
 
 

 

  

Abstract—The harmonic balance condition is revisited. The 
existing methodology of analysis of periodic motions is 
extended to analysis of vanishing oscillations of variable 
frequency. Transient processes in the systems controlled by 
second-order sliding mode (SOSM) algorithms are analyzed. A 
simple criterion of the existence of finite-time convergence is 
proposed. It is shown that the convergence rate depends on the 
angle between the high-frequency asymptote of the Nyquist 
plot of the plant and the low-amplitude asymptote of the 
negative reciprocal of the describing function of the controller, 
which is named the phase deficit.  

I. INTRODUCTION 
ARMONIC balance principle is widely used in many 
areas of science and engineering to solve the problems 

of finding parameters of self-excited periodic motions. For a 
system with one nonlinearity and linear dynamics, it can be 
illustrated by drawing the Nyquist plot of the linear 
dynamics and the plot of the negative reciprocal of the 
describing function (DF) [1] of the nonlinearity in the 
complex plane and finding the point of intersection of the 
two plots, which would correspond to the self-excited 
periodic motion in the system. Therefore, the harmonic 
balance principle treats the system as a loop connection of 
the linear dynamics and of the nonlinearity. It is also 
possible to reformulate the harmonic balance, so that the 
format of the system analyzed is not a loop connection but 
the denominator of the closed-loop system. This would 
imply a different interpretation of the harmonic balance. It is 
shown in the present paper that this representation would 
allow one to extend the harmonic balance principle to 
analysis of not only self-excited periodic motions but also 
other types of oscillatory motions. 

One of the types of the systems that exhibit vanishing 
oscillatory motion is the conventional and second-order 
sliding mode (SM) control system. There are a number of 
second-order SM (SOSM) algorithms available now, the 
most popular of which are “twisting”, “super-twisting”, 
“twisting-as-a-filter” [2], [3], “sub-optimal” [4], [5], and a 
number of other algorithms [6]. The problem of 
convergence rate is a valid problem in the conventional SM 
control and “terminal SM” [7], [8] control too. Therefore, 
some common approach to the problem of the convergence 
rate assessment, including qualitative (finite-time or 
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asymptotic) and quantitative assessment, is of high 
importance. 

The frequency-domain approach to assessment of 
convergence rate would provide a number of advantages 
over the direct solution/estimates of the system differential 
equations. The most important one would be the unification 
of the treatment of all the algorithms based on some 
frequency-domain characteristics. This in turn may lead to 
formulation of some criteria that should be satisfied for a 
SOSM algorithm to provide a finite-time convergence, 
which can also lead to relatively simple rules that would 
allow one to develop new SOSM algorithms. 

The paper is organized as follows. At first the harmonic 
balance principle is considered and its different 
representation is proposed. Then a system comprising a 
second-order plant and an asymptotic SOSM (relay) 
controller is analyzed with the use of the approach proposed. 
Such characteristics as frequency and amplitude of 
oscillations as functions of time are derived. After that a 
system comprising the twisting SOSM controller and a 
second-order plant is analyzed with the use of the proposed 
approach. Finally, an approach to analysis of the type of 
convergence based on the frequency-domain characteristics 
is considered.  

II. HARMONIC BALANCE REVISITED 
Consider the system that includes linear dynamics given 

by the transfer function )(/)()( sQsPsWl = , which is a ratio 
of two polynomials, and a symmetric nonlinearity for which 
the describing function is )(aN , where a is the amplitude of 
the oscillations at the input to this nonlinearity. Assume also 
an autonomous mode, so that the input to the nonlinearity is 
the output of the linear dynamics, and the output of the 
nonlinearity is the input to the linear dynamics. The 
harmonic balance condition is formulated as 

1)()( −=Ω aNjWl , (1) 
where Ω  is the frequency and a is the amplitude of the self-
excited periodic motion. Find the closed-loop transfer 
function )(sWcl  of this system. 
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Let us note that (1) is equivalent to 
0)()()(),( =Ω+Ω=Ω aNjPjQjaR , (3) 
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which means that the denominator of the closed-loop 
transfer function turns into zero when the frequency and the 
amplitude become equal to the frequency and the amplitude 
of the periodic motion. Equation (3) is also sometimes used 
for finding a periodic solution, especially via algebraic 
methods. However, equation (3) usually is not attributed to 
the denominator of the closed-loop transfer function but 
considered a direct result of (1).  Assuming that ),( saR  can 
be represented in the form 

