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Abstract— In this paper, the problem of gain scheduling
for time-varying systems with time delays is investigated.
By using a memory at the feedback loop, a discrete gain
scheduled controller which minimizes an upper bound to the
H∞ performance of the closed loop system is determined.
The design conditions, expressed in terms of bilinear matrix
inequalities, are obtained from the Finsler’s Lemma combined
with the Lyapunov theory. The extra variables introduced by
the Finsler’s Lemma represent an alternative way in the search
of better system behavior. The time-varying uncertainties are
modeled using polytopic domains. The controller is obtained
by the solution of an optimization problem formulated only in
terms of the vertices of the polytope. No grids in the parametric
space are used. Numerical examples illustrate the efficiency of
the proposed approach.

I. INTRODUCTION

When it comes to designing controllers for time-varying

systems, there is no denying the fact that gain scheduling

has represented an important issue within control system

theory [1, 2]. As shown in [3], this technique can extend the

validity of the linearization approach of non-linear systems

to a range of operating points. The main idea is to model

the system in such a way that these different operating points

are parametrized by one or more variables, commonly called

scheduling variables [3]. The stability is then guaranteed by

a family of linear controllers, whose parameters are changed

in accordance with the scheduling rules.

Recently, linear parameter dependent (LPV) systems have

been brought into focus due to, primarily, the fact that they

are good not only to represent certain classes of nonlinear

systems but also to provide an interesting framework for gain

scheduling control by means of convex optimization [2, 4–

6]. Although there are other articles first addressing the topic

of gain scheduling, [7–9] are considered pioneering works.

It is worth to stress that for this class of linear systems

the dynamic matrices depend on time-varying parameters

that are measured online. The parameters, restricted to vary

in pre-specified sets, bring extra information during the

synthesis step, what may lead to less conservative results

when contrasted to robust control structures, for example.
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Lately, the Lyapunov theory has been used as a main tool

to deal with synthesis of gain scheduled controllers. In many

cases, it might be possible to express the design conditions as

an optimization problem in terms of linear matrix inequalities

(LMIs), which can be numerically handled by powerful

softwares [10, 11]. As a way to guarantee robustness against

practical disturbances, the H2 and H∞ norms have been

frequently applied as indexes of performance. Recent works

include [12] where the problem of stabilizability and H∞

control of discrete-time LPV systems is investigated by

means of gain scheduled state feedback, [13] in which gain

scheduling for linear fractional transformation (LFT) systems

is designed by using parameter dependent Lyapunov func-

tions, [14] where gain scheduled H2 controllers for affine

LPV systems are proposed, [15] in which robust and gain

scheduled controllers for LFT parameter-dependent systems

are designed by using duality theory, [16] where switching

H∞ controllers for a class of LPV systems scheduled along

a measurable parameter trajectory are addressed, among

others.

Bilinear matrix inequalities (BMIs) have also been applied

in the study of control of LPV systems. It is well-known

that optimization problems expressed in terms of BMIs are

non-convex. Nevertheless, the use of BMIs may represent a

good strategy to face problems with either no solution or

only sufficient conditions available in the literature. See, for

instance, [17–20] and references therein.

Another important aspect observed in a large number of

dynamic models, including LPV plants, is the presence of

time delays. A good characterization of time delays is always

required since they may represent a source of instability

to the system trajectories. Considering this framework, the

Lyapunov-Krasovskii functional has been widely used to

cope with system delays. However, in general, this strategy

requires a bigger computational burden due to its more com-

plex structure. An alternative way to surpass this difficulty

is the use of memory controllers in the feedback loop.

The aim of this paper is to provide gain scheduled memory

controllers to stabilize LPV systems subject to time delays.

The Lyapunov theory is applied in order to obtain the stabil-

ity conditions of the closed-loop system. An H∞ guaranteed

cost, which reflects the worst-case energy gain of the system,

provides robustness with respect to unmodeled uncertainties.

