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Abstract— In this paper, the problem of controller design
for networked control systems with time-varying sampling
rates and time delays is investigated. By using a memory at
the feedback loop, a digital robust controller that minimizes
an upper bound to the H∞ performance of the closed loop
system is determined. The design conditions are obtained from
the Finsler’s Lemma combined with the Lyapunov theory
and expressed in terms of bilinear matrix inequalities. Extra
variables introduced by the Finsler’s Lemma are explored
in order to provide a better system behavior. The time-
varying uncertainties are modelled using polytopic domains.
The controller is obtained by the solution of an optimization
problem formulated only in terms of the vertices of the polytope,
avoiding grids in the parametric space. Numerical examples
illustrate the efficiency of the proposed approach.

I. INTRODUCTION

One of the most challenging problems facing electrical en-

gineering nowadays is concerned with the perfect operation

of dynamical systems immersed in a hostile environment.

There is no denying the fact that linear models, both con-

tinuous and discrete in time, with uncertain parameters is an

important topic which is much investigated by the control

community in the last years all over the world. Among count-

less reasons, it is sagacious to seek better characterizations of

model uncertainties, not only to guarantee stability, but also

robustness against practical disturbances and perturbations

when filters or controllers are being synthesized.

Taking into consideration the above framework, the Lya-

punov theory (more precisely the Lyapunov Second Method

[1]) has been one of the main tools to deal with stability anal-

ysis and synthesis of controllers. In a large number of cases,

the design conditions can be expressed as an optimization

problem in terms of linear matrix inequalities (LMIs), which

can be numerically handled by powerful softwares [2, 3].

Bilinear matrix inequalities (BMIs) have also been applied

in the study of stability of linear systems. Despite non-

convex, optimization problems expressed in terms of BMIs

may represent a good strategy to face those cases in which

either no solution or only sufficient conditions are available

in the literature, for instance see [4–7] and references therein.
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Recently, technological advances have enabled the exten-

sive use of communication channels in the control of dy-

namic systems [8, 9]. Using a real-time network to exchange

information between control system components (sensors,

actuators, filters, etc.), these systems, known as networked

control systems (NCSs), have represented a good alternative

to implement distributed control and interconnected systems,

among others. To illustrate the importance of NCSs, one can

cite the following benefits: reduced system wiring, plug and

play devices, ease of system diagnosis and maintenance [9].

Unfortunately, some drawbacks also arise. NCSs suffer from

packet size and sampling rates constraints, time delays, sen-

sor signals saturation, etc. The study of control strategies to

surpass these difficulties has received considerable attention

recently, as for instance [10–17]. Many efforts have been

made in order to bring together the advances of the control

theory and the benefits of a communication network.

The Lyapunov theory, H2 and H∞ performance control

and LMIs have soon begun to be used in the NCS framework.

Recent works include [18] where a feedback controller for a

discrete-time Markovian jump system with random delays

is constructed via a set of LMIs conditions, [19] where

the control problem for the multipoint-packet system is

solved using H2 optimization techniques, [20] in which the

stabilization of an NCS is obtained by means of a packet-loss

dependent Lyapunov function and [21] where a Lyapunov-

Krasovskii functional is used to design a state feedback

controller for a time-delay sampled system.

Despite all these advances, many results appeared so far

concerned with NCS still fail in providing robustness against

practical issues. Important aspects of the real network are

neglected during the design step. For example, controllers

are designed without taking into consideration any index

of performance, as in [15], what may lead to poor system

behaviors. Some methods do not apply when the system is

subject to both time-varying sampling rates and network-

induced delays, while others require the a priori knowledge

of the exact values for the sampling rates and time delays

applied at run-time. Conservatism is introduced by the use

of quadratic stability. BMI techniques seem to be barely

explored in NCSs, as well as different structures to model

time-varying uncertainties, besides others.

The aim here is to provide robust memory controllers to

stabilize NCS subject to both time-varying sampling rates

and network-induced delays. The stability conditions of the

closed-loop system are certified by the Lyapunov theory and

the robustness of the controller by an H∞ guaranteed cost.