)())((),( 21 nsssssssaR −⋅⋅−−= K , where is  are roots of 
the characteristic polynomial, we must conclude that there 
must be at least one pair of complex conjugate root with 
zero real parts. That would correspond to the existence of 
the conservative component in the transfer function )(sWcl . 
Indeed, we can consider the existence of non-vanishing 
oscillations as a result of the existence of the component 
( )22 ρ+s  in the denominator of )(sWcl , where ρ  is a 
parameter that depends on the amplitude a. Let us refer to 
formula (3), implying the denominator of the closed-loop 
transfer function, as to the reformulated harmonic balance 
principle.  Conditions (1) and (3) are fully equivalent, and 
there may be only technical advantages of one over another. 
However, the consideration of the denominator of the 
closed-loop transfer function offers an extension of the 
harmonic balance principle. 

Assume now that the characteristic polynomial of the 
closed-loop system (with parametric dependence on the 
amplitude of the oscillations) has a pair of complex 
conjugate roots with negative real parts. Then a vanishing 
oscillation of certain frequency and amplitude occurs. The 
idea of considering equations of vanishing oscillations is 
similar to the one of the Krylov-Bogoliubov method [9]. 
However, the latter can only deal with small “deviations” 
from the harmonic oscillator and is limited to second-order 
systems. In the present approach, the “equivalent damping” 
is not limited to small values. Let us consider instantaneous 
values of the oscillatory process and formulate the idea of 
the extension of the harmonic balance principle as follows. 
A. At every time, the characteristic equation of the closed-
loop system provides an equation of an oscillator of a 
certain instantaneous frequency, amplitude and amplitude 
decay (decay can be positive, negative or zero). B. The 
coefficients of the characteristic polynomial depend on the 
instantaneous amplitude of the oscillation (and possibly on 
the frequency and the decay in more complex structures of 
the control system) that can be found via the DF method or 
assessed using other techniques. C. For every given 
amplitude of the oscillation, corresponding values of the 
instantaneous frequency and decay can be obtained by 
finding the roots of the characteristic equation and 
considering the solutions of the oscillator(s) that occur if 
there is at least one pair of complex conjugate roots. D. The 
process with variable amplitude (and frequency and decay) 
can be obtained by solving the differential equation relating 

the instantaneous amplitude and the instantaneous decay of 
the amplitude. Consider the following example that 
illustrates it. 

III. ANALYSIS OF CONVERGENCE RATE – FREQUENCY-
DOMAIN APPROACH 

Carry out frequency-domain analysis of the transient 
process in the asymptotic SOSM controlled system, which is 
the relay feedback system with the plant of relative degree 
two (in particular, it is a second-order plant).  The time-
domain analysis of such system was done by [10].  Let the 
system be given as follows: 

Cx
BAxx

=
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y
u&

, (4) 

ycu sgn⋅−= , (5) 
where the linear part is given by (4), and the relay 
nonlinearity is given by (5). We shall consider only the case 

of the second-order system with ⎥
⎦

⎤
⎢
⎣

⎡
−−

=
21

10
aa

A , 

[ ]Tb20=B , [ ]01=C , 0,0,0 221 >>≥ baa . We shall 
also use the transfer function of the linear part: 

)/()( 12
2

2 asasbsWl ++= . Apply the DF method in the 
following modified form to analysis of system (4), (5). 
Assume that the linear part is a low-pass filter, so that )(ty  
is a damped harmonic oscillation of variable frequency, )(ta  
is the instantaneous amplitude, and )(tΩ  is the 
instantaneous frequency of oscillations of )(ty .  Replace the 
nonlinearity in equation (5) with its DF: 

yaNu ⋅−= )( , (6) 
where  acaN π4)( =  (7) 
is the DF [1].  Obtain the transfer function of the closed-
loop system (4), (6) using the DF (7): 

212
2

2

)(

)(
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baNasas

baN
sWcl

+++
= .  