A parameter dependent Lyapunov function is used to reduce

the conservatism of the proposed method, resulting in a

more general approach when compared to methods based

on quadratic stability. Extra variables introduced by the

Finsler’s Lemma, that may be freely explored in the search
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for better performance of the LPV system, lead to design

conditions expressed in terms of BMIs. By incorporating

the LMIs related to the bounded real lemma to the BMIs

conditions provided, H∞ robust memory controllers can be

obtained. Some results from the literature concerned with

stability without time delays can be obtained as a particular

case of the proposed method. The use of a memory in

the feedback loop allows one to cope with time delays,

even when they are time-varying, without making use of

more complex Lyapunov functionals. All the system matrices

are assumed to be affected by the time-varying parameters,

which are supposed to lie inside polytopic domains. The gain

scheduled memory controller is then obtained by the solution

of an optimization problem that minimizes an upper bound

to the H∞ index of performance subject to a finite number

of BMI constraints formulated only in terms of the vertices

of a polytope. No grids in the parametric space are used.

Numerical examples illustrate the efficiency of the proposed

results.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider the time-varying discrete-time system, x(0) = 0

and u(θ) = 0 for θ ∈ {−τ,0}

x(k +1) = A(α(k))x(k)+Bdu(α(k))u(k− τ)

+Bu(α(k))u(k)+Bw(α(k))w(k)

y(k) = C(α(k))x(k)+Ddu(α(k))u(k− τ)

+Du(α(k))u(k)+Dw(α(k))w(k)

(1)

where τ represents the discrete-time delay, x(k) ∈ IRn is the

state space vector, u(k) ∈ IRm is the control signal, w(k) ∈
IRr is the l2[0,∞) noise and y(k) ∈ IRq is the output. The

time-varying vector of parameters α(k) belongs to the unit

simplex for all k ≥ 0

U =
{

α ∈ IRN :
N

∑
i=1

αi = 1, αi ≥ 0 , i = 1, . . . ,N,

}

All matrices are real, with appropriate dimensions, belonging

to the polytope1

P ,























A(α) Bu(α)
Bdu(α) Bw(α)
C(α) Du(α)

Ddu(α) Dw(α)









=
N

∑
i=1

αi









Ai Bui

Bdui Bwi

Ci Dui

Ddui Dwi























(2)

More specifically, the system matrices are given, for any time

k ≥ 0, by the convex combination of the well-defined vertices

of the polytope P . It is also assumed that the parameters

α(k) are measured online, and their variation rates, ∆α , are

unknown.

In order to guarantee the stability of system (1), a memory

state feedback controller with a parameter-dependent gain

is designed. Using an extra state variable z(k) to store the

delayed value of the control signal, u(k−τ), system (1) can

1The time dependence of α(k) will be omitted to lighten the notation.

be rewritten as follows [21]

x̃(k +1) = Ã(α)x̃(k)+ B̃u(α))u(k)+ B̃w(α)w(k)

y(k) = C̃(α)x̃(k)+ D̃u(α)u(k)+ D̃w(α)w(k)
(3)

where x̃(k) = [x(k)′ z(k)′]′ and

Ã(α) =

[

A(α) Bdu(α)
0 0

]

, B̃u(α) =

[

Bu(α)
I

]

,

B̃w(α) =
[

Bw(α)′ 0
]′

,C̃(α) =
[

C(α) Ddu(α)
]

,

D̃u(α) = Du(α), D̃w(α) = Dw(α)

(4)

The memory control law is given by

u(k) = Kx(α)x(k)+Kd(α)u(k− τ)

=
[

Kx(α) Kd(α)
]

[

x(k)
z(k)

]

(5)

and the closed-loop system by

x̃(k +1) = Ãcl(α)x̃(k)+ B̃wcl(α)w(k)

y(k) = C̃cl(α)x̃(k)+ D̃wcl(α)w(k)
(6)

with

Ãcl(α) = Ã(α)+ B̃u(α)K(α), B̃wcl(α) = B̃w(α),

C̃cl(α) = C̃(α)+ D̃u(α)K(α), D̃wcl(α) = D̃w(α)
(7)

where K(α) = [Kx(α) Kd(α)]. The whole of possible

outcomes for the parameter-dependent gain (5) belongs to

the polytope

P̃ ,

{

K(α) =
N

∑
i=1

αiKi =
N

∑
i=1

αi[Kxi Kdi]
}

, α ∈ U (8)

The control problem to be dealt with can be stated as

follows.

Problem 1: Find matrices Kxi ∈ IRm×n and Kdi ∈ IRm×n of

the control law (5), such that the closed-loop system (6) is

asymptotically stable, and an upper bound γ > 0 to the H∞

performance is minimized, that is, for all k ∈ IN

sup
w(k) 6=0

‖y(k)‖2
2

‖w(k)‖2
2

< γ2 (9)

with w(k) ∈ l2[0,∞).