A parameter dependent Lyapunov function rather than the
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quadratic stability is applied in order to reduce the conser-

vatism of the proposed method. Using the extra variables

introduced by the Finsler’s Lemma, the design conditions

are expressed in terms of BMIs, that can be freely explored

in the search for better performance of the NCSs. Some

results appeared in the literature concerned with LMIs can

be obtained as a particular case from the conditions proposed

here, for instance the ones in [22–24]. Using a memory in the

feedback loop it is possible to cope with time-varying delays

without making use of more complex Lyapunov functionals

(what may require a bigger computational burden) as the

one in [21]. All the sampled system matrices are supposed

to be affected by the time-varying parameters, which are

modelled inside polytopic domains. The robust memory

controller is then obtained by the solution of an optimization

problem that minimizes an upper bound to the H∞ index of

performance subject to a finite number of BMI constraints

formulated only in terms of the vertices of a polytope. No

grids in the parametric space are used. Numerical examples

illustrate the efficiency of the proposed results not only

in the NCS framework but also when compared to other

techniques for robust control of time-varying discrete-time

systems appeared in the literature.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider the model described in Figure 1. The physical
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Fig. 1. NCS Model.

plant is given by the following equations, for t ≥ 0

ẋ(t) = Ax(t)+Bu(t − τ)

y(t) = Cx(t)+Du(t)+Ddu(t − τ)

x(0) = 0, u(θ) = 0, θ ∈ {−τ,0}

(1)

where τ represents the network-induced time delay, x(t)∈ IRn

is the state space vector, u(t) ∈ IRm is the control signal and

y(t)∈ IRq is the output. All matrices are real, with appropriate

dimensions.

System (1) is sampled with a period h ≥ τ , yielding the

discrete-time model, for k ∈Z+, x(0) = 0 and u(θ) = 0, θ ∈
{−h,0} [25]

x(kh+h) = As(h)x(kh)+Bsu0(h,τ)u(kh)

+Bsu1(h,τ)u(kh−h)+Bsww(kh) (2)

y(kh) = Csx(kh)+Dsuu(kh)+Dsdu(kh−h)+Dsww(kh)

where w(kh) ∈ IRr is an extra input, belonging to l2[0,∞),
used to model possible noise in the process. The system

matrices As(h), Bsu0(h,τ), Bsu1(h,τ), Cs, Dsu and Dsd are

given by

As(h) = eAh, Bsu0(h,τ) =

∫ h−τ

0
eAsdsB, Dsd = Dd

Bsu1(h,τ) = eA(h−τ)
∫ h−τ

0
eAsdsB, Cs = C, Dsu = D

(3)

As shown in [15], the sampling period h, as far as the

time delay τ , may change their values at run-time due to

different reasons, as for example bandwidth allocation and

scheduling decisions. Nevertheless, bounds in such variations

can be determined, guaranteeing that the actual values of h

and τ at each instant k (i.e., hk and τk) lie inside finite discrete

sets as specified below

hk ∈{hmin, . . . ,hmax}, hk = κ ·g, κ ∈ N

τk ∈{τmin, . . . ,τmax}, τk = κ ·g, κ ∈ N
(4)

It is assumed that the real values of hk and τk are not known

at time instant k, but only that they belong to (4) and vary in

such a way that hk ≥ τk, ∀k ∈Z+, which implies that hmax ≥
τmax. One possible way to guarantee that hk ≥ τk is by setting

the nominal sampling period h0 so that the intervals on (4)

do not overlap, in other words, hmin ≥ τmax. Nevertheless,

this choice will depend on each system to be controlled and

may not be feasible. The number of possible values of these

sets depends on the processor/network clock granularity g

[15]. The sampled system is then considered as a system

that depends on uncertain parameters that are time-varying.

In order to guarantee the stability of the networked system

shown in Figure 1, a memory state feedback controller is

designed. Using an extra state variable z(kh) to store the

last value of the control signal, u(kh−h), system (2) can be

rewritten as follows [25]

x̃(kh+h) = Ã(α(kh))x̃(kh)+ B̃u(α(kh))u(kh)

+ B̃w(α(kh))w(kh)

y(kh) = C̃(α(kh))x̃(kh)+ D̃u(α(kh))u(kh)

+ D̃w(α(kh))w(kh)

(5)

where x̃(kh) = [x(kh)′ z(kh)′]′, α(kh) represents the time-

varying uncertainties and1

Ã(α) =

[

As(h) Bsu1(h,τ)
0 0

]

, B̃u(α) =

[

Bsu0(h,τ)
I

]

,

B̃w(α) =

[

Bsw

0

]

,C̃(α) =

[

C′
s

D′
sd

]′

, D̃u(α) = Dsu, D̃w(α) = Dsw

(6)

In the case where there is no time delay (τ = 0), the state

space vector becomes x̃(kh) = x(kh) and the augmented

system matrices simplify in a standard way.

