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Abstract— Computational eigenstructure assignment is pre-
sented for linear multivariable systems. A complete computa-
tional solution - successive mapping and correction - is devel-
oped to solve the matrix equations, that arise in eigenstructure
assignment. It is shown that the computation algorithm finds
a solution for any admissible closed-loop Jordan form. The
algorithm can also be used for Jordan pair assignment as well
as the reduced- and full-order design.

Index Terms— Eigenstructure assignment, Control systems,
State space methods, Linear systems.

I. INTRODUCTION

Eigenstructure assignment is one of the most impor-

tant problems in multivariable control theory, assigning the

closed-loop system a prescribed set of eigenvalues (and

eigenvectors). The matrix equations AX − BKX = XJ
and Y A − Y LC = JY with (A,B,C) being known and

controllable and observable, and J being in the Jordan

form with arbitrary given eigenvalues, has close relations

with the eigenstructure assignment problem. The matrix

equation AX − BKX = XJ is the state feedback design

problem for eigenvalue assignment, while the dual version

Y A−Y LC = JY is the observer design problem. Therefore,

the matrix equations are fundamental to all feedback design

problems in linear state-space control system theory, such as

the eigenvalue assignment problem, the state observer design

problem, and the eigenstructure assignment problem.

Direct computation of the state feedback matrix which

assigns a prescribed admissible closed-loop eigenstructure

was considered in [1]–[5]. In [6], the class of assignable

eigenvectors and generalized eigenvectors associated with

the assigned eigenvalues was explicitly described by a set

of free parameter vectors. The approach of [6], [7] assumed

that no open-loop eigenvalue appeared in the set of closed-

loop eigenvalues. This assumption was removed by [8]. For

all classes of state feedback controllers [9] identified the

minimum number of degrees of freedom in the parametric

form of the feedback gain matrix that assigns a desired set

of closed-loop eigenvalues. Some papers tried to develop

computational algorithms to solve AX − BKX = XJ , for

various forms of J [10], [11]. Unfortunately, the solution X
of [10], [11] is not explicit and complete especially in the

freedom of J . Because of this reason, the solution of [10],

[11] cannot be applied to the function observer design and
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the state feedback eigenstructure design, since solving these

problems requires information about the freedom of X . The

only complete analytical solution of AX − BKX = XJ
is the solution based on J being in companion form. This

solution is not applicable to some basic and important design

problems [12]. In [12], an analytical solution of of AX −
BKX = XJ was presented carrying out an orthonormal

similarity transformation and an inverse matrix, and solving

series of linear equation groups. In [13], solutions linearly

expressed by a group of parameter vectors are proposed. To

obtain solutions, one needs to carry out a series of matrix

elementary transformations. In [14], a simple algorithm for

eigenstructure assignment by state feedback was presented

applying the insights provided by the parametric approach

to the problem considered by [1], that provides naturally for

the case of common open- and closed-loop right character-

istic vectors. Assignment of a common open- and closed-

loop characteristic vector requires a corresponding parameter

vector to be a null vector. In [15], a parametric solution

was presented in a recursive form for descriptor systems. In

[16], a parametric solution was presented to the Sylvester

equation, adopting coprime matrices satisfying a certain

factorization condition. In [17], an algorithm is presented

to compute solutions to a Sylvester equation associated with

linear descriptor systems, either by eigenstructure assignment

or by linear matrix inequalities. In [18], a solution of the

constrained Sylvester equation under a certain rank condition

associated with linear descriptor systems was presented. In

[19], a large Sylvester equation AX +XB = C (the matrix

A is large and B is of moderate size) was considered.

This paper is to present a computational solution to

eigenstructure assignment in linear multivariable systems.

A novel computational algorithm - successive mapping and

correction (SMC) - is to be developed to solve the matrix

equations that arise in eigenstructure assignment: Jordan pair

assignment as well as the reduced- and full-order design.