Before proceeding to the solution of Problem 1, a previous

result is needed.

Lemma 1: (Finsler) Let ξ ∈ IRa, Q = Q′ ∈ IRa×a, B ∈
IRb×a with rank(B) < a, and B⊥ a basis for the null-space of

B (i.e. BB⊥ = 0). The following statements are equivalent.

i) ξ ′Qξ < 0, ∀Bξ = 0, ξ 6= 0;

ii) B⊥′
QB⊥ < 0;

iii) ∃ µ ∈ IR : Q−µB′B < 0;

iv) ∃ X ∈ IRa×b : Q +X B +B′X ′ < 0.

Proof: See [22].

By applying the Bounded Real Lemma [10], combined

with the Finsler’s Lemma (1), condition (9) can be guaran-

teed as follows.
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Lemma 2: For a given γ > 0, if there exists a parameter-

dependent matrix P(α)′ = P(α) > 0 such that the statements

of Lemma 1 are satisfied for

Q =





P(α+) 0 0

0 −P(α) 0

0 0 0





+





0 0 0

0 γ−1B̃wcl(α)B̃wcl(α)′ γ−1B̃wcl(α)D̃wcl(α)′

0 γ−1D̃wcl(α)B̃wcl(α)′ γ−1D̃wcl(α)D̃wcl(α)′− γI





B =
[

−I Ãcl(α)′ C̃cl(α)′
]

,

B
⊥ =





Ãcl(α)′ C̃cl(α)′

I 0

0 I



 , ξ =
[

x̃(k +1)′ x̃(k)′ w(k)′
]′

where α+ = α(k + 1), then the closed-loop system (6) is

asymptotically stable with an upper bound γ > 0 to the H∞

performance.

Proof: Let v(k) = x̃(k)′P(α)x̃(k) be a parameter-

dependent Lyapunov function. Considering the dual system

(i.e. Ãcl = Ã′
cl , B̃wcl = C̃′

cl , C̃cl = B̃′
wcl and D̃wcl = D̃′

wcl), it is

straightforward from statement i) of Lemma 1 that Lemma 2

ensures v(k) > 0 and

∆v(k) < −γ−1y(k)′y(k)+ γw(k)′w(k)

with the choice ξ = [x̃(k+1)′ x̃(k)′ w(k)′]′. The last inequal-

ity comes from ∆v(k) < 0 and

y(k)′y(k)− γ2w(k)′w(k) < 0

by applying the Bounded Real Lemma. Therefore, system

(6) has an upper bound γ to the H∞ performance and, from

the Lyapunov theory [23], is asymptotically stable.

The conditions of Lemma 2 exhibit nonlinearities and

must be tested at all points of the simplex U , i.e., at an

infinite number of points. Hence, the main goal hereafter

is to obtain finite-dimensional BMI conditions in terms of

the vertices of the polytope P to solve Problem 1. Using

Schur complement, change of variables and exploring the

extra variables provided by Lemma 1, parameter-dependent

BMIs assuring the existence of such controllers are given in

the next section.

III. MAIN RESULTS

Theorem 1: (H∞ MEMORY GAIN SCHEDULING) Given the

augmented discrete-time system (3), if there exist matri-

ces Li ∈ IRm×(n+m), Hi ∈ IRq×(n+m), Fi, Gi, Pi = P′
i > 0 ∈

IR(n+m)×(n+m), i = 1, . . . ,N and a scalar γ > 0 such that2

Ξi j ,









Pj −Fi −F ′
i F12 FiC̃

′
i +L′

iD̃
′
ui −F ′

i H ′
j 0

(⋆) F22 F23 B̃wi

(⋆) (⋆) F33 D̃wi

(⋆) (⋆) (⋆) −γI









< 0

(10)

2The term (⋆) indicates symmetric blocks in the LMIs.

