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Abstract— We apply the unscented Kalman filter (UKF) to
data assimilation based on the vertical one-dimensional global
ionosphere-thermosphere model, which models the highly cou-
pled, strongly nonlinear Earth’s upper atmosphere. To reduce
the computational complexity of UKF, we introduce a localized,
sampled-data update scheme with frozen-intersample error
covariance, and examine its performance through numerical
simulation.

I. INTRODUCTION

For nonlinear estimation and data assimilation, the ter-

restrial weather forecasting community has largely adopted

the ensemble Kalman filter (EnKF) [1–6]. This technique

retains the data injection form of the Kalman filter but

does not propagate the error covariance in the classical

manner. Instead, EnKF propagates an ensemble of systems

under random forcing and initial states to estimate the

error covariance. This technique is applicable in principle to

highly nonlinear systems. Although the size of the ensemble

affects the accuracy of the estimates, there are no theoretical

guidelines for determining the size of the ensemble.

For applications involving nonlinear and non-Gaussian

systems [7], particle filters are used. A particle filter obtains

estimates through Monte Carlo simulation at each step using

an assumed probability density function and resampling tech-

nique [8]. Although particle filters can estimate the state of

a nonlinear system with a non-Gaussian probability density,

there is no definitive guideline for determining the number

of sample points for achieving good accuracy.

In contrast with the ensemble Kalman filter and particle

filters, the unscented Kalman filter (UKF) uses a determin-

istic number of ensemble members (specifically, 2n + 1
ensemble members, where n is the number of states of the

system) to estimate the error covariance and obtain the data-

injection gain [9, 10]. The fundamental component of UKF

is the unscented transformation, which uses a minimal set of

specially chosen weighted points to parameterize the mean

and covariance of the state probability distribution. These

sample points, which capture the mean and covariance of a

Gaussian random variable, are propagated through the model

to capture the posterior mean and covariance to second order

for smooth but arbitrary nonlinearities. Furthermore, UKF

treats the model and its software implementation as a black
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box, which eliminates the need to construct a Jacobian as

required by the extended Kalman filter (XKF) [11].

In view of these advantages, the goal of the present paper

is to apply UKF to data assimilation for space weather ap-

plications. In particular, we focus on the Earth’s atmosphere

between 100 km and 1000 km altitude, a region known

as the ionosphere-thermosphere. For this objective we use

the parallel global ionosphere-thermosphere model (GITM)

code as the basis of data assimilation. Using UKF, we

eliminate the need for either the Jacobian required by XKF

or a dynamics factorization required by the state-dependent

Riccati equation (SDRE) filter [12]. In addition, for flow

problems, UKF is significantly more accurate than XKF

under highly nonlinear conditions [11].

For large-scale systems, however, the 2n + 1 ensemble

size of UKF presents a significant computational burden.

For example, in vertical (altitude-only) 1D GITM, with

n = 700, the total number of states in the UKF ensemble

for GITM can reach 900,000, while, for the 3D case with 5◦

resolution in longitude and latitude, with n = 1, 814, 400,

the total number of states exceeds 1013 (10 trillion). The

resulting computational requirement necessitates localized

UKF, wherein data injection is confined to a specified region,

with coupling to data-free simulation in the exterior region

[13, 14]. With this approach, data assimilation based on

3D GITM is feasible through parallel implementation on a

multiprocessor cluster.

Data for GITM are provided by ground-based or space-

based sensors. Since measurements are not available at

every integration time step, we perform the unscented

transformation to update the covariance and state only when

measurement data are available. Between measurement

update times, GITM runs in data-free simulation mode.

Another relevant issue in data assimilation based on GITM is

that data assimilation performance depends on the accuracy

of the disturbance and measurement noise covariances.

Due to the high nonlinearity of GITM, UKF is sensitive

to the disturbance covariance and may become unstable or

yield poor performance. Although the measurement noise

covariance is known, a disturbance covariance must be

constructed to capture the effect of external drivers. For the

case of solar irradiation, we approximate the disturbance

covariance by means of a Monte Carlo method. Alternative

techniques are discussed in [15]
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II. SAMPLED-DATA UKF

Consider the discrete-time nonlinear system

xk+1 = f(xk, uk, k) + wk (2.1)

and measurements

yk = h(xk, k) + vk, (2.2)

where xk ∈ R
n, uk ∈ R

m, and yk ∈ R
p. The input uk and

output yk are assumed to be measured, and wk ∈ R
n and

vk ∈ R
p are uncorrelated zero-mean white noise processes

with covariances Qk and Rk, respectively. We assume that

Rk is positive definite. The inputs uk and wk represent

known and unknown physics drivers, respectively.

