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On Transmitter Design in Power Constrained LQG Control

Peter Breun and Wolfgang Utschick

Abstract— We consider a linear dynamic system to be con-
trolled using feedback information that has to be transmitted
over a power constrained channel with additive noise. We
propose a novel approach to the transmitter design in order to
minimize the cost function for the linear quadratic Gaussian
(LQG) control problem when the standard state estimator and
linear controller are used. We show that the well known lower
bound on transmit power is tight for our solution and derive
a transmission scheme that achieves this lower bound.

I. INTRODUCTION

Over the last decade, there has been considerable interest
in the investigation of control problems that take into account
constraints on the communication links which are used for
information exchange. The recent survey papers [1], [2] and
the extensive lists of references therein are examples which
document this development. In this period, some fundamental
insights have been gained like the minimal data rate [3]-[5]
or minimal transmit power [6] necessary for the stabilization
of linear systems. Publications related to information theory
analyzed the information that can be transmitted using closed
control loops [7] or refined information theoretic quantities
describing the requirements of closed loop control [8]. Con-
cerning the communication channel, there exist mainly two
different viewpoints: restrictions of the transmission rate due
to noiseless but discrete channels (with finite quantization
levels) or real valued channels with additive noise. There
are only few results on discrete channels with errors [9]-[11]
which harder to handle. There have also been contributions to
distributed control systems with communication constraints
which inspired new algorithms based on the classical as-
sumption that quantization behaves like independent additive
noise [12], [13].

Some of the approaches in the field of control under
communication constraints have been developed in the LQG
context [12]-[17]. This paper also focuses on this framework,
with the communication link to be an additive white Gaus-
sian noise (AWGN) channel and the constraint of limited
transmit power which, in combination with the channel noise,
leads to a finite signal to noise ratio. There have already
been previous attempts to consider this type of problem.
In [18], the control signal is transmitted directly over the
AWGN channel and the controller is designed to generate a
control signal with constrained variance. The disadvantage
hereby is that no receiver is specified which, among other
details, results in the fact that available transmit power may
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not be fully exploited even if available. The authors of [19]
consider the introduction of a scaling factor at the transmitter
for scalar systems and include this factor in the LQG cost
function. This results in a bounded transmit power, but does
not allow for the specification of a hard power constraint
since the power actually used depends on the weighting
factor assigned to the transmit scaling.

We will follow a similar idea as in [19], which is based on
the optimization of the LQG cost using a scaling. However,
we consider a single-input single-output (SISO) system with
vector valued state implying the design of a transmit filter
vector instead of a scalar. The optimization is performed
under a hard transmit power constraint which is formulated
such that the validity of the solution of the standard LQG
problem, i.e., the optimal state estimator (Kalman filter)
and a linear controller, is guaranteed. Consequently, the
transmitter is designed to minimize the resulting cost after
the optimal estimator (which depends on the transmitter) and
controller (independent on the transmitter) are applied.

The paper is organized as follows. In Section II, we
introduce the system and the channel model as well as
the cost function to be optimized and the solution to the
standard LQG problem. Section III presents the definition
of the transmit power constraint and motivates the choice
for it. We propose a suboptimal solution to the resulting
optimization problem and give an interpretation. It is shown
that the well known lower bound for the transmit power is
tight for the solution. The last part of the section describes
how this bound can be achieved by transmit processing for
noiseless systems.

Notation: Vectors and matrices are denoted by lower and upper
case bold letters (e.g., a and A), whereas scalars are lower case
letters (e. g., a). The operators E [o], E[e|a], (¢)T, and tr[e] are
expectation, expectation conditioned on the vector a, transpose
and trace of a matrix, respectively. e; is the ¢th column of the
N x N identity matrix Ix. The all-zeros vector of dimension N
is denoted by On. N (p,Cq) denotes the Gaussian distribution
of the real random vector @ with mean g and covariance matrix

Coa=El(a—p)(a—p']

II. PRELIMINARIES AND PROBLEM FORMULATION

The system under consideration is depicted in Fig. 1 and
its components will be presented in Section II-A and II-B.