i = 1, . . . ,N, j = 1, . . . ,N

F12 = FiÃ
′
i +L′

iB̃
′
ui −F ′

i G′
j,

F22 = G jFiÃ
′
i + ÃiF

′
i G′

j +G jL
′
iB̃

′
ui + B̃uiLiG

′
j −Pi,

F23 = G jFiC̃
′
i +G jL

′
iD̃

′
ui + ÃiF

′
i H ′

j + B̃uiLiH
′
j,

F33 = H jFiC̃
′
i +C̃iF

′
i H ′

j +H jL
′
iD̃

′
ui + D̃uiLiH

′
j − γI

Ξik j ,









F̄11 F̄12 F̄13 0

(⋆) F̄22 F̄23 B̃wi + B̃wk

(⋆) (⋆) F̄33 D̃wi + D̃wk

(⋆) (⋆) (⋆) −2γI









< 0 (11)

i = 1, . . . ,N −1, k = i+1, . . .N, j = 1, . . . ,N,

F̄11 = 2Pj −Fi −F ′
i −Fk −F ′

k

F̄12 = FiÃ
′
k +FkÃ′

i +L′
iB̃

′
uk +L′

kB̃′
ui −F ′

i G′
j −F ′

kG′
j,

F̄13 = FiC̃
′
k +FkC̃

′
i +L′

iD̃
′
uk +L′

kD̃′
ui −F ′

i H ′
j −F ′

kH ′
j

F̄22 = G j(FiÃ
′
k +FkÃ′

i)+(ÃiF
′
k + ÃkF ′

i )G
′
j

+G j(L
′
iB̃

′
uk +L′

kB̃′
ui)+(B̃uiLk + B̃ukLi)G

′
j −Pi −Pk,

F̄23 = G j(FiC̃
′
k +FkC̃

′
i)+G j(L

′
iD̃

′
uk +L′

kD̃′
ui)

+(ÃiF
′
k + ÃkF ′

i )H
′
j +(B̃uiLk + B̃ukLi)H

′
j,

F̄33 = H j(FiC̃
′
k +FkC̃

′
i)+(C̃iF

′
k +C̃kF ′

i )H
′
j

+H j(L
′
iD̃

′
uk +L′

kD̃′
ui)+(D̃uiLk + D̃ukLi)H

′
j −2γI

then there exists a memory control law (5), ensuring the

asymptotic stability of the closed-loop system (6) and an

H∞ guaranteed cost γ , with matrices Ki (8) given by

Ki = Li(F
′
i )

−1
, i = 1, . . . ,N. (12)

Proof: Firstly, applying the following operation [24]

Ξ(α) =
N

∑
j=1

α j

{

N

∑
i=1

α2
i Ξi j +

N−1

∑
i=1

N

∑
k=i+1

αiαkΞik j

}

(13)

to the BMIs (10) and (11) with the change of variables

L(α) = K(α)F(α)′ it follows that

Ξ(α) =









F̂11 F̂12 F̂13 0

(⋆) F̂22 F̂23 B̃wcl(α)

(⋆) (⋆) F̂33 D̃wcl(α)
(⋆) (⋆) (⋆) −γI









< 0 (14)

F̂11 = P(α+)−F(α)−F(α)′,

F̂12 = F(α)Ãcl(α)′−F(α)′G(α+)′

F̂13 = F(α)C̃cl(α)′−F(α)′H(α+)′

F̂22 = G(α+)F(α)Ãcl(α)′ + Ãcl(α)F(α)′G(α+)′−P(α)

F̂23 = G(α+)F(α)C̃cl(α)′ + Ãcl(α)F(α)′H(α+)′

F̂33 = H(α+)F(α)C̃cl(α)′ +C̃cl(α)F(α)′H(α+)′− γI

Using Schur complement, inequality (14) can be rewritten as

follows





F̂11 F̂12 FC̃cl(α)′−F ′H(α+)′

(⋆) F̂22 F̂23

(⋆) (⋆) F̂33





+ γ−1
F̂4(α)F̂4(α)′ < 0 (15)

where

F̂4(α) =
[

0 B̃wcl(α)′ D̃wcl(α)′
]′

By defining X = [F(α)′ F(α)′G(α+)′ F(α)′H(α+)′]′

inequality (15) yields statement iv) of Lemma 1 with Q,
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B and ξ as in Lemma 2. Lastly, the parameter-dependent

gain K(α) is obtained by the change of variables L(α) =
K(α)F(α)′, what concludes the proof.

Corollary 1: The minimum γ attainable by the conditions

of Theorem 1 is given by the optimization problem

minγ s.t. (10),(11) (16)

From this point, some remarks are in order.

A. Remarks

The use of memory controller brings some advantages

when dealing with discrete time-delay systems. Using a new

variable to store the past values of the control signal, it

was possible to cope with Problem 1 without applying more

complex Lyapunov functions, (for instance, the Lyapunov-

Krasovskii functional). Sophisticated Lyapunov functionals

may lead to conditions that requires a bigger computational

effort to be solved.