The starting point for UKF is a collection of state es-

timates or sample points that capture the initial probability

distribution of the state. The unscented transformation is used

to construct these sample points with a specified mean and

variance.

To define this procedure, let x̄ ∈ R
n, let P̄ ∈ R

n×n

be positive semidefinite, and let λ > 0. The unscented

transformation provides 2n + 1 sample points Xi ∈ R
n and

corresponding weights γs,i and γP,i so that x̄ and P̄ are the

weighted mean and weighted variance of the sample points,

respectively. The unscented transformation

X = Ψ(x̄, P̄ , λ) ∈ R
n×(2n+1) (2.3)

of x̄ with covariance P̄ is defined by

Xi =











x̄, if i = 0,

x̄ +
√

λP̃i, if i = 1, . . . , n,

x̄ −
√

λP̃i−n, if i = n + 1, . . . , 2n,

(2.4)

where P̃i is the ith column of P̃ ∈ R
n×n, which satisfies

P̃TP̃ = P̄ , and Xi is the ith column of X . The parameter

λ > 0 determines the spread of the sample points around x̄

but can otherwise be chosen arbitrarily. Note that

2n
∑

i=0

γs,iXi = x̄,

2n
∑

i=0

γP,i(Xi − x̄)(Xi − x̄)T = P̄ , (2.5)

where the weights γs,i and γP,i are defined by

γs,0 , 1 −
n

λ
, γP,0 , 1 −

n

λ
+ (1 −

λ

n
+ β), (2.6)

γs,i = γP,i ,
1

2λ
, i = 1, . . . , 2n. (2.7)

The parameter β ≥ 0 can be chosen arbitrarily; it is

customary to set β = 2.

UKF uses the unscented transformation to update the state

estimate by simulating 2n + 1 copies of the model with the

initial conditions X0, . . . ,X2n, and by using the propagated

states to approximate the mean and covariance of the state

error. We assume that an initial estimate xf
0 of the state x0

is given along with an initial error covariance P f
0 ∈ R

n×n.

For data assimilation based on GITM, we consider sim-

ulated data that are representative of an incoherent scatter

radar (ISR). The ISR data update rate is typically much

slower than the GITM integration time step. For the present

study, we implement UKF for GITM with state and error-

covariance measurement updates occurring every 60 seconds,

whereas the integration time step for the GITM advection

equations is 1 second.

Between measurement updates, the standard approach is

to propagate the error-covariance in open loop. However,

since the major dynamics of GITM are slow compared to

the measurement update rate, we freeze the error covariance

between measurement updates. A similar technique is used

in [16, 17].

The sampled-data UKF with data available every N steps

and with frozen intersample error covariance is illustrated in

Figure 1. We assume that measurements are available at the

sample instants k = N, 2N, 3N, . . ..

The UKF data assimilation step for k = iN given

xf
k, P f

k, λ, yk, and Rk is given by

X f
k , Ψ(xf

k, P f
k, λ), (2.8)

Y f
i,k , h(X f

i,k, k), (2.9)

yf
k ,

2n
∑

i=0

γs,iY
f
i,k, (2.10)

Pxy,k ,

2n
∑

i=0

γP,i(X
f
i,k − xf

k)(Y f
i,k − yf

k)T, (2.11)

Pyy,k ,

2n
∑

i=0

γP,i(Y
f
i,k − yf

k)(Y f
i,k − yf

k)T + Rk, (2.12)

Kk , Pxy,kP−1
yy,k, (2.13)

xda
k = xf

k + Kk(yk − yf
k), (2.14)

P da
k = P f

k − KkPyy,kKT
k . (2.15)

The UKF forecast step for k = iN given

xda
k , P da

k , λ, uk, and Qk is given by

Xda
k , Ψ(xda

k , P da
k , λ), (2.16)

X̃ f
i,k+1 = f(Xda

i,k, uk, k), (2.17)

xf
k+1 ,

2n
∑

i=0

γs,iX̃
f
i,k+1, (2.18)

P f
k+1 =

2n
∑

i=0

γP,i(X̃
f
i,k+1 − xf

k+1)(X̃
f
i,k+1x

f
k+1)

T + Qk.

(2.19)

The UKF forecast step for k = iN +1, . . . , (i+1)N−1
given xf

k, uk, and P f
k is given by

xf
k+1 = f(xf

k, uk, k), (2.20)

P f
k+1 = P f

k (frozen). (2.21)

III. LOCALIZED UKF

UKF estimates all states through data injection. In

particular, for a system with n states, UKF requires 2n + 1
simulation model updates, which are used to update the n×n

covariance. If n is large, as in the case of GITM, then the

computational burden of implementing UKF is enormous.

