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Abstract— We consider a class of problems in formation
control. This class comprises of the so called radar decep-
tion, rigid formation keeping and formation reconfiguration
problems. An intrinsic geometric formulation of the associated
constraints unifies the three problems. It is the first time such a
generalization has been presented. The constraints can include
nonholonomic constraints and actuator limitations. Deriving the
constrained dynamics describing the motion eliminates the need
for nonlinear programming making the approach amenable to
real time motion planning. The constrained dynamics along
with the motion planning algorithm that generates reference
trajectories online and in real-time, are validated for the
formation keeping problem using simulations.

I. INTRODUCTION

Cooperating multi-agent systems have received increased

attention in the recent past and have applications in explo-

ration and mapping, search and rescue, surveillance, cooper-

ative manipulation, automated highways and network centric

warfare. Autonomous, distributed and real-time control is

an important if not imperative feature for the successful

implementation of such multi-agent systems, often involving

some sort of formation control [1], [2]. Our interest in this

paper is limited to formation control problems in cooperating

multi-agent systems. There are two main approaches seen

in the literature on formation control. One approach is to

formulate it as a constrained optimization problem while

the other approach is to formulate it in the framework of

a tracking control problem. The most limiting characteristic

of the former approach is the computational complexity [3],

while in the latter it is that the reference trajectories might

be dynamically infeasible for the individual agents to track.

Dynamic constraints that limit the maneuverability of single

agents will have a pronounced effect in limiting the maneu-

verability of a multi-agent system accomplishing a prescribed

group behavior. Surprisingly though, this critical aspect of

dynamic feasibility has been ignored in most approaches to

formation control, with [4], [5] being exceptions. However

the approach in [4] is to solve a constrained optimization

problem using nonlinear programming and [5] captures

dynamic constraints only to the extent that the designed

reference trajectories will be smooth. This paper advocates

a change in paradigm to formation control by addressing
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both the key issues of dynamic feasibility and computational

complexity.

The work presented in this paper generalizes and gives in-

trinsic meaning to results we have given in [6]. Although a lot

of research has been done on each of the formation control

problems of formation flying [7], [8], box pushing [9], [10],

scouting [11], [12], formation reconfiguration [13], [14],

moving into formation [15], [16] and radar deception [17],

[18], we are unaware of any motion planning work that

unifies these problems or gives solutions that would work

for all or most of them. The generalization based on the

intrinsic geometry of the constraints presented in this paper

allows the unification of a subclass of problems in formation

control and will encompass all the problems listed above.

A Class of Problems in Formation Control

We look at the following three general problems in for-

mation control, each of which involves coordinated motion

planning of multi-agents to achieve a team goal in the

presence of configuration and dynamic constraints.

• Radar deception problem

• Rigid formation keeping

• Formation reconfiguration

The first problem, which we shall call the radar deception

problem, serves as a motivating example in formation control

involving a unique constraint on the system configuration.

Here a team of fixed winged UAVs cooperate to deceive a

ground radar network into seeing a spurious phantom track

in its radar space. Each UAV engaging a radar it is assigned

to has the capability to intercept, introduce a time delay and

re-transmit the radar’s transmitted pulses thereby making the

radar detect a target at a false range. The challenge is to

deceive the entire radar network into seeing a single coherent

phantom track. This involves all the extended lines of sight,

from the radars to the UAVs engaging them, intersecting

at a common point and tracing a path in space. This is a

constraint on the system configuration space. The second

problem we consider, rigid formation keeping, requires the

relative distances of all the agents in the system to be

fixed which is again a constraint on the configuration space.

Rigid formation keeping can in general be too restrictive

for an environment with obstacles and therefore formation

reconfiguration, the third problem we consider, becomes

important.

Motion planning for the above three problems require

satisfying constraints on the configuration of the multi-agent

system while also satisfying constraints on the dynamics

of the individual agents. At a minimum, constraints on

individual agent dynamics will come through limitations

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeB03.3

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 789



on actuator capabilities or operation constraints. Dynamic

constraints can also often include nonholonomic constraints,

for example when the multi-agents are wheeled robots. We

show for the first time, that the multi-agent motion planning

for the above three problems are intrinsically geometric

problems in the configuration space-time and can be ex-

pressed in a unifying manner. By deriving the constrained

dynamics of the multi-agent system, we in effect embed the

configuration and dynamic constraints of formation control in

to the real-time design of reference trajectories. The proposed

formulation makes actuator/operating constraints transparent

in the constrained dynamics and a simple control strategy

ensures these actuator constraints are satisfied explicitly.