The control signal is given by

u(kh) = Kxx(kh)+Kdu(kh−h) =
[

Kx Kd

]

[

x(kh)
z(kh)

]

(7)

In order to represent the set of all possible matrices

in system (5) due to the time-varying uncertainties (4), a

1The time dependence of α(kh) will be omitted to lighten the notation.
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polytopic model is considered. More specifically, the system

matrices, for any time kh ≥ −h, are described as a convex

combination of well-defined vertices, which are given by the

arrangements of the extreme values of (4). In general, each

uncertain parameter defines two vertices, one given by its

minimum value and the other by its maximum value. This

will not be the case, as for instance, when the functions of

the uncertain parameter appeared in the system matrices are

not strictly monotonic.

The closed-loop system is given by

x̃(kh+h) = Ãcl(α)x̃(kh)+ B̃wcl(α)w(kh)

y(kh) = C̃cl(α)x̃(kh)+ D̃wcl(α)w(kh)
(8)

with

Ãcl(α) = Ã(α)+ B̃u(α)K, B̃wcl(α) = B̃w(α),

C̃cl(α) = C̃(α)+ D̃u(α)K, D̃wcl(α) = D̃w(α)
(9)

where K = [Kx Kd ]. The whole of possible outcomes for the

set (9) belongs to the polytope

P ,

{[

Ãcl(α) B̃wcl(α)

C̃cl(α) D̃wcl(α)

]

=
N

∑
i=1

αi

[

Ãcli B̃wcli

C̃cli D̃wcli

]

}

(10)

with the time-varying vector α lying inside the unit simplex

U =

{

α ∈ IRN :
N

∑
i=1

αi = 1, αi ≥ 0 , i = 1, . . . ,N

}

for all kh ≥−h.

The control problem to be dealt with can be stated as

follows.

Problem 1: Find constant matrices Kx ∈ IRm×n and Kd ∈
IRm×n of the state feedback control (7), such that the closed-

loop system (8) is asymptotically stable, and an upper bound

γ to the H∞ performance is minimized, that is, for all kh ∈
[−h,∞)

sup
w(kh) 6=0

‖y(kh)‖2
2

‖w(kh)‖2
2

< γ2 (11)

with w(kh) ∈ l2[0,∞).

Before proceeding to the solution of Problem 1, a previous

result is needed.

Lemma 1: (Finsler) Let ξ ∈ IRa, Q = Q′ ∈ IRa×a, B ∈
IRb×a with rank(B) < a, and B⊥ a basis for the null-space of

B (i.e. BB⊥ = 0). The following statements are equivalent.

i) ξ ′Qξ < 0, ∀Bξ = 0, ξ 6= 0;

ii) B⊥′
QB⊥ < 0;

iii) ∃ µ ∈ IR : Q−µB′B < 0;

iv) ∃ X ∈ IRa×b : Q +X B +B′X ′ < 0.

Proof: See [26].

By applying the Bounded Real Lemma [2], combined with

Lemma 1, condition (11) can be guaranteed as follows.

Lemma 2: For a given γ > 0, if there exists a parameter-

dependent matrix P(α)′ = P(α) > 0 such that the statements

of Lemma 1 are satisfied for

Q =





P(α+) 0 0

0 −P(α) 0

0 0 0





+





0 0 0

0 γ−1B̃wcl(α)B̃wcl(α)′ γ−1B̃wcl(α)D̃wcl(α)′

0 γ−1D̃wcl(α)B̃wcl(α)′ γ−1D̃wcl(α)D̃wcl(α)′− γI





B =
[

−I Ãcl(α)′ C̃cl(α)′
]

,

B
⊥ =





Ãcl(α)′ C̃cl(α)′

I 0

0 I



 , ξ =
[

x̃(k +1)′ x̃(k)′ w(k)′
]′

where α+ = α(k + 1), then the closed-loop system (8) is

asymptotically stable with an upper bound γ > 0 to the H∞

performance.