We show that the computation algorithm finds a solution for

any admissible closed-loop Jordan form. The algorithm is

expected to facilitate a computer based approach, resolving

the constraints concerning linear independent eigenvectors

and real control gains in matrix transformations.

Throughout the paper, the notationM+ denotes the pseudo

inverse matrix of M such that MM+M = M . For the

matrices M and N with the same number of rows, the

notation M
∣

∣

∣

Ic(N)
⇐ N denotes replacing some columns of

M indicated by Ic(N) with each column of N in order. For

square block diagonal matrices M and N , M ⊖N denotes a

reduced-order matrix with common block diagonal elements
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being removed. Also, although not mentioned individually,

all the matrix dimensions are assumed to be appropriate for

compatible matrix formulations.

II. PROBLEM FORMULATION

Consider a linear time-invariant system

ẋ = Ax+Bu

y = Cx
(1)

where x ∈ Rn is the state, u ∈ Rnu is the control, and y ∈
Rny is the output measurement, A ∈ Rn×n, B ∈ Rn×nu ,

and C ∈ Rny×n. Without loss of generality, it is assumed

that the input matrix B is of full rank nu and the observation

matrix C is of full rank ny .

The open-loop Jordan form Jol satisfies

X−1
ol AXol = Jol (2)

where Xol is the right open-loop eigenvector matrix. The

Jordan form Jol has Jordan blocks associated with algebraic

and geometric multiplicities of each open-loop eigenvalue.

Let us consider a state feedback control

u = −Kx

resulting in the closed-loop

ẋ = Aclx = (A−BK)x.

Then the closed-loop Jordan form Jcl satisfies

AXcl −BWcl = XclJcl (3)

where Wcl = KXcl, the parameter matrix.

Definition 1: A closed-loop Jordan form Jcl is admissible

if there exist K and a nonsingular closed-loop eigenvector

matrix Xcl such that

Jcl ∈ J =
{

Jcl | X
−1
cl (A−BK)Xcl = Jcl

}

.

Likewise, a Jordan pair (Xcl, Jcl) is admissible if there exists

K such that

(Xcl, Jcl) ∈ P =
{

(Xcl, Jcl) | X−1
cl (A−BK)Xcl = Jcl

}

.
The problem we are concerned with is, given an admissible

closed-loop Jordan form Jcl ∈ J , to find a computational

solution (Xcl,Wcl) such that the matrix equation (3) is

satisfied. If Xcl is invertible, one can compute K from K =
WclX

−1
cl . Accordingly, the aim is to develop an efficient

algorithm to solve the matrix equation (3) for eigenstructure

assignment. We also need to show that the computation

algorithm finds a solution for any admissible closed-loop

Jordan form.

The state observer design yields the dual version matrix

equation

YclA− YclLC = JclYcl

where Ycl is the closed-loop eigenvector matrix. Utilizing

the duality between the state feedback control and the state

observer designs, we can simply focus on either case. Similar

formulations and results can be straightforwardly obtained

for its dual problem.

III. COMPUTATIONAL SOLUTION

Without loss of generality we focus on the state feedback

and reduced-order design case the open-loop system already

has some of the desired closed-loop eigenvalues. However,

the results must be directly applicable to the full-order design

case with common open- and closed-loop eigenvalues.

To begin with, let Λol and Λcl be the open- and closed-

loop eigenvalue matrix respectively. It is possible that Λol

already has some of the desired closed-loop eigenvalues Λcl

such that the reduced-order eigenvalue matrix

Λr = Λol ⊖ Λcl (4)

with corresponding reduced-order Jordan form

Jr = Jol ⊖ Jcl. (5)

The index vector Ic(Jr) ∈ Rr is chosen such that the

reduced-order Jordan form Jr includes Jordan blocks in the

closed-loop Jordan form Jcl, i.e.

Jcl = Jol

∣

∣

∣

Ic(Jr)
⇐ Jr.