We address this problem by performing UKF updates of

both the states and the error covariance locally while treating

the subsystem coupling terms as known inputs. The benefit
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xf
k+1 = f(xf

k, uk, k)

P f
k+1 = P f

k

Evaluate KiN , yf
iN , Pyy,iN

through Ψ(·), h(·)

Update xf
iN+1, P f

iN+1

through Ψ(·), f(·)

Evaluate xda
iN , Pda

iN

Data

yiN

. . .
iN iN + 1

. . .

. . .

(i + 1)N − 1 (i + 1)N
. . .

?

?- 6

6
Data Assimilation Forecast

Forecast

Fig. 1. Timing diagram of sampled-data UKF with frozen intersample
error covariance.

of data assimilation thus reaches the entire system through

coupling between the localized and exterior regions.

Assume that the state xk ∈ R
n has the components

xk =

[

xL,k

xE,k

]

, (3.1)

where xL,k ∈ R
nL and xE,k ∈ R

nE denote the states of the

localized and exterior regions, respectively, and nL+nE = n.

We, assume that the measurements depend entirely on the

state xL,k so that yk can be expressed as

yk = h(xL,k, k) + vk. (3.2)

Finally, partition Qk and Pk as

Qk=

[

QL,k QLE,k

QT
LE,k QE,k

]

, Pk=

[

PL,k PLE,k

(PLE,k)T PE,k

]

. (3.3)

The objective is to directly inject the measurement data yk

into only the states corresponding to the estimate of xL,k by

using a reduced-order error covariance.

In the data assimilation step of UKF, we inject data into

the xL,k subsystem and update P f
L,k as if only the xL,k

subsystem were present. However, in the forecast step (2.17)-

(2.19), we update the full state vector Xi,k ∈ R
n through the

dynamics f(·) in (2.17) but with the number of ensembles

reduced from 2n + 1 to 2nL + 1 since the ensembles are

determined from P da
L,k ∈ R

nL×nL . This technique is the

localized unscented Kalman filter (LUKF) [13, 14].

LUKF data assimilation step for k = N, 2N, 3N, . . . is

given by

X f
L,k , Ψ(xf

L,k, P f
L,k, λ), (3.4)

Y f
i,k , h(X f

L,i,k, k), (3.5)

yf
k ,

2nL
∑

i=0

γs,iY
f
i,k, (3.6)

PxLy,k ,

2nL
∑

i=0

γP,i(X
f
L,i,k − xf

L,k)(Y f
i,k − yf

k)T, (3.7)

Pyy,k ,

2nL
∑

i=0

γP,i(Y
f
i,k − yf

k)(Y f
i,k − yf

k)T + Rk, (3.8)

KL,k , PxLy,kP−1
yy,k, (3.9)

xda
L,k = xf

L,k + KL,k(yk − yf
k), (3.10)

xda
E,k = xf

E,k (3.11)

P da
L,k = P f

L,k − KL,kPyy,kKT
L,k, (3.12)

where, for i = 0, . . . , 2nL, X f
L,i,k ∈ R

nL is the (i + 1)th

column of X f
L,k. Note that only 2nL +1 ensembles are used

rather than 2n+1 ensembles as in UKF, while (3.10)-(3.11)

indicate that measurement data are injected directly into only

the estimates of the state xL,k corresponding to the localized

region.

The LUKF forecast step is given by

Xda
L,k , Ψ(xda

L,k, P da
L,k, λ), (3.13)

X̃ f
i,k+1 = f(Xda

i,k, uk, k), (3.14)

xf
k+1 ,

2nL
∑

i=0

γs,iX̃
f
i,k+1, (3.15)

P f
L,k+1=

2nL
∑

i=0

γP,i(X̃
f
L,i,k+1−xf

L,k+1)(X̃
f
L,i,k+1−xf

L,k+1)
T

+ QL,k. (3.16)

where, for all i = 0, . . . , 2nL, Xda
i,k ∈ R

n, X̃ f
i,k+1 ∈ R

n have

the form

Xda
i,k ,

[

Xda
L,i,k

xda
E,k

]

, X̃ f
i,k+1 =

[

X̃ f
L,i,k+1

X̃ f
E,i,k+1

]

, (3.17)

where Xda
L,i,k ∈ R

nL is the (i + 1)th column of Xda
L,k, and

X̃ f
i,k+1 has components X̃ f

L,i,k+1 ∈ R
nL and X̃ f

E,i,k+1 ∈
R

nE . Notice that the estimate xda
E,k of the state xE,k in all

of the ensembles of LUKF in (3.17) is the same, whereas

the estimate Xda
L,i,k of the state xL,k is different in each

ensemble.