The main contributions made in this paper are: (1) Uni-

fying formulation of constrained dynamics for a class of

problems in formation control; (2) Deriving these constrained

dynamics eliminates the need for nonlinear programming,

making the approach amenable to real time motion planning;

(3) Deriving these constrained dynamics intrinsically and

hence valid in any choice of frame; (4) Explicit consider-

ation of actuator/operating constraints to address dynamic

feasibility in formation control.

II. PROPOSED ALGORITHM TO FORMATION CONTROL

The proposed approach is on real-time reference trajectory

generation as apposed to formation tracking. These reference

trajectories are then to be simultaneously used as the input

for the formation agents’ relative state tracking control law.

Explicitly incorporating the dynamic model, including all

dynamic constraints of the agents, in the design of the

reference trajectories will ensure zero tracking error in the

relative state tracking control stage, at least theoretically.

We say at least theoretically, since this is with idealized

assumptions of zero model uncertainty and zero disturbance.

We propose higher level control for the design of these

reference trajectories where the essential dynamic constraints

are captured but through a simplified dynamic model. For ex-

ample, the dynamic capabilities of a four wheeled robot hav-

ing many degrees of freedom and controls can be captured

approximately but reasonably well through the much simpler

uni-cycle model. The Uni-cycle model essentially captures

the no slip condition of the wheeled robot while appropriate

constraints on its higher level controls of “speed” and “steer”

can effectively capture the wheeled robot’s actuator and

dynamic capabilities. This is the reason why a lot of studies

on wheeled robots or even UAVs employ the uni-cycle model

to represent the agent dynamics. The accuracy with which

the dynamic models of the individual agents are captured

in the design of the reference trajectories will determine the

degree of tracking error in the tracking control stage and

ultimately in the degree of the error in formation. In actual

implementation, model uncertainty and disturbances will be

accounted through feedback in the tracking controllers.

For distributed control of the multi-agent system having

N agents, the problem is decoupled into N sub problems.

From a geometric control point of view, this means the

configuration and dynamic constraints defining the formation

control problem can be separated into N geometrically

similar sets of constraints. In the radar deception problem

the phantom and each UAV makes up a separate subsystem.

In rigid formation keeping and formation reconfiguration,

each agent and a unique point on the virtual structure (VS)

defining the formation is treated as a separate subsystem.

Next constrained dynamics are developed for the subsys-

tem which is the basis to this motion planning algorithm.

Constrained dynamics are formulated intrinsically to make

it applicable to the class of problems considered and is

presented in detail in the next section. Control functions are

identified for the constrained dynamics of the subsystem such

that consensus between all the subsystems can be achieved.

A control law that would satisfy the dynamic constraints

representing actuator and operating limitations is identified.

A control law that would optimize the team goal is developed

for the subsystem next. A simple switching control strategy

is proposed based on these two control laws. When actuator

and operating constraints of all the subsystems are satisfied,

the control law that optimizes the team goal is implemented

on all the constrained subsystems. If actuator or operating

constraints of even one of the subsystems are violated then

the control law that satisfies the actuator constraints is

implemented. Synchronized and global communication is

proposed for the control architecture of the motion planning

algorithm. For the implementation of the switching control

strategy, all that needs to be communicated amongst all the

agents in the team is which controller to be used and for how

long. The constrained dynamics takes care of the equality

constraints while the switching control strategy takes care of

the inequality constraints corresponding to actuator/operating

limitations and the approach is amenable to real-time control.

The admittedly strong assumption of synchronized commu-

nication is the weakest link in the proposed algorithm. For

details on this motion planning algorithm see [6].

III. GEOMETRIC FORMULATION OF CONSTRAINED

MOTION

We refer the reader to [19], [20] for the differential

geometric ideas and notation used in this section. Consider a

multi-agent system A constrained to satisfy holonomic and

nonholonomic constraints. Q is the configuration manifold of

the system and TQ, T ∗Q its tangent and cotangent bundles

respectively. A trajectory of the system A is a curve on Q,

γ : [a, b] �→ Q, whose tangent vector on Q along γ we denote

by γ′.