Then the reduced-order Jordan form Jr must satisfy

AXr −BWr = AXr −BKXr = XrJr (6)

with corresponding reduced-order eigenvector matrix Xr

whose columns are the right characteristic vectors of the

closed-loop system corresponding to Λr arranged in order of

chaining, subject to complex conjugate pairing. Furthermore,

the Jordan form matrix Jr is nonsingular in stable closed-

loop design.

A. Successive Mapping and Correction

Let us consider a successive mapping

Xr :=
[

A −B
]

[

Xr

Wr

]

J−1
r . (7)

The matrix update Xr obtained via the mapping does not

satisfy the matrix equation (6). For the matrix equation (7)

to be satisfied all the time, we introduce an optimal parameter

matrix Wr computed as

Wr = B+ (AXr −XrJr) . (8)

Then, the matrix equation (6) is satisfied with an error

defined as

Er = AXr −BWr −XrJr. (9)

The key role of the corrections via Wr is to guarantee the

matrix equation (6) being satisfied in a least square sense

(minimizing the equation error) in recursion such that the

solution (X∗

r ,W
∗

r ) the sequential mapping and correction

converges must be in the ball with a radius δ centered at

the solution. The ball then can include a unique solution to

the matrix equation (6), that corresponds to an initial value
(

0Xr,
0Wr

)

. This characterizes the SMC algorithm solution

set to the matrix equation (6), the key step for solving the

eigenstructure assignment problem. In this way, successive

mapping and correction is to be performed starting from an
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initial value
(

0Xr,
0Wr

)

to obtain a unique solution set that

corresponds to an initial value
(

0Xr,
0Wr

)

. Of course, dif-

ferent initial points
(

0Xr,
0Wr

)

may yield different solutions

(X∗

r ,W
∗

r ).
Furthermore, introducing

Wr := Re
[

WrX
+
r

]

Xr (10)

leads K to be real valued, where Re [·] denotes the complex

real part. After complete convergence, we have Er = 0 and

WrX
+
r = B+(AXr−XrJr)X

+
r = B+BKXrX

+
r = KXrX

+
r

that must be real such that

WrX
+
r Xr = Wr = Re[WrX

+
r ]Xr.

The SMC algorithm thereby generously allows complex

eigenvector and parameter matrices Xr and Wr to produce

a real gain.

B. Convergent SMC scheme

An essential question that arises at this point is whether

the SMC scheme described by (7) and (8) is guaranteed to

be convergent or not. However, the scheme does not appear

to be convergent at all. This subsection is thereby dedicated

to developing a convergent SMC scheme.

Introducing an under relaxation factor α, 0 < α ≤ 1,

yields

Xr := Xr + α

(

[

A −B
]

[

Xr

Wr

]

J−1
r −Xr

)

. (11)

Then, let us analyze how the factor α can contribute to derive

a convergent SMC scheme that converges to find a unique

solution (X∗

r ,W
∗

r ) corresponding to an initial condition
(

0Xr,
0Wr

)

.

Here, we let

φ =

[

Xr

Wr

]

= (Xr,Wr) ∈ Φ,

a set together with a metric ρ : Φ × Φ → R given by

ρ(φ, ψ) = ‖φ − ψ‖ for every φ, ψ ∈ Φ. For φ ∈ Φ and

δ ∈ R, the set Bδ(φ
∗) = {φ ∈ Φ | ρ(φ, φ∗) ≤ δ} thereby

denotes a closed ball of radius δ centered at the solution

φ∗ corresponding to an initial point φ0 =
(

0Xr,
0Wr

)

∈
Bδ(φ

∗). Then for the metric space (Φ, ρ), the SMC scheme

can be represented by a mapping T : Φ → Φ,

T (φ) = φ+

[

αEr(φ)J−1
r

B+
(

(1 − α)Er(φ) + αAEr(φ)J−1
r

)

]

(12)

where the error in recursion

Er(φ) =
[

A −B
]

φ−
[

I 0
]

φJr . (13)

Definition 2: The mapping T : Φ → Φ is said to be a

contraction if 0 < β < 1 such that for all φ, ψ ∈ Φ, we

have

ρ(T (φ), T (ψ)) ≤ βρ(φ, ψ).
Definition 3: A point φ∗ is said to be a fixed point of T

if it solves the (fixed-point) equation

T (φ∗) = φ∗.