Although (3.11) implies that data are not directly injected

into the state estimates corresponding to xE,k, it follows from

Xda
L,i,k in (3.17), (3.13), and (3.15) that the measurement data

affect the estimates of the state xE,k through the dynamic

coupling between xL,k and xE,k. Since LUKF involves 2nL+
1 model updates, the number of states involved is of the order

(2nL+1)n. Hence, when nL ≪ n, LUKF is computationally

less demanding than UKF.

IV. GITM MODEL AND INCOHERENT SCATTER RADAR

MEASUREMENTS

The GITM is a fully parallel three-dimensional finite-

volume model that simulates the coupled ionosphere-

thermosphere system over the entire surface of the Earth in

spherical coordinates. GITM for data assimilation is based

on 14 state variables per cell, namely, the number densities

of the neutral species O, O2, N2, N, the vertical velocities of

each neutral species, the eastward and northward bulk neutral

velocities uφ, uθ, respectively, the normalized neutral mean

temperature Tn, and the number densities of the ions O+,

O+
2 , and NO+. Here, number density denotes the number

of neutral molecules or ions per cubic meter. These state

variables, which are updated by solving the equations of
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continuity, momentum, and energy, are used to compute

the number density of electrons Ne, the ion velocity vion,

and the ion temperature Tion, which correspond to the part

of incoherent scatter radar (ISR) measurement data. For a

detailed description of the physics, dynamics, and numerical

schemes, see [18].

While ISRs provide several data products [19], we

consider the number density Ne of electron, the line-of-sight

component of ion velocity vion, and the ion temperature Tion.

All ions are assumed to move in same velocity vion, while

Tion is the average value over the ion species. For 1D GITM,

we assume that the radar is pointed vertically to measure the

vertical component of ion velocity.

V. APPROXIMATING THE PROCESS NOISE COVARIANCE

Q

The disturbance covariance Q, which determines the

range of UKF perturbations, is a critical parameter for

strongly nonlinear systems such as GITM. An inappropriate

value of Q yields poor data assimilation performance includ-

ing instability. Filter performance can be improved by taking

Q to be proportional to the error covariance, a technique

known as covariance inflation [20–22].

For GITM, we approximate Q based on the measurement

update time step, which is much longer than the GITM inte-

gration time step. Basically, we assume that error-covariance

propagation is dominated by the disturbance rather than

the system dynamics during the measurement-update time

interval, which implies that the error-covariance can be

frozen between measurement updates.

We estimate Q based on the solar EUV irradiation F10.7,

which is one of several inputs to GITM. F10.7 is a main

GITM driver during calm periods, that is, when there are

few geomagnetic storms. Since F10.7 is largely unknown in

the sense that only its daily average is known [23, 24], its

variation is appropriately represented by wk. Consequently,

the process noise or disturbance input of GITM is assumed

to come from the random variation of F10.7.

A. Estimating the Covariance Q

At time step k, consider GITM with mean input µ̄k,

which represents mean value of F10.7. The resulting state

x̄k propagates according to

x̄k+N = f (N)(x̄k, µ̄k), (5.1)

where N is the number of steps in a sample period and

f (N)(·) is the mapping from time k to k + N .

Now consider GITM with inputs µk,i = µ̄k + ∆µk,i, i =
1, . . . ,m, where m is number of samples for Monte Carlo

simulation, µk,i is F10.7, µ̄k is the mean F10.7, and ∆µk,i

is the deviation from the mean. The mean of ∆µk,i is zero,

and the corresponding standard deviation is chosen to be 3

times larger than the standard deviation of the daily F10.7

variations. Hence

xk+N,i = f (N)(x̄k, µ̄k + ∆µk,i) (5.2)

≈ f (N)(x̄k, µ̄k) + ∆µk,iηk, (5.3)

where ηk ,
∂f(N)

∂µk
(x̄k, µ̄k) ∈ R

n. In (5.3), the term ∆µk,iηk

serves as the disturbance input. Using (5.1) and (5.3), we

obtain

∆µk,iηk ≈ xk+N,i − f (N)(x̄k, µ̄k) (5.4)

= xk+N,i − x̄k+N . (5.5)

Then, the process noise covariance Q̃k can be approximated

as

Q̃k ≈
1

m

m
∑

i=1

(ηk∆µk,i)(ηk∆µk,i)
T. (5.6)

To obtain a constant value of Q, we take Q to be the diagonal

part of Q̃k, where k is chosen such that tr Q̃k achieves its

maximum value over the simulation interval.