A. System Model

We consider the following linear time invariant, discrete
time system in state space representation:

Ti41 = Az + bug +wy, k€ {0,1,27...}, (1)
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where x;, € RM is the system state at time index & and
A € RM*M jg the state transition matrix. The initial
state g ~ N (0p7,Cq,) and the stationary process noise
wg ~ N (0p,Cu), k € {0,1,2,...}, are assumed to be
mutually independent Gaussian random vectors. The system
has a scalar input uy € R, k € {0,1,2,...}, and b € RM is
the system input vector.
Wy,
" U -

Tpt1 = Axy + buy + wy

Tran smitterj

Closed loop system.

Receiver/
Controller

K ?<
Vg
Figure 1.
B. Channel Model

A typical assumption is that the system state is not directly
observable. Instead, only the noisy observation

yp=clxp+v €R, ke{0,1,2,..}, )

is available. Here, ¢ € RM is the system output vector and
v ~ N (0,¢), k €{0,1,2,...}, is the stationary observa-
tion noise which is assumed to be mutually independent and
independent to the process noise and initial state.

Eq. (2) allows for a second interpretation. A standard chan-
nel model in communication theory is the AWGN channel,
which can carry a real number and provides a noisy version
of it at the channel output. Assume now that we have access
to the system state, but are only able to transmit signals
to the controller over such an AWGN channel. Thus, we
have the degree of freedom to choose the vector ¢ (under
the assumption that (A, ¢) is observable) and treat the joint
communication and control problem in the LQG framework
which is referred to as transmitter design. The goal is to
determine the control sequence ug, k € {0,1,2,...}, and
the vector ¢ such that the cost function presented in Section
II-C is minimized.

In Section III-D, we will consider a more general transmit-
ter in order to achieve the minimum transmit power possible.
In this case, the observation equation has the form

yp=c' (xp — )+ €R, k€{0,1,2,...}, 3

where d;, has to be determined in addition to c.
Note that together with Eq. (2) or (3), respectively, the
system given in Eq. (1) describes a SISO system.

C. Cost Function

We consider the LQG control problem with infinite hori-
zon. In this case, the cost function which describes the
average cost per stage is given by [20]

1 N-1

Joo = A}Enoo N E|zhQxy + ZO Ty Qx, +ru|. (4)
where @ € RM*M jg a positive (semi)definite weight matrix
and r > 0 is the control weight.

D. Solution of the LOG Control Problem

A well know result is that the cost function (4) is mini-
mized by the control values

up =172 (5)
where
. 7uk—1] (6)

is the estimate of x;, given the information available at time
k. The linear controller is

"= (b"Kb+7r) b'KA, %)

2" =B l@x] yo, -, v, uo, -

where K is the positive semidefinite solution of the discrete
algebraic Riccati equation (DARE)

K=A"(K-Kb(b"Kb+r) 'b'K)A+Q. (®)

The conditional mean estimate in Eq. (6) is computed using
the Kalman filter. Applying the control given in Eq. (5) to
the system (1), the optimal cost reads as

Jo =tr[PCg| +tr [KCy], )

where Cj is the stationarPr covariance matrix of the estima-
. - « (kTk
tion error £ = Ty — :13,(c ) and

P=A"Kb(b"Kb+7r)  bTKA. (10)
The stationary error covariance is given by [20]
Cs =CL—Cle(c"Chete,) ' ¢"CE. (1)

The stationary error covariance matrix of the Kalman filter
in the “prediction” step CY¥ is the solution of the DARE

Ch—A(CE - Che(c"Che+c,) ' c'CE) AT + Cy.
(12)

III. TRANSMITTER DESIGN

Using the interpretation of the observation equation (2)
as the transmission of ¢Txj over an AWGN channel, we
now aim at the transmit filter vector ¢ for the system state
such that the LQG cost is minimized and a constraint on the
transmit power is satisfied. The necessity of such a constraint
will be explained in Section III-A.