The SMC scheme is to deliver a unique solution for a

given initial condition φ0. Observing that the matrix equation

(6) is homogeneous and its solution φ∗ is not unique, one

can find that a solution only becomes unique when either

Vr or Wr is fixed. The parameter matrix Wr can be used

obtain a unique specialized solution V ∗
r corresponding to

W ∗

r . Likewise, choosing different initial points φ0 may result

in different solutions φ∗ such that φ0 ∈ Bδ(φ
∗).

Proposition 1: For any nonsingular Jr, there exist some

positive real α ≤ 1/ ‖A−B+BA‖ such that

αk
∥

∥J−k
r

∥

∥ <
1

∥

∥

∥

∥

∥

[ [

A −B
]

B+A
[

A −B
]

]k
∥

∥

∥

∥

∥

(14)

for k → ∞. For such α, the metric ρ
(

T k(φ), 0
)

de-

creases/disappears according to k.

Proof: To appear in the full version paper.

Theorem 1: Given a system doublet (A,B) and an arbi-

trary element φ0 ∈ Bδ(φ
∗) ⊂ Φ, the SMC scheme expressed

by the mapping T : Φ → Φ in (12) finds a unique solution

φ∗ such that φ0 ∈ Bδ(φ
∗) for some positive real α ≤ 1,

as the limit of every sequence generated by the iteration:

φk+1 = T (φk).
Proof: To appear in the full version paper.

Corollary 1: For two arbitrary closed balls Bδ(φ
∗) and

Bǫ(φ
∗∗) for δ, ǫ ∈ R with unique solutions φ∗ and φ∗∗

for each, the solution φ∗∗ = φ∗ ∈ Bǫ(φ
∗∗), if Bǫ(φ

∗∗) ⊆
Bδ(φ

∗).
Proof: Clear by uniqueness of the solution in the set

Bδ (φ∗).
Remark 1: Different initial values φ′0 ∈ Bδ(φ

∗) and φ′′0 ∈
Bδ(φ

∗∗) result in different solutions φ∗∗ 6= φ∗, if Bδ(φ
∗∗) *

Bδ(φ
∗).

Remark 2: The SMC scheme finds a solution with a

smaller positive real α at the expense of slower convergence.

Corollary 2: The mapping T : Φ → Φ is contraction on

all of the space Φ, not just on a ball around φ∗.

Proof: Clear from the fact that the SMC scheme finds

a fixed point for any arbitrary initial point φ0 ∈ Bδ(φ
∗).

Given an open-loop system doublet (A,B) and an admis-

sible desired closed-loop Jordan form ∗Jcl, the SMC scheme

to find a solution φ∗ can be summarized as follows:

Step 1. Choose ∗Jr and find Ic (Jr);
Step 2. Choose 0 < α ≤ 1 to satisfy (14);

Step 3. Choose an initial value φ0;

Step 4. Compute Xr from (11) for successive mapping;

Step 5. Compute Wr from (10) for correction;

Repeat Steps 4 - 5 until a fixed solution is obtained;

If the SMC scheme does not converge with the eigenvector

matrix Xr becoming singular, then the desired closed-loop

Jordan form ∗Jcl is inadmissible. This is clear from the result

of Theorem 1.