Proof: Let v(k) = x̃(k)′P(α)x̃(k) be a parameter-

dependent Lyapunov function. Considering the dual system

(i.e. Ãcl = Ã′
cl , B̃wcl = C̃′

cl , C̃cl = B̃′
wcl and D̃wcl = D̃′

wcl), it is

straightforward from statement i) of Lemma 1 that Lemma 2

ensures v(k) > 0 and

∆v(k) < −γ−1y(k)′y(k)+ γw(k)′w(k)

with the choice ξ = [x̃(k+1)′ x̃(k)′ w(k)′]′. The last inequal-

ity comes from ∆v(k) < 0 and

y(k)′y(k)− γ2w(k)′w(k) < 0

by applying the Bounded Real Lemma. Therefore, system

(8) has an upper bound γ to the H∞ performance and, from

the Lyapunov theory [1], is asymptotically stable.

The conditions of Lemma 2 appear as nonlinearities that

must be tested at all points of the simplex U , i.e., at an

infinite number of points. Hence, the main goal hereafter

is to obtain finite-dimensional conditions in terms of the

vertices of the polytope P to solve Problem 1. Using Schur

complement, change of variables and exploring the extra

variables provided by Lemma 1, parameter-dependent BMIs

assuring the existence of such controllers are given in the

next section.

III. MAIN RESULTS

Theorem 1: (H∞ ROBUST MEMORY CONTROLLER) Given the

augmented sampled system (5), if there exist matrices

L ∈ IRm×(n+m), Hi ∈ IRq×(n+m), F , Gi, Pi = P′
i > 0 ∈

IR(n+m)×(n+m), i = 1, . . . ,N and a scalar γ > 0 such that2

Ξi j ,









Pj −F −F ′ F12 FC̃′
i +L′D̃ui −F ′H ′

j 0

(⋆) F22 F23 B̃wi

(⋆) (⋆) F33 D̃wi

(⋆) (⋆) (⋆) −γI









< 0

(12)
i = 1, . . . ,N, j = 1, . . . ,N

F12 = FÃ′
i +L′B̃′

ui −F ′G′
j,

F22 = G jFÃ′
i + ÃiF

′G′
j +G jL

′B̃′
ui + B̃uiLG′

j −Pi,

F23 = G jFC̃′
i +G jL

′D̃′
ui + ÃiF

′H ′
j + B̃uiLH ′

j,

F33 = H jFC̃′
i +C̃iF

′H ′
j +H jL

′D̃′
ui + D̃uiLH ′

j − γI

2The term (⋆) indicates symmetric blocks in the LMIs.
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then the closed-loop system (8) is asymptotically stable with

a memory controller K = [Kx Kd ] = L (F ′)−1 and an H∞

guaranteed cost γ .

Proof: Firstly, applying the following operation

Ξ(α) =
N

∑
j=1

α j

{

N

∑
i=1

αiΞi j

}

(13)

in the BMIs (12) with the change of variables L = KF ′ it

follows that

Ξ(α) =









F̂11 F̂12 FC̃cl(α)′−F ′H(α+)′ 0

(⋆) F̂22 F̂23 B̃wcl(α)

(⋆) (⋆) F̂33 D̃wcl(α)
(⋆) (⋆) (⋆) −γI









< 0

(14)
F̂11 = P(α+)−F −F ′, F̂12 = FÃcl(α)′−F ′G(α+)′

F̂22 = G(α+)FÃcl(α)′ + Ãcl(α)F ′G(α+)′−P(α)

F̂23 = G(α+)FC̃cl(α)′ + Ãcl(α)F ′H(α+)′

F̂33 = H(α+)FC̃cl(α)′ +C̃cl(α)F ′H(α+)′− γI

Using Schur complement, inequality (14) can be rewritten as

follows




F̂11 F̂12 FC̃cl(α)′−F ′H(α+)′

(⋆) F̂22 F̂23

(⋆) (⋆) F̂33





+ γ−1
F̂4(α)F̂4(α)′ < 0 (15)

where

F̂4(α) =
[

0 B̃wcl(α)′ D̃wcl(α)′
]′

Defining X = [F ′ F ′G(α+)′ F ′H(α+)′]′ inequality (15)

yields statement iv) of Lemma 1 with Q, B and ξ given

by Lemma 2. Lastly, the controller K is obtained by the

change of variables L = KF ′, what concludes the proof.