By setting Ã(α) = A(α), B̃u(α) = Bu(α), B̃w(α) = Bw(α),
C̃(α) = C(α) and K(α) = Kx(α) the conditions of Theo-

rem 1 can be directly applied when no time-delays are con-

sidered. In this context, gain scheduled control of discrete-

time systems with time-varying parameters was also ad-

dressed by means of affinely parameter-dependent Lyapunov

functions in [25, 26] and improved in [12] to cope with

systems in which all state space matrices are supposed to

be affected by time-varying parameters. In the above works,

the design conditions are given in terms of LMIs. In this

paper, however, statement iv) in Lemma 1 is applied to reach

more general BMI conditions with multipliers defined as in

Lemma 2 and X = [F(α)′ F(α)′G(α+)′ F(α)′H(α+)′]′.
The advantages of this approach are due to the extra variables

that can be used in the search for better performance of the

closed-loop system. For example, a lower H∞ guaranteed

cost may be obtained exploring the new variables G(α+) and

H(α+). In this sense, Lemma 2 encompasses the conditions

in [25]. Further, by choosing G(α+) = 0 and H(α+) = 0 the

conditions of Theorem 1 reduce to the ones proposed in [12].

Although other methods could be applied to solve problem

(16), the following algorithm is proposed. Fix the variables

Hi and Gi, minimize w.r.t. γ , Fi, Li and Pi, get the new

values of Fi, Li and Pi. Then, fix the variables Fi, Li and

Pi, minimize w.r.t. γ , Hi and Gi, get the new values of Hi

and Gi. Repeat this procedure until no significant changes

in the value of γ occur. This approach is sometimes called

an Alternating Semi-Definite Programming (or Gauss-Seidel)

method [17]. At each step a convex optimization problem in

terms of LMI conditions is solved. It is worth stressing here

that Theorem 1 is not concerned with new strategies to solve

BMIs. Whenever feasible, other methods from the literature

can be applied to solve Corollary 1, as the ones appeared in

[17–20].

By setting the variables G(α+) and H(α+) at time k + 1

(α+ = α(k + 1)) all products involving three parameter-

dependent matrices appeared at the BMIs (10) and (11)

occur with one matrix at a different instant of time. As a

consequence, the number of BMIs and the computational

time required to solve the optimization problem (16) are

reduced. If Theorem 1 was written with G(·) and H(·) at

time k, a more sophisticated procedure, as the one proposed

in [27], should be applied in order to get the BMI conditions

expressed only in terms of the vertices of the polytope,

resulting in a larger number of BMIs.

The conditions of Theorem 1 are directly applicable to

discrete-time systems whose matrices depend affinely on the

vector of time-varying parameters, since this class of systems

has a polytopic representation whenever the parameters are

bounded [28].

B. Robust Control Design

Finally, by fixing the variable matrices Fi = F and Li = L

(not depending on α), H∞ robust memory controllers can

be obtained using the conditions of Theorem 1, as stated in

the next corollary.

Corollary 2: (H∞ ROBUST MEMORY CONTROLLER) Given the

augmented discrete-time system (3), if BMI (10) of Theo-

rem 1 is feasible with fixed variable matrices L ∈ IRm×(n+m),

and F ∈ IR(n+m)×(n+m) then the closed-loop system (6) is

asymptotically stable with a robust memory controller K =
L(F ′)−1 and an H∞ guaranteed cost γ .

Note that BMI (11) is not necessary anymore, since in

this case there is no product involving three parameter-

dependent variables. All products appeared in the conditions

of Corollary 2 occur at different instants of time.

IV. NUMERICAL EXPERIMENTS

All the experiments have been performed in a Pentium IV

2.6 GHz, 512 MB RAM, using the LMI Control Toolbox

[11].

Example I

Consider the discrete-time system (3) with vertices (bor-

rowed from [12, Example 2]) given by

Ã1 =

[

0.28 −0.315

0.63 −0.84

]

, Ã2 =

[

0.52 0.77

−0.7 −0.07

]

,

B̃w1 = B̃w2 =
[

1 0
]′

, B̃u1 =
[

1 0
]′

, B̃u2 =
[

0 1
]′

,

C̃1 = C̃2 =
[

1 0
]

, D̃w1 = D̃w2 = D̃u1 = D̃u2 =
[

0
]′

This system was also studied in [26], but in a simpler case

where matrix B̃u was fixed and time-invariant (i.e. B̃u1 =
B̃u2). The aim here is to compare the gain-scheduling design

conditions from [12] with the BMI approach proposed in

Theorem 1 by solving an example from the literature. Table I

gives the details concerning the improvements of the BMI

approach over [12] as the number of iterations evolve. The

computational times are given in seconds and only the time

required to solve the LMIs is considered. The time necessary

to build the set of LMIs is not considered since it highly

depends on the LMI parser interface.