Finally, the SMC scheme solves for both Xr and the

product KXr iteratively, which could be a great improve-

ment over [20] where Xr is calculated iteratively, then K
is calculated from that. Thus the iterative SMC scheme is

computationally cheaper.
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C. Control Gain for Eigenstructure Assignment

The SMC algorithm is shown to find a unique solution

φ∗, corresponding to an initial condition φ0 ∈ Bδ(φ
∗), to the

matrix equation (6). As mentioned, the corrections via Wr

in recursion functionally contribute to identify the closed set

Bδ.

It is not surprising that the SMC scheme always delivers

a solution set, the eigenvector matrix Xr and the parameter

matrix Wr, provided the closed-loop Jordan form is admissi-

ble (Theorem 1). When the desired closed-loop Jordan form

Jcl violates the admissibility condition (Definition 1), Xr

becomes singular with its condition number being infinite.

In this case, the SMC scheme hardly converges. Thus, if the

SMC scheme does not converge it means that the eigenvector

matrix Xr becomes singular and the desired closed-loop

Jordan form ∗Jcl is inadmissible.

Once we obtain a solution (Xr,Wr) ∈ Bδ(X
∗

r ,W
∗

r ), we

can compute

Xcl = Xol

∣

∣

∣

Ic(Jr)
⇐ Xr (15)

and

Wcl = 0nu×n

∣

∣

∣

Ic(Jr)
⇐Wr . (16)

For nonsingular Xcl the control gain K is computed from

K = WclX
−1
cl . (17)

For the resulting closed-loop system matrix Acl = A−BK
the error in design can be defined as

Ed = Jcl −X−1
cl AclXcl (18)

with the trace function

Tr1/2
(

EdE
T
d

)

(19)

as a design evaluation criterion.

The metric condition ρ(φ, φ∗) = ‖φ − φ∗‖ = 0 mostly

appears to be an impractically excessive convergence cri-

terion, since it may require very long iteration. A solution

set, to working precision ǫ ≪ 1, φ ∈ Bǫ(φ
∗) ⊂ Bδ(φ

∗) ⊂
Φ must be good enough in engineering practice. Alterna-

tively, considering Er(φ − φ∗) = Er(φ), the trace function

Tr1/2
(

Er(φ)ET
r (φ)

)

is a good convergence criterion, that

appears to be a sort of weighted convergence for spectrums.

The functional contribution of the corrections via Wr is

worth while to observe. It contributes to build a closed set Bδ

in which a unique solution exists, corresponding to an initial

condition φ0 ∈ Bδ. This must be the key step for solving the

matrix equation (6) for eigenstructure assignment. As one

can expect, there can be many solutions satisfying the matrix

equation (6). For a given initial condition, however, the SMC

algorithm is shown to find a corresponding unique solution.

Introducing a different initial condition, say, in Bδ(φ
∗∗) may

deliver a different solution φ∗∗. We must remark that the

solution is nonunique in general and, by further inspection,

that the nonuniqueness is attributable to the freedom in

assigning the associated eigenvectors.

One can thus use the SMC algorithm to find a parameter

matrix concerning a desired Jordan pair (∗Xcl,
∗Jcl) ∈ P

assignment. Applying an (optimal) initial parameter matrix
0Wr from (8) and (10) for a desired Jordan pair (∗Xr,

∗Jr)
provides an optimal initial point φ0 = (∗Xr,

0Wr) ∈ Bδ(
∗φ)

for the SMC algorithm to find a parameter matrix W ∗

r to

deliver a solution φ∗ = (X∗

r ,W
∗

r ) ∈ Bδ(
∗φ) such that

X∗
r = ∗Xr (Corollary 1). Moreover if the desired Jordan

pair (∗Xcl,
∗Jcl) /∈ P while ∗Jcl ∈ J , the SMC algorithm

can anyway find a true eigenvector matrix X∗

cl such that

(X∗

cl,
∗Jcl) ∈ P (Theorem 1).