The characteristic equation of the closed-loop system is, 
therefore, 

02 22 =++ nn ss ωξω , (8) 

where 21 )( baNan +=ω , 212 )(/5.0 baNaa +=ξ . 
Assuming that 1<ξ  (which always holds at least starting 
from a certain instant – due to the growth of )(aN ) we can 
write an analytical solution. Introduce instantaneous 
amplitude, instantaneous frequency and instantaneous phase 
angle.  We shall consider that for every time t the solution of 
(8) provides instantaneous values of the parameters of the 
oscillations, so that the solution can be written as follows: 

)(sin)( 0 teaty t Ψ= σ , (9) 
where 25.0 an −=−= ξωσ  is the decay constant, 0a  is the 
initial amplitude, )(tΨ  is the instantaneous phase, 
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∫ +Ω=Ψ
t

dt
0

)()( φττ , φ  is selected to satisfy initial 

conditions, 2
221 ))((45.0 abaNa −+=Ω  is the 

instantaneous frequency, and 
tat eaeata 25.0

00)( −== σ  (10) 
is the instantaneous amplitude. It follows from formula (10) 
that the amplitude decreases exponentially, with constant 
decay σ. Therefore, an asymptotic convergence of )(ty  to 
zero takes place, because the oscillations have non-zero 
amplitude at any finite time. The frequency of the 
oscillations grows according to the following formula: 

2
2

2
1 )(

4
45.0)( a

ta
cb

at −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=Ω

π
. (11) 

Simulations of the process in the system with 
)1/(1)( 2 ++= sssWl  show a good match to the analytical 

results, providing the actual value of the decay a little higher 
than the theoretical one, due to the approximate DF method.  

Now let us carry out similar analysis for a system with 
SOSM. Assume as before that the linear part is given by (4).  
Let the controller be the “twisting” SOSM controller [2] 
given as follows: 

ycycu &sgnsgn 21 ⋅−⋅−= , (12) 
Apply the DF analysis to this system. Since the twisting 

algorithm includes two relay nonlinearities, apply to them 
two describing functions – like in [11]. For the first relay: 

( )acaN π11 4)( = , (13) 
and for the second relay 

( )*4*)( 22 acaN π= , (14) 
where *a  is the instantaneous amplitude of )(ty& , which 
still needs to be obtained. In the case of the twisting SOSM 
controller, the decay will not be constant any longer (it is 
shown below). For that reason, a different representation of 
the system output is used. We shall consider the following 
output formula: 

)(sin)()( ttaty Ψ= , (15) 
where  the instantaneous phase )(tΨ  is given by the same 
formula as above, )(ta  is the instantaneous amplitude. Find 
this amplitude by differentiating (15). 

[ ])(cos)()(sin)()()( tttttaty ΨΩ+Ψ= σ& , (16) 
where )(tσ  and )(tΩ  are instantaneous decay and 

frequency respectively. Therefore, )()(* 22 ttaa Ω+= σ , 
and the DF for the second relay can be rewritten as 

22
2

2
4

)(
Ω+

=
σπa

c
aN . (17) 

In the same way as for the asymptotic SOSM controlled 
system, write the formula for the closed-loop system for the 
case of the twisting controller 

211222
2

221
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basNaN
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++++

+
= .  

The characteristic equation of the closed-loop system is 
given by (8) where now 211 )( baNan +=ω  

211222 )(/))((5.0 baNabaNa ++=ξ . The decay is now 
time-varying with the instantaneous value being: 

))((5.0)( 222 baNat n +−=−= ξωσ  (18) 
Formula (18) provides the instantaneous rate of the 
amplitude change, and not related to the initial amplitude 
(unlike formula (10)): )(/)()( tatat &=σ . The instantaneous 
amplitude can be found via solving the following differential 
equation: 

0)0(),()()( aattata == σ& . (19) 
Therefore, the formulas for the instantaneous decay and 

instantaneous frequency are as follows. 
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 (21) 
The formulas for the instantaneous amplitude (19), 

instantaneous decay (20) and instantaneous frequency (21) 
make a set of one differential and two algebraic equations. 
The proposed solution algorithm is as follows. Express Ω  
from (20) as follows: 

2
2

2
22

2
2

2
2

)2(

16
σ

σπ
−

+
=Ω

aa

bc
 (22) 

and substitute the expression in formula (21). Solve the 
resulting equation for σ . 

24

2 2

211
22

22 a

bacaa

bc
−

+
−=

ππ
σ  (23) 

Substitution of (23) in (19) yields the following 
differential equation for )(ta .  