The cost function in Eq. (4) can be minimized w.r.t. the
control sequence uw = [ug, u1, . . .| first and then to ¢ because

min J,, = min (Inin JOO) , s.t. {u,c}€eq, (13)
u,c c u

with the restriction that the control signal wy at time & must
depend on yo,y1,...,Yk, and ug,u1,...,ur—1 only. Here,
G describes the set of values the vector ¢ and the control
sequence u are allowed to be chosen from. It will be used in
the following to limit the transmit power. If G solely restricts
the choice of ¢, e. g.,

G = {uvc|g(c) < O}v

where g(c) € R is a function of ¢ only, the solution of u will
be identical to Eq. (5) and (7), i.e., a linear controller with

(14)
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an optimal state estimator. Thus, for this type of constraints,
the inner minimization of (13) results in the optimal value
given by Eq. (9). Since the second term of (9) containing
the process noise covariance matrix is independent on c,
only the first term can be further minimized w.r.t. c. Thus,
the objective is to minimize the trace of the weighted error
covariance matrix.

A. Transmit Power Constraint

If the cost function J,, is minimized w.r.t. ¢ without
a constraint, the result will have an infinite norm. This is
easy to verify using Eq. (11). Increasing the norm of c is
equivalent to decreasing the variance c, of the observation
noise. In the limit for infinite norm, we have a noiseless
state estimation problem which clearly results in a smaller
estimation error than with observation noise, but the transmit
power used will be infinitely large. This shows that at least
the norm of ¢ must be restricted in order to ensure a finite
transmit power.

The actual transmit power used is given by the stationary
variance of ¢Txy, which reads as E[(cTx)?] = cTCye,
with the stationary covariance matrix C, of the system
state. The restriction of this variance in order to keep the
transmit power finite has the major disadvantage that Cy
is a function of the control sequence w. In this case, the
solution presented in Eq. (5) and (7) is not optimal anymore
since it is the result of an unconstrained optimization of J
w.r.t. w. Thus, instead of using c¢TCLe, we consider the
following constraint:

c'Clec < Py, (15)

where Pry is the available transmit power. This choice is
motivated by the following reasons:

« The error covariance matrix CE is independent on any
control signal [20]. Referring to Eq. (14), the constraint
set G is given by

G = {u7c‘cTC’gc—PTx§0}, (16)

which restricts the choice of ¢ only. Thus, the control given
in (5) remains optimal.

In [15] it has been shown that the optimal linear trans-
mitter at time index k+ 1 that additionally has perfect
access to the observations yy, £ € {0,1,...,k}, performs
an innovation coding which results in a covariance matrix
of the signal to be transmitted that is identical to the
error covariance matrix C’g. In Section III-D, we show
that for the case of a noiseless dynamic system (i.e.,
wy = 0y, VEk), this can be achieved without additional
feedback from the receiver to the transmitter and without
changing the solution obtained in Section III-B which does
not take into account the innovation coding.

B. Optimization Problem

Following the preceding discussion, the optimization prob-
lem for the determination of the transmit filter vector c is

mintr [PCgz] s.t. ¢'Cte < Pry, (17)

where the expressions for P, Cz and CE are given by
Eq. (10), (11) and (12), respectively. The problem is that
the error covariance matrix Cz does not only depend on c,
but also on Cg which is, as the solution of a DARE, an
implicit function of c.

In order to derive a suboptimum solution to the problem,
we assume in a first step that CL is not a function of ¢
and solve the optimization in (17) which is straight forward
using this assumption. Then, C¥ is updated with this solution
according to (12) and, if necessary, (17) is solved again using
the updated error covariance matrix. This implies an iterative
procedure. Nevertheless, we will see that it is not necessary
to perform it this way.

Note that this approach can be interpreted in the context
of the suboptimal “forward” solution to the minimization of
the LQG cost function with a time variant transmit vector.
Considering the LQG problem with finite horizon N, the cost
function after the application of the optimal LQG controller
is a sum of traces of the weighted process noise covariance
matrix Cy, and the weighted covariance matrices Cz, , k €
{0,1,..., N—1}, of the state estimation error at time index k
(see, e. g., [21]). The optimum strategy would be to determine
all transmit vectors cg,k € {0,1,...,N — 1}, jointly in
order to minimize the contribution of the estimation errors
to the final cost. This could be accomplished backwards in
time using a dynamic programming approach. In order to
simplify the solution, the suboptimal approach minimizes
the contribution of each estimation error separately starting
with £ = 0. This determines the transmit vector ¢g and the
covariance matrix Cgl, which is necessary for the determi-
nation of c; etc. Performing the transition to the average
cost infinite horizon problem, this gives an idea about the
suboptimality of the solution presented in the following with
the assumption that CE does not depend on c.