Corollary 1: The minimum γ attainable by the conditions

of Theorem 1 is given by the optimization problem

minγ s.t. (12) (16)

From this point, some remarks are in order.

Remark 1: Stability of NCSs with time-varying sampling

rates and time-delays described by (4) was also addressed in

[15] in the context of interval models. The solution is given

in two independent steps. Firstly, a state feedback controller

is designed considering the fixed nominal values of sampling

rate and time-delay. Then, the robustness of the closed-loop

system against the uncertainties (4) is verified by means of an

interval system without applying any index of performance.

In other words, the effect of the time-varying parameters (hk

and τk) is not considered during the design step. Theorem 1,

however, provides a memory robust controller in a single step

taking into consideration all possible outcomes of hk and τk

in (4). Further, an extra input w(kh) was added in order to

characterize possible l2[0,∞) noise in the sampling process.

An upper bound to the H∞ performance of the closed-loop

system with respect to w(kh) is minimized.

Remark 2: By choosing G(α+) = 0 and H(α+) = 0 the

conditions of Theorem 1 reduce to the ones proposed in [23]

in the context of poly-quadratic stability [22]. In this paper,

differently from [23], statement iv) in Lemma 1 was applied

to reach more general BMI conditions with multipliers

defined as in Lemma 2 and X = [F ′ F ′G(α+)′ F ′H(α+)′]′.
The advantages of this approach are due to the extra variables

that can be used in the search for better performance of the

closed-loop system. For example, a lower H∞ guaranteed

cost may be obtained exploring the new variables G(α+) and

H(α+). In this sense, Lemma 2 encompasses the conditions

in [22].

Remark 3: Although other methods could be applied in

the solution of the BMI problem (16), the following algo-

rithm is proposed. Fix the variables Hi and Gi, minimize

γ w.r.t. F , L and Pi. Then, fix the variables F , L and Pi,

minimize γ w.r.t. Hi and Gi, get the new values of Hi and

Gi. Repeat this procedure until no significant changes in

the value of γ occur. This approach is sometimes called

an Alternating Semi-Definite Programming (or Gauss-Seidel)

method [4]. At each step a convex optimization problem in

terms of LMI conditions is solved.

Remark 4: The use of memory controller brings some

advantages when dealing with discrete time-delay systems.

Using a new variable to store the past values of the control

signal, it was possible to cope with Problem 1 without ap-

plying more complex Lyapunov functions, (for instance, the

Lyapunov-Krasovskii functional). Sophisticated Lyapunov

functionals may lead to conditions that require a bigger

computational effort to be solved.

Remark 5: By setting the variables G(α+) and H(α+)
at time kh + h (α+ = α(kh + h)) all products between

parameter-dependent matrices appeared at the BMIs (12)

occur at different instants of time. As a consequence, the

number of BMIs and the computational time required to

solve the optimization problem (16) are reduced. If Theo-

rem 1 was written with G(·) and H(·) at time kh, a more

sophisticated procedure, as the one proposed in [27], should

be applied in order to get the BMI conditions expressed just

in terms of the vertices of the polytope, resulting in a larger

number of BMIs.

Remark 6: The conditions of Theorem 1 are directly

applicable to NCS whose matrices depend affinely on the

vector of time-varying parameters, since this class of systems

has a polytopic representation whenever the parameters are

bounded [28].

Remark 7: Finally, it is important to emphasize that the

use of time-varying uncertainties in polytopic domains rep-

resents an interesting strategy to face Problem 1. Firstly,

it does not require the knowledge of the processor/network

clock granularity g, since the only information used to derive

the polytopic model are the extreme values of sets (4). Sec-

ondly, the time-varying uncertainties, introduced during the

sampling stage, can be completely modelled by a polytope

of the form (10). Once one has defined the vertices of the

closed-loop polytope, there will exist a vector α(khk) such

that (10) holds for each time instant k. The only condition

on vector α(khk) is that it belongs to the unit simplex U .

Furthermore, and the most interesting property, the number

of values in the sets (4) does not influence the computational
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burden; in other words, a larger number of hk and τk does

not require a bigger computational effort, what allows the

clock granularity to be as small as possible.