A. Constrained Kinematics

A map C : Q �→ 0 ∈ Rm captures the configuration

constraints (holonomic) on Q. M = C−1(0) = {q ∈
Q | C(q) = 0} is an embedded submanifold of Q (M ⊂ Q)

and is the true configuration manifold of the constrained

system A. The differential of the map C, denoted dC, is a

codistribution that annihilates the entire tangent space TqM
for every q ∈ M and uniquely identifies TM.

A distribution ∆ on Q captures the nonholonomic con-

straints on Q. There is a unique annihilating codistribution
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∆⊥ = {α ∈ T ∗Q | α(v) = 0; ∀v ∈ ∆} on Q associated

with ∆ (Here we have made an abuse of notation by denoting

the distribution as well as the set of vector fields taking

their values in the distribution by the same symbol since

it should be clear from the context which we mean). Let

{e1, · · · , erank(∆)} be a basis for the distribution ∆. Then

γ′ = viei is its equivalent control system form associated

with the nonholonomic constraints and the nonholonomic

constraints alone. Here, and in the rest of this paper, we use

the Einstein summation convention. For the three formation

control problems we consider, this equivalent control form

represents the individual agent kinematics (that need not

satisfy the configuration constraints) and we propose to

capture actuator/operating limitations of the individual agents

through inequality constraints on the functions vi.

Ω = {α ∈ T ∗Q | α ∈ dC, α ∈ ∆⊥} is the intersection

of the codistributions dC and ∆⊥. A trajectory will satisfy

both the holonomic and nonholonomic constraints of A iff

its associated γ′ along the curve γ is annihilated by Ω. i.e.

Ω(γ′) = 0. There exists a unique distribution on Q, call it the

constrained distribution D = {v ∈ TqQ, ∀q ∈ Q | Ω(v) =
0}, associated with the annihilating codistribution Ω.

Feasibility: The trajectory γ satisfies the holonomic and

nonholonomic constraints of A iff γ′ is in the distribution

D. Hence for the existence of feasible trajectories for A,

the distribution D has to be non-empty. This condition is

given in terms of an algebraic rank condition on the matrix

representation of the annihilating codistribution Ω in [21].

If {X1, · · · ,Xrank(D)} is a basis for the distribution

D, then γ′ = uiXi describes the equivalent kinematic

control system of the constrained system A. In general it

will not be possible to find a relationship between ui and

actuator/operating constraints and we turn to the dynamics

of the constrained system.

B. Constrained Dynamics

For the local coordinates q = (q1, · · · , qn) in Q, let

∂q = (∂q1 , · · · , ∂qn) be its coordinate frame of vector

fields and dq = (dq1, · · · , dqn) its associated dual frame

of covector fields (i.e. dqi(∂qj ) = δi
j). Also consider the

frame of vector fields e = (e1, · · · , erank(∆), · · · , en)
where {e1, · · · , erank(∆)} forms a basis for ∆ and

{erank(∆)+1, · · · , en} forms a basis for ∆⊥. The frame e

has the associated frame of covector fields σ = (σ1, · · · , σn)
on Q (i.e. ei(σ

j) = δi
j). The frame e is locally a coordinate

frame iff [ei, ej] = 0, ∀i, j in which case we can always find

local coordinates p = (p1, · · · , pn) such that ej = ∂pj and

σj = dpj . i.e. locally each σj will be exact. Here [ei, ej ]
is the Lie bracket between the vector fields ei, ej . For the

three problems considered, the choice of e will be such that

it will not be a coordinate frame.

For a vector x = Xjej and a vector field v = vkek, the

covariant derivative of v with respect to x is;

∇xv = ei{dvi + vkωi
k}(x) (1)

where the connection coefficients ωi
jk and the connection 1-

forms ωi
k are defined by ∇ej

ek := eiω
i
jk, ωi

k := ωi
jkσj and

where we have used the fact that x(vk) = dvk(x).
Let G be the Riemannian metric on Q specified by the

kinetic energy of the system A. The Levi-Civita connection
G

∇ is the unique affine connection associated with (Q, G),

satisfying
G

∇= 0 and
G

∇x y−
G

∇y x = [x,y], ∀x,y. The

connection coefficients of the Levi-Civita connection, called

Christoffel symbols, are given in the coordinates q by;

G

Γi
jk=

1

2
G

ir
(

∂Gjr

∂qk + ∂Gkr

∂qj −
∂Gjk

∂qr

)

where G
ij are defined by GijG

jk = δk
i .