In order to keep things simple we rewrite the cost function
in (17) using the eigenvalue decomposition of P,

P=wAW" = \ww?, (18)
where W is an orthonormal matrix and A is a diagonal
matrix. Since P is positive semidefinite and has rank one
(cf. Eq. 10), only one eigenvalue X is positive, all others are
zero. Thus, problem (17) reads as

min \wTCzw  s.t. cTCgc < Pry. (19)
c
The corresponding Lagrange function is
Lie,p) = w Czw + p (c"Che — Pry),  (20)

with the Lagrange multiplier ;4 > 0. Note that the error
covariance matrix C}y is given by Eq. (11). Taking the
derivative of L(c, ) w.r.t. ¢ and setting it to zero, we get
the condition

A (cTCgc + ¢y) (wTC:gc) Ciw
- ()\ (wTCgc)2 +u(c"Che+ Cv)z) Cic, (21)
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where we have to keep in mind that C’g is a positive definite
matrix assumed to be independent on c. Thus, we find that

(22)

c = ow,

where « is a non-zero real scaling factor. Using this result,
the Lagrange multiplier can be expressed as

p=x (W Clw +c,) w Clwe,,  (23)

which is positive under the assumptions made. Thus, the
transmit power constraint is active and we find « by inserting
c in (15) using equality:

PTx
“ = wTcre &4
Finally, this results in
PTx
°=\ wctw™ 2

where the positive solution has been chosen since the sign of
« has no influence on the cost function. Note that only the
scaling of ¢ depends on the error covariance matrix CE.
Thus, the unscaled version of the transmit vector can be
computed independently of the error covariance matrix and
is given by the eigenvector of P corresponding to the non-
zero eigenvalue. It remains to determine the error covariance
matrix C; for the correct scaling. Inserting Eq. (25) in (12),
we get
-1

Ct = A(Cg — Chw(w"Chw + %) chg) AT+ C,,
P Tx + Co

= A <Cg —Ctw <wTng
PTx

-1
) wTCE)| AT+ C,,.
(26)

The solution in Eq. (25) has an interesting interpretation.
Since w is the eigenvector belonging to the only non-zero
eigenvector of P (cf. Eq. 10), it can be written as

w=A"Kb|ATKb|,", 27)
with the eigenvalue A\ = (bTKb + r)71 HATKij Com-
paring this with Eq. (7), we see that the transmit vector c is
just a scaled version of the optimal control vector I. Thus,
the transmitter computes the optimal control and scales it in
order to meet the power constraint. The receiver reconstructs
the state vector from the received scalar signal and applies
the unscaled control vector I (cf. Eq. 7).

C. Minimal Transmit Power

A well known result in the literature on control under
communication constraints is the lower bound on the transmit
power necessary for the stabilization of an unstable linear
plant. This bound is given by [6]

2
PTx,min = (H )\gu) - 1) Cu,

K2

(28)

where )\gu) are eigenvalues of A that lie outside the unit disc.
In the following, we will show that this bound is also tight for
the proposed transmission scheme. For the proof we utilize
the solution given in Eq. (25), which results in no loss of
transmit power and allows to achieve the lower bound.

Proposition 1. The lower bound on the transmit power
for the transmitter shown in Eq. (25) is given by Prypin
(cf. Eq. 28) and can be approached arbitrarily close.