IV. NUMERICAL EXPERIMENTS

Example I

This example, borrowed from [15], consists of an electric

motor. The aim is to design an H∞ robust memory con-

trol of the speed through a communication network. The

continuous-time system is given by

[

θ̈
ρ̈

]

=







−
b

J

K

J

−
K

L
−

R

L







[

θ̇
ρ

]

+







0

1

L






v

θ̇ =
[

1 0
]

[

θ̇
ρ

]

(17)

where ρ is the current, θ the rotor angle, J the moment of

inertia of the rotor, b the damping ratio of the mechanical

system, K the electromotive force constant, R the electric

resistance and L the electric inductance. The control signal

v is the voltage applied to the motor.

Considering zero delay and time-varying sampling rates

in the sensor (as in [15]), system (17) can be rewritten in

the form (5) with the following system matrices

Ã(α) =

[

e−10hk −0.0003e−2hk 0.125(e−2hk − e−10hk)
0.002(e−10hk − e−2hk) −0.0003e−10hk + e−2hk

]

,

B̃u(α) =

[

0.025e−10hk −0.125e−2hk +0.099

0.0000626e−10hk −0.99e−2hk +0.99

]

, (18)

B̃w(α) =

[

1

1

]

,C̃(α) =

[

1

0

]′

, D̃u(α) = 0, D̃w(α) = 1.

The sampling rate is allowed to vary within the interval

hk ∈ [0.001 0.099]. Closing the loop with (7), system (18)

is expressed by the polytope (10) with two vertices (N = 2),

where the parameters αi are related to hk. The first vertex is

given by (18) with hk = hmin and the second one with hk =
hmax. For J = 0.01kgm2/s2, b = 0.1Nms, K = 0.01Nm/Amp,

R = 1Ω and L = 0.5H. Theorem 1 provides the result shown

in Table I.

TABLE I

H∞ ROBUST MEMORY CONTROLLER FOR EXAMPLE I.

Method H∞ Upper Bound γ Gain Matrix K

Theorem 1 124.6270 [0.0005 −0.9921]

Although not mentioned in [15], system (18) is already

stable (i.e. the stabilizing gain K = [0 0] could be applied).

Nevertheless, Theorem 1 is still useful in providing a gain

matrix that guarantees robustness against unmodeled l2[0,∞)
perturbations.

Example II

Consider a discrete-time system (5) with τ = 0 and vertices

Ã1 =

[

0.28 −0.315

0.63 −0.84

]

, Ã2 =

[

0.52 0.77

−0.7 −0.07

]

,

B̃w1 = B̃w2 =
[

1 0
]′

, B̃u1 =
[

1 2
]′

, B̃u2 =
[

9 21
]′

,

C̃1 =
[

1 3
]

, C̃2 =
[

2 1
]

, D̃w1 = D̃w2 = D̃u1 = D̃u2 =
[

0
]

This system was also studied in [23], but in a simpler

case where matrix C̃ was fixed and time-invariant (C̃1 = C̃2),

and the time-varying parameters of matrix B̃u had a lower

variance. Here, the results from Theorem 1 were compared

to [23, Theorem 5]. Using the proposed conditions, the

H∞ upper bound γ was reduced in approximately 49.13%,

providing better rejection of disturbances, as it can be seen

in Table II.

TABLE II

H∞ ROBUST MEMORY CONTROLLER FOR EXAMPLE II.

Method H∞ Upper Bound γ Gain Matrix K

Theorem 1 24.2184 [0.0303 0.0005]
Theorem 5 in [23] 47.6082 [0.0286 −0.0013]

V. CONCLUSION

The H∞ robust memory controller for networked control

systems with time-varying sampling rate and time delays

belonging to a polytope has been addressed in this pa-

per. A sufficient condition, where all system matrices are

considered to be affected by time-varying parameters, has

been stated in terms of BMIs described only at the vertices

of the polytope. The controller design is accomplished by

means of an optimization problem, which can be faced by

efficient numerical algorithms. A new state-space variable,

representing the memory of the controller, was added in order

to model time delays in the control signal. Extra variables

provided by the Finsler’s Lemma were used to derive the

BMI conditions. The proposed approach also provides some

improvements when compared with other methods from the

literature in the context of discrete-time systems with time-

varying uncertainties, what increases its reliability when

applied in NCSs.
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