For a force represented by the one-form F (t, γ′(t)) ∈
T ∗Q, a curve γ : [a, b] �→ Q satisfies the Lagrange-

d’Alembert principle and is a solution of the constrained

system A iff;

∇γ′(t)γ
′(t) = λ(t) + Y (γ(t))

P ′(γ′(t)) = 0

where λ is in D⊥, the G orthogonal compliment to D, Y

is the vector field associated with the one-form F given by

Y = G♯(F ), G♯ : T ∗Q �→ TQ is the isomorphism associated

with the metric G mapping covector fields to vector fields,

and P ′ : TQ �→ TQ is the G orthogonal projection map onto

D⊥. Taking the covariant derivative of P ′(γ′(t)) leads us to

another affine connection, the constrained affine connection
D

∇ given by;

D

∇γ′(t) γ′(t) = ∇γ′(t)γ
′(t) + (∇γ′(t)P

′)(γ′(t))

A property of
D

∇ is that it restricts to D meaning that
D

∇X1
X2 ∈ D for every X2 ∈ D. In practice however,

computation of
D

∇ can be quite troublesome and for com-

putational convenience we instead consider the constrained

connection given in [22];

A

∇γ′(t) γ′(t) = ∇γ′(t)γ
′(t) + A−1

((

∇γ′(t)AP ′
) (

γ′(t)
))

where A can be any invertible matrix. Usually one would

choose A to cancel out the denominator terms of P ′ that

would cause computational problems in the covariant differ-

entiation of P ′. It is shown in [22] (along with a proof)

that this connection
A

∇ too restricts to D and hence serves

just as well as
D

∇ in determining the constrained equations

of motion as long as γ′(t0) ∈ D.

A curve γ : [a, b] �→ Q is a solution of the constrained

system A iff γ′(t0) ∈ D and γ satisfies;

A

∇γ′(t) γ′(t) = P
(

Y (γ(t))
)

where Y = G♯(F ) and P : TQ �→ TQ is the G orthogonal

projection map onto D.

Let γ′ = q̇k∂qk = vkek and using (1) we have;

A

∇γ′ γ′ = ek

(

dvk + vjωk
j

)

(γ′)

= ek

(

v̇k + vjωk
j (vrer)

)

= ∂qk

(

dq̇k + q̇jΓk
j

)

(γ′)

= ∂qk

(

q̈k + q̇jΓk
j (q̇r∂qr )

)
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Consider a type (1, 1) tensor P with components P i
j . The

components of the covariant derivative of P with respect to

x, ∇XP , in the coordinate frame ∂q are;

(∇xP)i
j =

∂P i
j

∂qk
Xk + Γi

krP
r
j Xk − Γr

kjP
i
rX

k (2)

where the connection coefficients Γi
jk are defined by

∇∂
qj

∂qk := ∂qj Γi
jk . The connection coefficients of

A

∇ in

the coordinate frame ∂q are computed using (2) as;

A

Γi
jk =

G

Γi
jk +(A−1)i

r

∂(AP
′

)r
j

∂qk
+ (A−1)i

r

G

Γr
km (AP

′

)m
j

− (A−1)i
r

G

Γm
kj (AP

′

)r
m

Since for the three problems considered, the frame e will not

be a coordinate frame, we need to transform the connection

1-forms

A

Γj
k from the basis ∂q to the basis e to compute

the 1-forms ω
j
k. Define ∇ej(ei) := ∇ej

ei = ekωk
ij . This

can also be written in terms of a vector valued 1-form as

ek⊗ωk
rjσ

r(ei) = ekωk
ij . Since ωk

j := ωk
rjσ

r we have ∇ej =

ek ⊗ ωk
j and hence

A

∇ e = eω where ω := (ωk
j ) is the

n×n matrix of connection 1-forms. Since
A

∇ is well defined,

independent of basis, we have compatible
A

∇ e = eω and
A

∇ ∂q = ∂q

A

Γ where
A

Γ:= (
A

Γk
j ). Let e = ∂qS be the change

of basis where ei = ∂qjSj
i and S is the non-singular matrix

whose (i, j)th element is Si
j . Then,

A

∇ e =
A

∇ (∂qS) = (
A

∇

∂q)S + ∂qdS = ∂q

A

Γ S + ∂qdS = eω = ∂qSω. We must

then have,

ω = S−1
A

Γ S + S−1dS (3)

which is the transformation rule for the matrix of connection

1-forms. Notice that
A

Γ does not transform as would the

components of a tensor since
A

Γ is in fact not a tensor.