VI. OBSERVABILITY OF GITM FOR DATA ASSIMILATION

We assess the observability of GITM by changing the

measurement locations and quantities used in data assimi-

lation performed by UKF. We can thus select measurement

locations and quantities to optimize estimation accuracy. For

this study, we use a 1D vertical GITM model with 50 grid

cells covering 100 km to 750 km in altitude at the location of

Millstone Hill, MA, USA, where the Haystack Observatory

is located [http://www.haystack.mit.edu/].

A. Effect of Measurement Locations on Observability

To determine the effects of various measurement lo-

cations, we change the measurement cell from the lower

altitudes to the higher altitudes with three measurement

quantities, that is, the logarithm log(Ne) of the number

density of electrons, the vertical ion velocity vion,vert, and

the ion temperature Tion.

The problem objective is to estimate log(Ne), vion,vert,

and Tion in all 50 cells using measurements of log(Ne),
vion,vert, and Tion in either of the cells 10,20,29, or 40. We

assess the observability of each case by comparing the time-

averaged rms estimation errors.

In Figure 2(a) shows the spatial distribution of the rms

errors with respect to various measurement locations. The

overall errors are the smallest for measurements taken in

cell 29.

B. Effect of Measurement Quantities on Observability

We now consider all 7 combinations of the available

measurement quantities log(Ne), vion,vert, and Tion while

fixing the measurement location at cell 29. We can thus

assess the contribution of each measurement or combination

of measurements to estimation accuracy.

Figure 2(b) is the spatial distribution of the rms errors

for various combinations of the measurements, and it shows

that the measurements of the vertical component of the

ion velocity vion,vert have a negligible effect on the data

assimilation accuracy. Therefore, we can exclude vion,vert

from measurements for data assimilation without a noticeable

loss of accuracy. The cases of Ne, vion,vert and vion,vert, Tion

are similar to the the cases of Ne measurement and Tion

measurement, respectively.
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Fig. 2. (a) Cell number versus rms errors using measurements from different locations. (b) Cell number versus rms errors using different combination of
measurement quantities.
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Fig. 3. (a) Cell number versus rms errors. (b) Ratio of sum of data assimilation rms errors to the sum of no-data-assimilation errors. The LUKF
performance for regions of various sizes are compared with the performance of UKF. All cases use measurements of log number density of electron and
ion temperature of cell 29. Spatial regions of LUKF’s are, LUKF 1 : cell 28 - 30 (3 cells), LUKF 2 : cell 24 - 34 (11 cells), LUKF 3 : cell 24 - 42 (19
cells), LUKF 4 : cell 24 - 50 (27 cells), LUKF 5 : cell 16 - 50 (35 cells), LUKF 6 : cell 8 - 50(43 cells), Full UKF : cell 1 - 50 (50 cells).

Finally, we perform data assimilation using all 14 states

in cell 29, which provides the best accuracy at all altitudes.

VII. LUKF PERFORMANCE

From the previous section, it is shown that the mea-

surements of Ne, Tion in cell 29 are effective for data

assimilation. Therefore, it is expected that we can obtain

the most effective LUKF performance when we choose the

LUKF region to include cell 29 and use measurements from

cell 29.

Figure 3 compares the UKF and LUKF for localized

region of various sizes. The estimation error decreases while

the size of the LUKF region increases. Figure 3(b) shows
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that the errors of LUKF with the number of cells greater

than 11 do not change appreciably, whereas the computation

time increases rapidly.

The accuracy of the LUKF estimators with the lower

number of LUKF cells is quite close to the accuracy of

UKF because of the highly coupled upper cells of vertical

1D GITM. In other words, the ionosphere-thermosphere is

highly observable at higher altitudes. Consequently, LUKF

can be effectively applied to this kind of example.

VIII. CONCLUSION

We used a localized, sampled-data update scheme with

frozen-intersample error covariance to reduce the computa-

tional complexity of the vertical 1D GITM data assimilation

based on the unscented Kalman filter. We performed the

numerical studies to obtain effective measurement locations

and quantities for the sampled-data UKF, and then applied

the sampled-data LUKF. The sampled-data LUKF with a

small local region showed good estimation accuracy in much

shorter computation time for data assimilation on the highly

coupled vertical 1D GITM.
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