Proof. Considering Eq. (26), we find a DARE with the
parameter e o o
t= poi Pwa Ciw,
which depends on the given transmit power and the error
covariance matrix Cg. This matrix is a function of Pry
and the unscaled transmit filter vector w (cf. Eq. 26). For
Pry — oo, the error covariance matrix will approach its
asymptotic value which is identical to a scenario without
observation noise. In this case, ¢ will approach zero. On the
other hand, for Pry — Pry min, the estimation error will grow
and, in the limit, approach infinity which results in ¢ — oo.
Rewriting Eq. (29), the transmit power can be expressed as

Pry = (30)

(29)

TP, —1 T
w Cowt™ ¢, = w Xwey,

where we used the abbreviation X = ¢~!CE. Using this
notation and considering the case ¢ — oo, Eq. (26) can be
rewritten as

X-A (X ~ Xw (W Xw+1)"" wTX) AT, 31
This DARE corresponds to the deterministic expensive cost

linear quadratic regulator (LQR) problem with state feedback
which has the solution

oo
: 2 _ T
min E up = Ty X To,
k=0,1,2,... k=0

(32)

subject to the state equation x4 = ATz, + wuy, and
ug = Tay. Here, xo is the initial system state. In [6] and
[22] it is shown that

w' Xw = H

K2

AW *

(33)

Note that this result holds for ¢ — oco.! Inserting Eq. (33) in
(30), we finally find the bound given in Eq. (28) which can
be approached arbitrarily close by increasing the value of ¢
to infinity with Pry — Pr min- O

Note that this result on the transmit power holds for
every vector ¢ which satisfies the transmit power constraint
and under the observability assumption. It does not depend
on the properties of the solution obtained in Section III-
B, Eq. (25). Thus, any appropriately scaled transmit vector
could be used. Nevertheless, the resulting cost JZ_ (cf. Eq. 9)
will be different due to the influence of ¢ on the estimation
error. The solution presented in Section III-B ensures that

IThe result from [6] and [22] holds here since the eigenvalues of A and
AT are identical.
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the minimal transmit power is achievable while keeping the
LQG cost small. Note that in [22] the result from Eq. (33)
is used to derive the coarsest quantizer for a noise free SISO
system. This indicates again the interconnection of minimal
transmit power in noisy systems and minimal information
rate in noise free, quantized systems.

D. Innovation Coding

In the previous subsections, we assumed that the transmit
signal is a linear function of the state xj with stationary
covariance matrix C,, whereas the transmit power constraint
implied that the covariance matrix of the signal to be
transmitted is Ct. Due to the stability of the closed loop
system, the transmit power is bounded, but the mismatch
in the transmit covariance matrices results in an increase of
this power if Tz}, is transmitted (cf. Eq. 2). The goal is to
introduce a coding scheme at the transmitter which generates
the desired covariance matrix, but ensures that the processing
at the receiver that uses the Kalman filter remains optimal.
To this end, we recall the Kalman filter equations for the
computation of the state estimate,

i.](ck|k) _ :ﬁl(ck\kq) +g (yk _ CT@](kafl)) ’ (34)
with ﬁ:,(cklk) =FE[zk|yo,-- -, Yk, U0y - - Uk—1],
& = A bu, (35)

and the stationary Kalman gain vector (using the transmit
power constraint)

g=Clc(c"Che+ cv)71 =Cle(Pry+c,) ", (36)

In Eq. (34) we see that the first step in the Kalman filter
algorithm is the computation of the innovation

L (klk—1
g FE-Y

2k = Yk — 37)
=cT (cc — :fc;f‘k_l)) +v
. . o (klk—1) .
If the transmitter knows the state estimate £, , it can

S o (k|k—1) .
compute the estimation error xj —acgC =1 in advance and

transmit it using the same filter vector ¢ that has been
computed in Section III-B. Referring to Eq. (3), this cor-
responds to & = ﬁ:,(cklk_l). The only modification necessary
at the receiver is to omit the computation of the innovation
(cf. Eq. 37) but to use directly the channel output which is
now identical to zy.

It remains to discuss how the transmitter gets knowledge
about :%Ef‘k_l). In [15], the existence of a perfect link
between receiver and transmitter is assumed that feeds back
the channel output. Thus, the transmitter can also run the
Kalman filter and compute the state estimate. The drawback
of this assumption is that it can hardly be realized. But for
a noiseless dynamic system (i.e., wy = Oy, VEk), such a
link is not needed since the state which can be observed at
the transmitter contains all necessary information. First, at
time index k + 1, the control u; can be computed using the
observed state sequence by (cf. Eq. 1)

up = b" (Tpp1 — Axy), (38)

with 5™ = b7 /||b]|2. Recall that u;, = I"&F") (cf. Eq. 5).
Since uy, is known, we can solve with Eq. (34) for y;. With
the knowledge of the channel output, it is now possible to
determine the state estimate as

2R g (FF=D) . oP . (lTC;jc)‘1(uk—lT§;,§’“"“‘”). (39)
With Eq. (35), the estimation error @1 — :f:,(ﬁrll‘k) can be
computed and transmitted using c. Note that this estimation
error has the desired covariance matrix C%.