Since e = ∂qS we have σ = S−1dq. Let α be a 1-form

and α = akdqk = bkσk . This can be written as α = adq =
bσ = bS−1dq and we have a = bS−1 and hence b = aS
which is the transformation rule for 1-forms. This will be

required in the actual computations of (3).

The significance of deriving constrained dynamics in the

e frame is that we then have the equations of motion of the

constrained system in the functions vi which also capture the

actuator/operating constraints of the individual agents. Note

that in the above constrained dynamics, vrank(D), · · · , vn

will be identically zero since erank(D), · · · , en ∈ D⊥, to

satisfy the nonholonomic constraints.

IV. RIGID FORMATION KEEPING AND FORMATION

RECONFIGURATION

Consider N agents restricted to the plane making up a

virtual structure (VS) with an arbitrary point Oc (the centroid

of the VS at time t0 for example). An orthogonal local

coordinate frame B is assumed fixed to the VS at Oc and let

(bi,1, bi,2) denote the place holder for the ith agent in this

B frame. When bi,1, bi,2 are constant the VS will be rigid

and when bi,1, bi,2 are time varying the VS too will be time

varying making the formalism applicable to both the rigid

formation keeping and the formation changing problems.

Let (x, y) be local coordinates of Oc with respect to an

inertial frame I and φ the orientation of the B frame with

respect to I . Suppose (xi, yi) describes the position and θi

the orientation of an ith agent with respect to the frame I .

Similarly suppose (x, y, θ) describes the position and orien-

tation of a virtual agent at Oc. Consider the ith subsystem

made up of the ith agent, the virtual agent at Oc and the

B frame. This subsystem has the structure of a manifold

Q with local coordinates qi = (x, y, θ, φ, bi,1, bi,2, xi, yi, θi).
Configuration constraints on Q are;

xi − x − bi,1 cosφ + bi,2 sin φ = 0

yi − y − bi,1 sin φ − bi,2 cosφ = 0
(4)

Suppose the dynamics of an agent (including the virtual

agent at Oc) include the nonholonomic constraints of a uni-

cycle;

ẋ sin θ − ẏ cos θ = 0

ẋi sin θi − ẏi cos θi = 0
(5)

These nonholonomic equations define the following equiva-

lent control system on Q;

ẋ = v cos θ

ẏ = v sin θ

θ̇ = w

ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = wi

(6)

where dynamic constraints due to actuator/operating lim-

itations are explicitly captured through constraints on the

kinematic controls (v, w, vi, wi) of the above equivalent

control system;

vmin ≤ vi, v

−ϕvi ≤ wi

−ϕv ≤ w

≤ vmax

≤ ϕvi

≤ ϕv

(7)

where ϕ = wmax

vmax . We assume that the dynamics of the

agent and the virtual agent are captured reasonably well

through (6) and (7). As a preliminary step we will only

consider explicit actuator constraints involving the velocity

coefficients v, w, vi, wi while acknowledging the importance

of actuator constraints involving the the time derivatives of

these (“acceleration” terms at a minimum).

V. RADAR DECEPTION PROBLEM

We consider the radar deception problem that is restricted

to the plane. Suppose there are N -UAVs engaging N - sta-

tionary radars and also suppose that we assign an imaginary

UAV to mimic the motion of the phantom to make the

phantom track realistic. The multi-agent system is decoupled

into N -subsystems corresponding to the N radar-UAV pairs.

Each subsystem (N of them) now only has two UAVs, one

representing the phantom and the other the UAV engaging

the radar. The configuration space of the ith subsystem has
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the structure of a manifold Q, and we assign the local

coordinates qi = (x, y, θ, xi, yi, θi). Here, (x, y, θ) gives

the position and orientation of the phantom UAV while

(x, y, θ) gives that of the UAV engaging the ith radar at

(x̄i, ȳi). Again we assume the dynamics of a UAV can be

captured reasonably well through constraints of a uni-cycle.