0
2

211
22

22 )0(,
24

2
aaa

a

bacaa

abc
a =−

+
−=

ππ
& . (24) 

Formula (24) is a first-order nonlinear differential 
equation of the type: 

0)0(),( 0 >=−−= zzzgzz λ& , (25) 

where 
z

zg
/1

)(
β

α
+

= , 
1

222

a

bc

π
α = , 

1

214
a
bc

π
β = , 

2
2a

=λ , z=a. The nonlinear function )(zg  has infinite 

derivative at 0=z , which makes the finite-time 
convergence of the process given by (24) possible. Prove it 
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and assess the convergence time. At first consider the 
following lemma. 

Lemma 1 (given without proof, which can be based upon 
consideration of time being function of z). For the first-order 
nonlinear differential equation 

)(zgz −=& , (26) 
where 0)( >zg  for all 0>z , and 0)0( =g , and the initial 
condition 0)0( 0 >= zz  the following holds. If the solution 
of equation (26) is )(tz , such that a finite-time convergence 
to zero takes place 0)( =gTz , ];0[)( 0ztz ∈ , and there 

exists function )(zh , such that )()( zgzh ≤  for all 
];0[ 0zz ∈ , 0)( >zh  for all 0>z , and 0)0( =h , then the 

finite-time convergence to zero in the equation 
)(zhz −=&  (27) 

takes place too, with the convergence time hT  ( 0)( =hTz ), 
so that gh TT ≥ . 

Theorem 1. The process of conversion of the amplitude 
described by (24) from the initial value 0a  provides finite-
time conversion with the conversion time not exceeding 

⎟
⎟

⎠

⎞

⎜
⎜
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⎞
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+
+=

β
α

β
αλ

λ 00
0 lnln2*

zz
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Proof. Consider equation (25), which is a reformulated 
(24). Replace nonlinearity )(zg  in it with another 
nonlinearity )(zh  such that [ ]0;0),()( zzzgzh ∈≤ , for 
which the finite-time conversion property can be (has been) 
proved. Select )(zh  to be 0,)( >= ρρ zzh . Select 

parameter 
β

αρ
+

=
0z

 to satisfy the requirement 

[ ]0;0),()( zzzgzh ∈≤ . Also, note that )()( 00 zgzh = . 

Therefore, since 
β

α
+

=
z

zzg
2

2 )(  and 
β

α
+

=
0

2
2 )(

z
zzh , 

)()( 22 zhzg ≥  for all [ ]0;0 zz ∈ . The nonlinear functions 
)(zg  and )(zh  for 501 =c , 52 =c  and other parameters of 

the above example are presented in Fig. 1. Via the substitute 
zz =1 , and respectively 112 zzz && = , equation containing 

the square root function is transformed into a linear 
equation: λρ 5.05.0 11 −−= zz& , which has a solution 

tt ezetz λλ
λ
ρ 5.0

1
5.0

1 )0()1()( −− +−−= . By solving the 

equation 0*)(1 =Tz  find *T :  

( )( )ρρλ
λ

lnln2* 0 −+= zT . (28) 

The considered first-order system with the square root 
nonlinearity (assuming also symmetric properties of the 
square root function for negative z) is known as having a 

terminal sliding mode (or power-fractional sliding mode) 
[7], [8], which has finite-time convergence. Since 

[ ]0;0),()( zzzgzh ∈≤ , according to Lemma 1, the system 
(26) provides a faster convergence than the system with the 
square root nonlinearity. Time *T  serves as a higher 
estimate of the convergence time in system (24).; 

 
Fig. 1. Functions )(zg  and )(zh  of differential equation for amplitude 

 
Fig. 2. Example of analysis of twisting SOSM controlled system 

An example of analysis of the system with the linear plant 
)1/(1)( 2 ++= sssWl  and the twisting controller with 

501 =c , 52 =c  is given in Fig. 2. The theoretical value of 
the higher estimate of the convergence time assessed per 
(28) is 85.4* =T , which is close to the actual convergence 
time due to closeness of functions )(zg  and )(zh  (Fig. 1). 
The simulations show that the theoretical value of the decay 
is again a little smaller than the actual one. Yet, the proposed 
approach provides a good estimate of the SOSM transient 
dynamics. 

