

and is a standard (LTI) ℓ1−induced model matching problem.

The solution to (6) provides a solution to the worst-case

model matching problem (3) in Tn if there is one mismatch

between σ
G

and σ
R

, i.e., the set of admissible switching

trajectories is

Ξ2 =







σ

∣

∣

∣

∣

∣

∣

∀t ≥ 0, σ
H

(t) = σ
V
(t) ∈ {1, · · · , n}

∀t ≥ 0, σ
Q
(t) ∈ {1 · · · , n}

d(σ
H

, σ
Q
) = 1







,

as one of our main results indicates :

Theorem 3.2: For any ǫ > 0 and Q̄ in LTI with

max
1≤m≤n

∥

∥Hm − Q̄Vm

∥

∥ ≤ ν2 + ǫ,

it holds that

µ(Q̄,Ξ2) ≤ ν2 + ǫ,

and thus ν(Ξ2) = ν2.

Proof: For details, see [18].

Theorem 3.2 shows that in the case of partially matched

switching, there is no need to “switch” the receiver Q and no

performance loss if we choose Q as an LTI system, which is

the solution to an auxiliary ℓ1−induced norm optimization

problem.

Note that the proof obviously goes through for

d(σ
H

, σ
Q
) > 1. So, in the general case that σ

H
, σ

Q
are

independent,i.e., the set of admissible switching trajectories

is

Ξ2g =

{

σ

∣

∣

∣

∣

∀t ≥ 0, σ
H

(t) = σ
V
(t) ∈ {1, · · · , n}

σ
H

and σ
Q

are independent

}

,

we have the following result:

Corollary 3.1: For any ǫ > 0 and Q̄ in LTI with

max
1≤m≤n

∥

∥Hm − Q̄Vm

∥

∥ ≤ ν2 + ǫ,

it holds that

µ(Q̄,Ξ2g) ≤ ν2 + ǫ,

and thus ν(Ξ2g) = ν2.

C. Unmatched switching

Last, we consider the case where σ
H

, σ
V

and σ
Q

are

independent from each other, i.e., the set of admissible

switching trajectories is

Ξ3 = {σ |σ
H

, σ
V

and σ
Q

are independent}.

Define the following ℓ1−induced model matching problem

ν3 := inf
Z∈LT I

max
1≤m≤n

1≤k≤n

‖Hm − ZVk‖ . (7)

The main result in the case of unmatched switching is

Proposition 3.1: For any ǫ > 0 and Q̃ in LTI with

max
1≤m≤n

1≤k≤n

∥

∥

∥
Hm − Q̃Vk

∥

∥

∥
≤ ν3 + ǫ,

it holds that

µ(Q̃,Ξ3) ≤ ν3 + ǫ,

and thus ν(Ξ3) = ν3.

Proof: For details, see [18].

D. Dual formulation

In Section III-B and III-C we dealt with partially matched

switching and unmatched switching separately. The final

solutions depend on the solution to a ℓ1−induced model

matching problem

νo = inf
Z∈LT I

‖T1 − ZT2‖ , (8)

where T1 ∈ LTI and T2 ∈ LTI . In this subsection, we

show that the optimization problem in (8) can be related to

a standard ℓ1 model matching problem, the solution to which

also provides a solution to (8).

Lemma 3.3: Suppose that G is a solution to the standard

ℓ1 optimization problem

νd = inf
X∈ℓ1

∥

∥

∥
T

′

1 − T
′

2X
∥

∥

∥

1
, (9)

then Z = G
′

is a solution to the ℓ1−induced model matching

problem in (8).

Proof: For details, see [18].
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IV. H2 OPTIMAL SIGNAL RECONSTRUCTION

In this section we consider the model matching problem

(3) and adopt the H2 norm as the performance criterion, i.e.,

the design problem is to find a system Q ∈ Tn to solve2

ν(Ξ) = inf
{Qm}n

m=1

µ(Q,Ξ)

where µ(Q,Ξ) = sup
σ∈Ξ

‖Hσ − QσVσ‖2 .
(10)

First, we introduce the following notation. For an LTV

system P ith a lower (block) triangular representation (2),

we define the H2 norm of system P as

‖P‖2 =

√

sup
t

sup
k

tr
{

[CP ]kt
(

[CP ]kt
)′

}

,

= sup
t

sup
k

∥

∥[CP ]kt
∥

∥

F
,

the square of which can be interpreted as the worst case trace

of the output variance when there is only a white noise input

at time t with identity spectral density, i.e.,

‖P‖
2
2 = sup

t

∞
∑

k=0

tr E(z(k)z(k)
′

),

where

E(w(t)w(t)
′

) = I, w(k) = 0 ∀k 6= t,

and z(k) = (Pw)(k).

Following the proof procedure in Section III, we can pro-

duce similar results here to those in the case of ℓ1−induced

norm optimization. Our main results in this section are stated

in the following without proof due to space limit. In the cases

of partially matched switching and unmatched switching, we

have the following result:

Theorem 4.1: 1) Partially matched switching: for any ǫ >

0 and Q̄ in LTI with

max
1≤m≤n

∥

∥Hm − Q̄Vm

∥

∥

2
≤ ν4 + ǫ,

where

ν4 : = inf
Z∈LT I

max
1≤m≤n

‖Hm − ZVm‖2 ,

it holds that

µ(Q̄,Ξ2) ≤ ν4 + ǫ,

and thus ν(Ξ2) = ν4.

2) Unmatched switching: for any ǫ > 0 and Q̃ in LTI

with

ν5 ≤ max
1≤m≤n

1≤k≤n

∥

∥

∥
Hm − Q̃Vk

∥

∥

∥

2
≤ ν5 + ǫ,

where

ν5 := inf
Z∈LT I

max
1≤m≤n

1≤k≤n

‖Hm − ZVk‖2 ,

it holds that µ(Q̃,Ξ3) ≤ ν5 + ǫ, and thus ν(Ξ3) = ν5.

In the case of matched switching, the model matching

problem (10) is solved by the two sequences of quadratic

programs similar to those in ( LP i) and ( LP i) if V is a

FIR filter of finite order τ .

2To differentiate from the ℓ1−induced norm, the subscript 2 is included
as ‖ · ‖

2
when H2 norm criterion is adopted.

V. CONCLUSIONS

In this paper we considered signal reconstruction over

networks where the communication channel can be modeled

as an input switching system in Tn. The design problem

was transformed into a model matching problem in Tn

with the worst case ℓ1−induced norm or H2 norm as

the performance criterion. We dealt with three kinds of

switchings, namely matched switching, partially matched

switching, and unmatched switching. We showed that the

design problem in the first case can be solved by two

sequences of linear/quadratic programs which converges to

the optimal solution from above and below respectively, and

that the rest two cases can be solved exactly by solving a

ℓ1−induced or H2 norm optimization problem.
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