The nonholonomic constraints, its equivalent control form

and actuator constraints of this subsystem are identical to (5),

(6) and (7) respectively. The requirement that the UAV has

to be in-line with its corresponding radar and the phantom

gives rise to the configuration constraint;

(x − x̄i)(yi − ȳi) − (y − ȳi)(xi − x̄i) = 0 (8)

VI. EXAMPLE: RIGID FORMATION KEEPING

The constrained dynamics along with the proposed al-

gorithm is verified in this section for the rigid forma-

tion keeping problem. For a rigid formation the place

holders bi,1, bi,2 in the B frame will be constants. The

manifold Q representing the ith subsystem will have lo-

cal coordinates qi = {x, y, θ, xi, yi, θi, φ} where ∂q =
{∂x, ∂y, ∂θ, ∂xi

, ∂yi
, ∂θi

, ∂φ} is the coordinate basis for TqQ

and dq = {dx, dy, dθ, dxi, dyi, dθi, dφ} its dual basis for

T ∗
q Q. The Riemannian metric corresponding to the kinetic

energy of the system is G = m(dx⊗dx+dy ⊗dy)+Jdθ⊗
θ + mi(dxi ⊗ dxi + dyi ⊗ dyi) + Jidθi ⊗ θi + J̃dφ ⊗ dφ

where (mi, Ji) are mass and inertia of the ith agent, (m, J)
the fictitious mass and inertia of the virtual agent and J̃ the

fictitious inertia of the formation about Oc. Without loss of

generality, these are assumed to be of unit magnitude for

ease of symbolic computations.

∆⊥ :
α1 = sin θdx − cos θdy

α2 = sin θidxi − cos θidyi

dC :
β1 = dx − dxi − (bi,1 sin φ + bi,2 cosφ)dφ

β2 = dy − dyi + (bi,1 cosφ − bi,2 sin φ)dφ

Ω : ∆⊥ ⊕ dC

The constrained distribution D associated with the annihi-

lating codistribution Ω is spanned by: x1 = hi cos θ
sin(θi−θ)∂x +

hi sin θ
sin(θi−θ)∂y + h cos θi

sin(θi−θ)∂xi
+ h sin θi

sin(θi−θ)∂yi
+ ∂φ; x2 =

∂θ; x3 = ∂θi
and D⊥ is spanned by: x4 = G♯(α1) =

sin θ∂x − cos θ∂y; x5 = G
♯(α2) = sin θi∂xi

−
cos θi∂yi

; x6 = G♯(β1) = ∂x − ∂xi
− (bi,1 sinφ +

bi,2 cosφ)∂φ; x7 = G♯(β2) = ∂y − ∂yi
+ (bi,1 cosφ −

bi,2 sin φ)∂φ. where h = bi,1 cos(θ−φ)+ bi,2 sin(θ−φ) and

hi = bi,1 cos(θi − φ) + bi,2 sin(θi − φ).

Let x = ∂qR be the change of basis where xi = ∂qjRj
i

and Ri
j is the (i, j)th element of R. The projection map

P ′ : TQ → TQ has the matrix representation
[

P ′
]

x
=

[

[0]3×3 [0]3×4

[0]4×3 [I]4×4

]

and
[

P
′
]

∂q

= R
[

P
′
]

x
R−1 in the two

basis x and ∂q . P ′ in the basis ∂q has a = h2 + h2
i +

sin2(θi − θ) appearing as a common denominator and we

choose A = a
[

I
]

and use AP ′ instead of P ′ to compute the

connection coefficients
A

Γ.

Since the kinetic metric G is constant
G

Γk
ij= 0, ∀i, j, k

and A is diagonal, we have
A

Γi
jk= 1

a

∂(AP
′

)i
j

∂qk . However

we are interested in deriving the constrained dynamics

in the frame e given by the change of basis e = ∂qS

where S =





















cos θ 0 0 0 0 − sin θ 0
sin θ 0 0 0 0 cos θ 0

0 1 0 0 0 0 0
0 0 cos θi 0 0 0 − sin θi

0 0 sin θi 0 0 0 cos θi

0 0 0 1 0 0 0
0 0 0 0 1 0 0





















Associated with the frame e = {ev, ew, evi
, ewi

, eu, ez, ezi
}

is its dual frame σ = {σv, σw, σvi , σwi , σu, σz , σzi} and the

tangent vector field on Q associated to a system trajectory is

given by γ′ = ẋ∂x+ẏ∂y+θ̇∂θ+ẋi∂xi
+ẏi∂yi

+θ̇i∂θi
+φ̇∂φ =

vev + wew + vievi
+ wiewi

+ ueu + zez + ziezi
.