A dual version SMC algorithm can be simply derived in a

similar way, which can be applied to the dual version matrix

equation YrA − YrLC = JrYr with (A,C) being known

and observable to find a real gain for the observer design

problem.

IV. APPLICATION EXAMPLES

The application examples are to demonstrate utility of

the SMC algorithm for eigenstructure assignment applied

to full- and reduced-order Jordan form assignment as well

as Jordan pair assignment. The SMC algorithm is applied

with a relaxation factor α = 0.5 and a convergence criterion

Tr1/2(ErE
T
r ) < 10−15, to working precision.

A. Example 1

Consider the fourth-order continuous-time open-loop sys-

tem shown in [14] where

A =









−1 1 1 0
0 −1 0 1
0 0 0 1
0 0 −2 −1









, B =









1 0
0 1
0 0
1 1









with an open-loop Jordan form

Jol =









−0.5 + 1.3229i 0 0 0
0 −0.5 − 1.3229i 0 0
0 0 −1 1
0 0 0 −1









.

Case 1: Given a desired closed-loop Jordan form

∗Jcl =









−2 0 0 0
0 −3 0 0
0 0 −1 1
0 0 0 −1









we try

∗Jr =

[

−2 0
0 −3

]

with Ic(Jr) =
[

1 2
]

. The algorithm finds a solution set

Xr =









0.8611 −0.4286
−0.1389 0.5714
−0.1944 −0.1429
0.3889 0.4286









,

Wr =

[

0.5278 −0.4286
0.25 1.5714

]

.
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Then from (15) and (16) we have

Xcl =









0.8611 −0.4286 −2 −0.5
−0.1389 0.5714 0 −2
−0.1944 −0.1429 0 0
0.3889 0.4286 0 0









and

Wcl =

[

0.5278 −0.4286 0 0
0.2500 1.5714 0 0

]

.

Observe the null parameter vectors associated with common

open- and closed-loop characteristic vectors in the reduced-

order design. The control gain

K = WclX
−1
cl =

[

0 0 −14.1429 −5.7143
0 0 18.1429 9.7143

]

confirms X−1
cl (A−BK)Xcl = ∗Jcl with Tr1/2(EdE

T
d ) =

5.4563×10−15.

Case 2: Let us consider a full-order design with a desired

closed-loop Jordan form

∗Jr = ∗Jcl =









−2 0 0 0
0 −3 0 0
0 0 −3 + i 0
0 0 0 −3 − i









with Ic(Jr) =
[

1 2 3 4
]

. The algorithm finds a solution

Xcl =









0.58 −0.41 −0.08 − 0.094i −0.057− 0.026i
−0.17 0.43 −0.06 − 0.037i −0.026 − 0.02i
−0.08 −0.08 0.04 + 0.065i 0.04 + 0.01i
0.17 0.24 −0.19 − 0.154i −0.10 − 0.067i









and

Wcl = Wr =

[

0.5278 −0.4286 0.3333 1
0.25 1.5714 0.3333 −0.6667

]

.

The control gain

K = WclX
−1
cl =

[

0.4605 −0.296 −2.26 −0.8982
−0.3213 0.778 4.055 3.6597

]

confirms X−1
cl (A−BK)Xcl = ∗Jcl with Tr1/2(EdE

T
d ) =

2.9343×10−15.

Case 3: Let us try a desired closed-loop Jordan form

∗Jr = ∗Jcl =









−2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









with Ic(Jr) =
[

1 2 3 4
]

.

The SMC scheme does not converge and the condition

number for Xcl becomes infinite. One thus can not proceed

to compute K . The desired Jordan form ∗Jcl is turned out

to be inadmissible.

B. Example 2

Consider the third-order continuous-time open-loop sys-

tem shown in [7] where

A =





ccc0 1 2
−2 3 0
−2 −1 0



 , B =





1 2
1 0
0 0





with an open-loop Jordan form

Jol =





2.8589 0 0
0 0.0706 + 2.3647i 0
0 0 0.0706− 2.3647i



 .