As it can be seen in Table I, the H∞ upper bound γ was

reduced in approximately 24.78% with 5 iterations, providing

better rejection of disturbances.
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TABLE I

RESULTS AND NUMERICAL COMPLEXITY ASSOCIATED TO THE

METHODS [12] AND THE CONDITIONS OF THEOREM 1 IN THE

GAIN-SCHEDULING CONTROL DESIGN GIVEN IN EXAMPLE I. THE

COMPUTATIONAL TIME (IN SECONDS) RESULTING FROM THEOREM 1 IS

THE ACCUMULATED TIME AS THE NUMBER OF ITERATIONS EVOLVE.

Method γ Improvement Time

[12] 3.8754 – 0.07
T 1it=1 3.5400 8.65 % 0.06
T 1it=2 2.8756 25.79 % 0.14
T 1it=3 2.8698 25.94 % 0.21
T 1it=4 2.8562 26.29 % 0.31
T 1it=5 2.8508 26.43 % 0.39
T 1it=6 2.8434 26.62 % 0.46

A. Example II

Consider a discrete-time system in the form (3), with

vertex matrices given by

Ã1 =

[

1 −1

1 1

]

, Ã2 =

[

0 0

0 −1

]

,
[

B̃u1 B̃u2

]

=

[

−4 1

2 3

]

,

B̃wi =

[

0

1

]

, C̃i =
[

3 1
]

, D̃wi = 0, D̃ui = −0.1, i = 1,2

The conditions proposed in Theorem 1 and the conditions

proposed in [12, Theorem 2] are compared again. Although

there is no difference in terms of system characteristics with

respect to Example I, this case emphasis the improvement

provided by the BMI approach, where the H∞ upper bound

was reduced from 27.3961 to 7.0508. The results are shown

in Table II.

TABLE II

RESULTS AND NUMERICAL COMPLEXITY ASSOCIATED TO THE

METHODS [12] AND TO THE CONDITIONS OF THEOREM 1 IN THE

GAIN-SCHEDULING CONTROL DESIGN GIVEN IN EXAMPLE II. THE

COMPUTATIONAL TIME (IN SECONDS) RESULTING FROM THEOREM 1 IS

THE ACCUMULATED TIME AS THE NUMBER OF BMI ITERATIONS

EVOLVES.

Method γ Improvement Time

[12] 27.3961 – 0.17
T 1it=1 24.6767 9.92 % 0.06
T 1it=2 12.8722 53.01 % 0.14
T 1it=3 11.6024 57.64 % 0.21
T 1it=4 10.7193 60.87 % 0.29
T 1it=5 9.7705 64.33 % 0.37
T 1it=6 8.9520 67.32 % 0.45
T 1it=7 8.2562 69.86 % 0.53
T 1it=8 7.7623 71.66 % 0.60
T 1it=9 7.3568 73.14 % 0.68
T 1it=10 7.0508 74.26 % 0.76

Again, it is clear that the BMI approach of Theorem 1

can significantly improve the results when compared to the

method from [12]. The price to be paid is the increase

in the computational burden accordingly to the number of

iterations.

V. CONCLUSION

The H∞ gain scheduled memory controller for LPV

systems with time delays belonging to a polytope has been

addressed in this paper. A sufficient condition has been pro-

posed in terms of BMIs described only at the vertices of the

polytope. Extra variables provided by the Finsler’s Lemma

were used to derive the BMI conditions. The controller

design is accomplished by means of an optimization problem

where all system matrices are considered to be affected

by time-varying parameters. Efficient numerical algorithms

can be used in the solution of the proposed method. The

memory of the controller, used to store the previous values

of the control signal, was modeled as a new state-space

variable leading to an augmented system representation.

The proposed approach also provides some improvements

when compared with other methods from the literature in

the context of discrete-time systems without delays. An

extension to deal with the design of H∞ robust memory

controllers has also been given.
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