The transformation rule for connection 1-forms given

in (3) after some lengthy computations yield the

following as the only nonzero connection 1-forms;

ωv
w, ωv

wi
, ωv

u, ωv
z , ωvi

w , ωvi
wi

, ωvi
u , ωvi

zi
, ωu

w, ωu
wi

, ωu
u, ωz

v , ωz
vi

,

ωz
wi

, ωz
u, ωzi

w , ωzi
vi

, ωzi
wi

, ωzi
u . The actual expressions of these

connection 1-forms are too lengthy to be displayed here.

The constrained dynamics in the frame e are as follows

where γ′ = vev +wew +vievi
+wiewi

+ueu +zez +ziezi
;

v̇ + (wωv
w + wiω

v
wi

+ uωv
u + zωv

z )(γ′) =
hi

sin(θi − θ)
u1

ẇ = u2

v̇i + (wωvi

w + wiω
vi

wi
+ uωvi

u + ziω
vi

zi
)(γ′) =

h

sin(θi − θ)
u1

ẇi = u3

u̇ + (wωu
w + wiω

u
wi

+ uωu
u)(γ′) = u1

ż + (vωz
v + wωz

w + wiω
z
wi

+ uωz
u)(γ′) = 0

żi + (wωzi

w + viω
zi

vi
+ wiω

zi

wi
+ uωzi

u )(γ′) = 0

Recall that for γ′(0) ∈ D,
A

∇ restricts γ′ to D. The choice of

the frame e is such that ez, ezi
∈ D⊥ and the functions z, zi

will remain identically zero leading to the identity: hiu =
sin(θi − θ)v. The above constrained dynamics also give us

the following;

vi =
h

hi

v

wi = a
(u̇hi − v̇ sin(θi − θ))

awiuu + avwi
v

−
(avwvw + awuwu + avuvu + auuu2)

awiuu + avwi
v

(9)

where avw = ωv
vw sin(θi − θ)−ωu

vwhi +(ωv
viw

sin(θi − θ)−
ωu

viw
hi)

h
hi

, awu = ωv
uw sin(θi − θ) − ωu

uwhi, awiu =
ωv

uwi
sin(θi − θ) − ωu

uwi
hi, avwi

= ωv
vwi

sin(θi − θ) −
ωu

vwi
hi + (ωv

viwi
sin(θi − θ) − ωu

viwi
hi)

h
hi

, avu =
ωv

vu sin(θi − θ) − ωu
vuhi + (ωv

viu
sin(θi − θ) −

ωu
viu

hi)
h
hi

, auu = ωv
uu sin(θi − θ) − ωu

uuhi.

For consensus of the N subsystems, we want control over

the functions v, w, u. The identity hiu = sin(θi − θ)v along
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with (9) implies vi approaches v and wi approaches w as

u, u̇ approaches zero (assuming v > 0). Hence controllers

that drive v ∈ [vmin, vmax], w, u = 0 trivially satisfy the ac-

tuator/operating constraints of (7). Two sets of exponentially

stabilizing nonlinear control laws are designed for v, w, u;

one to drive the formation towards a desired waypoint, and

the other to drive v = vmin+vmax

2 , w, u = 0 [6]. Figure

(1) shows simulation results for six agents moving through

a given set of waypoints while maintaining formation for

the proposed motion planning algorithm. The time history

of the functions vi, wi corresponding to “speed” and “steer”

for each of the six agents for the above results are shown in

Fig.(2). The lower and upper bounds of vi, wi are also shown.

For details of the motion planning algorithm including the

X

Y

Fig. 1. Formation keeping motion for six mobile agents
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Time
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Time

Fig. 2. “Speed” and “Steer” controls for each of the six agents for the
coordinated motion shown in Fig.1

distributed communication architecture and the exponentially

stabilizing nonlinear control laws, we refer the reader to [6].

VII. CONCLUSION

A class of problems in formation control is consid-

ered. An intrinsic geometric formulation of the associated

constraints unifies this class of problems. The constraints

include nonholonomic, holonomic and actuator constraints.

The constrained dynamics as well as the real-time trajectory

generating algorithm is validated through simulations for the

rigid formation keeping example.
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