Case 1: Consider a complex-valued desired closed-loop

Jordan form

∗Jr = ∗Jcl =





−1 0 0
0 −2 + i 0
0 0 −2 − i





with Ic(Jr) =
[

1 2 3
]

. The algorithm finds a solution

Xcl = Xr =





1 −0.0188 + 0.059i 0.1817 + 0.101i
1.5 0.0995− 0.008i −0.2622 + 0.208i
3.5 0.0028 + 0.056i 0.1226 + 0.144i



 ,

Wcl = Wr =

[

4 0.52646− 0.26i −1.883 + 0.577i
2.75 −0.19996 + 0.25i 1.064 + 0.151i

]

.

Then the control gain

K = WclX
−1
cl =

[

−4.1291 4.5028 0.39281
3.8131 −1.2976 0.25238

]

confirms X−1
cl (A−BK)Xcl = ∗Jcl with Tr1/2(EdE

T
d ) =

7.0083×10−14. The gain is real valued even with complex

valued eigenvectors and parameter vectors.
Case 2: Let us consider the Jordan pair (Xr, Jr) assign-

ment problem where the desired closed-loop Jordan form

∗Jr = ∗Jcl =





−1 0 0
0 −1 0
0 0 −2





with Ic(Jr) =
[

1 2 3
]

and the corresponding desired

eigenvector matrix

∗Xr =





1 0.5 −0.5
1.5 −1 0
3.5 0 −0.5



 .

The algorithm surely finds a solution

Xcl = Xr =





1 0.5 −0.5
1.5 −1 0
3.5 0 −0.5



 = ∗Xr

and

Wcl = Wr =

[

4 −5 1
2.75 2.25 −1.5

]

.

We observe that the desired (∗Xr,
∗Jr) is achieved. The

control gain

K = WclX
−1
cl =

[

−2 4 0
2.5 −1 0.5

]

confirms X−1
cl (A−BK)Xcl = ∗Jcl with Tr1/2(EdE

T
d ) =

1.1322×10−14.
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Case 3: Let us consider the Jordan pair (Xr, Jr) assign-

ment problem where the desired closed-loop Jordan form

∗Jr = ∗Jcl =





−1 1 0
0 −1 0
0 0 −2





with Ic(Jr) =
[

1 2 3
]

and corresponding desired eigen-

vector matrix

∗Xr =





0.5 −0.5 −0.5
1 0 0
2 1 0



 .

The algorithm however finds a solution

Xcl = Xr =





0.5 −0.5 −0.5
1 0 0
2 1 −0.5





and

Wcl = Wr =

[

3 0 1
1.25 0.5 −1.5

]

.

We observe Xcl 6= ∗Xcl, i.e., (∗Xcl,
∗Jcl) /∈ P can not

be achieved. Instead, the true right eigenvector matrix Xcl

delivering the control gain

K = WclX
−1
cl =

[

−1.3333 5 −0.66667
1.6667 −2.25 1.3333

]

confirms X−1
cl (A−BK)Xcl = ∗Jcl with Tr1/2(EdE

T
d ) =

7.5546×10−15 such that (Xcl,
∗Jcl) ∈ P .

V. CONCLUSIONS

This paper has presented a complete computational so-

lution to the eigenstructure assignment problems in linear

multivariable systems. The proposed novel computational

algorithm - successive mapping and correction - can find

solutions for any admissible closed-loop Jordan form. The

computation algorithm is complete in a sense that it is

mathematically shown to find a solution for any admissible

closed-loop Jordan form and it can also be used for Jordan

pair assignment as well as the reduced- and full-order design.

The examples of various eigenstructure assignment problems

verified utilities of the algorithm. The algorithm is expected

to facilitate a computer based approach, resolving the con-

straints concerning linear independent eigenvectors and real

control gains in matrix transformation.
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