IV. FREQUENCY-DOMAIN CHARACTERISTICS AND 
CONVERGENCE RATE 

Let us now consider the problems of the existence of 
periodic motions, asymptotic and finite-time convergence. 

Periodic motions can exist in the system if the Nyquist 
plot of the linear part )( ωjW  intersects the negative 

reciprocal of the DF )(1 aN −−  (Fig. 3). In Fig. 3, two 
Nyquist plots corresponding to the second- )(1 ωjW  and 
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third-order )(2 ωjW  linear parts and two negative reciprocal 

DFs corresponding to the relay control )(1
1 aN −−  and to 

the twisting algorithm )(1
2 aN −−  [11] are depicted. 

Intersection of )(2 ωjW  and either of the DFs provides a 
periodic solution (points A or B) of finite frequency. Plot 

)(1 ωjW  does not have any points of intersection with either 

)(1
1 aN −−  or )(1

2 aN −−  except the origin. However, the 
character of the process in the system is different – 
depending on whether the control is a conventional ideal 
relay (plot )(1

1 aN −− ) or the SOSM control (plot 

)(1
2 aN −− ). In the former case the convergence is 

asymptotic, in the second one – it is finite-time. 

 
Fig. 3. Determination of periodic motions and decaying oscillations 

Let us consider the condition of the phase balance that is a 
part of the harmonic balance condition. For a periodic 
motion to occur in the system the following must hold: 

πϕ −=+Ω )(arg)( aNl , (29) 
where Ω  is the frequency and a  is the amplitude of the 
self-excited periodic motion, )(arg)( ωωϕ jWll =  is the 
phase characteristic of the linear part. Considering linear 
part )(1 ωjW  we should note that there is a significant 

difference between the controls with )(1
1 aN −−  and 

)(1
2 aN −− . In the first case, formally speaking, there is a 

frequency at which the phase balance condition (29) holds. 
This frequency is ∞=Ω . Therefore, we might say that in 
the system with )(1 ωjW  and )(1

1 aN −− , a periodic motion 
of infinite frequency occurs. As for the second option, a 
periodic motion cannot occur at any frequency (including 

∞=Ω ). There is a condition that we shall further refer to as 
the phase deficit. Quantitatively, let us call the phase deficit 
the minimum value of phase that needs to be added (with the 
negative sign) to the phase characteristic of the linear part to 
make the phase balance condition hold at some frequency 
(including the case of ∞=Ω ). Note: we do not consider 
now the case of non-monotone frequency characteristics. 
The phase deficit is depicted in Fig. 3 as dϕ . Therefore, 

πϕϕ −=+−Ω )(arg)( aNdl , (30) 

assuming that 0≥dϕ  and 0)(arg ≥aN  for SOSM. 
Now consider controllers that have a nonlinearity with 

infinite derivative in zero. For this type of nonlinearity, the 
DF ∞→)(aN  if 0→a  and, therefore, 0)(1 →− − aN  if 

0→a .  Also, assume that )(1 aN −−  is a straight line on the 

complex plane (other types of )(1 aN −−  will be considered 
below). Formulate the following theorem. 

Theorem 2. For the second-order linear part given by (4) 
and the controller containing at least one ideal relay 
function, and having the controller describing function 

)(aN , so that the ratio const)(Re)(Im =aNaN  (the 
negative reciprocal DF of the controller is a straight line on 
the complex plane), the following three modes of 
oscillations can occur (necessary conditions). A. A periodic 
motion occurs if the phase deficit value is negative. B. An 
oscillation having asymptotic convergence of amplitude to 
zero (periodic process of infinite frequency and zero 
amplitude) occurs if the phase deficit value is zero. C. An 
oscillation having finite-time convergence of amplitude to 
zero occurs if the phase deficit value is positive. 

Proof. A. If the phase deficit is negative there always 
exists a point of intersection of the Nyquist plot of the linear 
part and of the negative reciprocal of the DF of the 
controller (follows from the definition of the phase deficit). 
Therefore, there is a solution of the harmonic balance 
equation [1], and a self-excited periodic motion occurs. 