Putting all parts together, the resulting control loop that

transmits feedback information over a power constrained
AWGN channel can be depicted as in Fig. 2.

Uk Lk
[ > Tyl = Az, + buy,

1T ﬂ wk_iqu—l)
1 mod. 2k ?< .
Vi

Kalman
Figure 2. Proposed scheme with innovation coding and modified Kalman
filter for noiseless system (wg = Opy).

The drawback of this approach is that the state estimate
can be determined at the transmitter only theoretically. Since
the estimate is computed recursively using the control vari-
able uy, instead of the observation yy, any error like round-off
etc. will cause problems due to error propagation. Thus, the
state estimator at the transmitter and the receiver should be
synchronized from time to time.

IV. NUMERICAL EXAMPLE

In order to evaluate the suboptimality of the solution of
the transmitter design found in Section III-B, we applied it to
the stabilization problem of an inverted pendulum [13], [23].
The physical parameters of the system are given in Table I.

Mass of cart 0.5 kg 9(t)‘
Mass of pendulum 0.2 kg :
Friction of cart 0.1 % !
|
Length to pendulum 0.3 m u(t)
center of mass w(t) x(t)
: =3 P
Inertia of pendulum 6-107°kgm L
Table 1

MODEL PARAMETERS OF THE PENDULUM STABILIZATION PROBLEM.

The state of the continuous dynamics is
[z(t), &(t),0(t), 6(t)]T. The system has been discretized
with a sampling period of T = bms using zero order hold.
The weight matrix for the state of the discrete time LQG
problem is chosen to be @ = ejel + 10%ezed in order
to keep the angle 6(¢) small, and r = 1. The covariance
matrix of the process noise in the continuous time domain
is determined by the disturbance force w(t) and is given

by Cuwcon. = 0.lesel.? The discrete observation noise

2Due the the presence of process noise, we have to assume that the control
values uj, are available to the transmitter (cf. Section III-D).
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variance is ¢, = 0.1. Using the parameters given in Table I,
this results in an minimal transmit power Pry min = 0.0057.

220 Suboptimal transmitter -
--8-- Numerically optimized
"""""""" Tx,min

200

LQG cost
—
0
S

160

0 0.01

140 ! !
0.02 0.03 0.04

Transmit Power

0.05 0.06

Figure 3. LQG cost for the inverted pendulum.

The solid line in Fig. 3 shows the resulting cost if the
solution given in Eq. (25) is applied. Using this as an initial
point, we applied a general purpose numerical optimizer to
the transmitter optimization problem. The dashed line shows
the resulting cost. As expected, we see that the numerically
optimized transmitter performs better, but the gap is small
for a transmit power larger than approx. 2 Pry min-

V. CONCLUSION

In this paper, we considered the problem of joint trans-
mitter and controller design for a linear SISO system where
the control loop is closed over an AWGN channel with
transmit power constraint. Due to the quadratic cost function
and the restriction to linear transmitters, the problem could
be investigated in the LQG framework. In order to find a
solution based on known results, we modified the power
constraint not to include the covariance matrix of the system
state, but the covariance matrix of the estimation error.
Neglecting the impact of the error covariance matrix on
the transmit filter vector, we found the solution vector that
minimizes the LQG cost which turns out to be a scaled
version of the optimal control vector. We showed that the
known bound for the minimal transmit power is tight for
the proposed scheme and the minimal transmit power can be
achieved by innovation coding at the transmitter for noiseless
systems. Future work includes the extension of the presented
scheme to MIMO systems and to systems with process noise.
A further point is the evaluation of the proposed approach
taking into account the dependence of the estimation error
covariance matrix on the transmit filter.
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