C. It follows from the definition of the nonlinearity of the 
controller that 

)()(
)( 21

ar
k

j
ar

k
aN += , (31) 

where 01 >k , 02 >k  are constant coefficients, )(ar  is an 

increasing function of the amplitude a: 0
)(

>
da

adr
 for all 

);0[ ∞∈a , such that 0)0( =r  (examples of this function can 

be aar =)( , aar =)( , etc.). The negative reciprocal of 
(31) becomes  

)()()( 212
2

2
1

1 jkk
kk

araN −
+

−=− −  

Therefore, the phase deficit for this system is 
( )12arctan kkd =ϕ .  Considering that )(sin)()( ttaty Ψ= , 

and [ ])(cos)()(sin)()()( tttttaty ΨΩ+Ψ= σ&  represents the 
response of the nonlinear controller to signal )(ty  as an 
expansion in the basis of functions )(ty , )(ty&  (weighted 
sum) the following holds: 

⎟
⎠
⎞

⎜
⎝
⎛ Ψ+Ψ

Ω
+−=

Ω
+−≈

cossin)(

))()(()(

221

2
1

pppa

ty
p

typtu

σ

&

, 

where the sign “-“ is attributed to the negative feedback, the 
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“approximate equality” is due to the use of the approximate 
DF method. Weight 2p  is )(/22 arkp = ; weight 1p  can 
be determined for a particular controller. It becomes 

)(/11 arkp =  when 0=σ . Therefore, the controller output 
can be represented as follows: 

)()( 2
1 tys

p
ptu ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Ω

+−≈ , 

where 
dt
ds = . Having found )(ty&  similarly to (16), we can 

write the following formula for the instantaneous decay: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω

+−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω

+−= 2
2

22
2

2 )(
5.0

)(
5.0 b

ar
k

ab
ap

aσ  (32) 

and instantaneous frequency (similar to (20), (21)): 

( )
2

2
2

2211 )(
)(45.0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Ω

+−+=Ω b
ar
k

abapa . 

As an auxiliary result, find the following limit from the 
last formula: 

( ) 0
)(

)(4)(5.0lim

)(lim

2

2
2

2211
0

0

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω

+−+=

Ω

→

→

b
ar
k

abapaar

ar

a

a

, 

considering that ∞→Ω  when 0→a  and 0)0( =r . 
Therefore, considering the equation for the amplitude 

a
a

ab
ar

k
aa

2)(2
2

2
2 −

Ω
−== σ& , (33) 

one can see that the nonlinearity that it has is the one with 
0)0( =g  and infinite derivative at 0=a : 

Ω
=

)(2
)( 22

ar
abk

ag ,  0)(lim
0

=
→

ag
a

 (follows from 0
)(

>
da

adr
), 

⎟⎟
⎟

⎠
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⎜⎜
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⎝
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Ω
−
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∞=′
→
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0

ag
a

 (due to the first term in the brackets; 

considering also boundedness of the second term, and 
0<Ω dad ). These dynamics have a terminal sliding mode 

and finite convergence time as shown above and in [8]. 
B. For this option, coefficient 2k  in (31) is zero. As 

follows from (33) aaa 25.0−=& , thus, providing exponential 
(asymptotic) convergence. ; 

The relationship between the DF of the controller and the 
possibility of a particular mode of the transient process to 
occur was established above for the controllers that satisfy 
the condition const)(Re)(Im =aNaN . Among known 
controllers, this applies to the twisting controller [2], and the 
sub-optimal algorithm [4], [5]. Yet, the fact of finite-time 
convergence depends on the configuration of )(1 aN −−  
only in the vicinity of the origin (in the complex plane), so 

that if the convergence process starts from a certain 
amplitude, only the amplitudes in the range from the initial 
one to zero will be realized.  Therefore, what is important is 
the location of the low amplitude asymptote of the plot 

)(1 aN −− . For that reason, let us reformulate the definition 
of the phase deficit as the angle between the high-frequency 
asymptote of the Nyquist plot of the linear part and the low-
amplitude asymptote of the negative reciprocal DF of the 
controller (considering also the sign of this value). 
Simulations prove that the finite-time convergence occurs 
only if the phase deficit is positive. 

V. CONCLUSION 
An extended harmonic balance and a frequency-domain 

method of analysis of transient oscillatory processes have 
been developed. The proposed method is applied to analysis 
of the convergence rate of SOSM controlled systems. It 
leads to a simple criterion of the existence of a finite-time or 
asymptotic conversion, which involves just one 
characteristic – the phase deficit, which must be positive for 
the finite-time convergence to occur. 
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