
Time Constrained Randomized Path Planning Using Spatial Networks

Christopher Lum*

Department of Aeronautics and Astronautics

University of Washington

Seattle, WA 98195, USA

lum@u.washington.edu

Rolf Rysdyk**

Insitu, Inc.

118 East Columbia River Way

Bingen, WA 98605, USA

rolf.rysdyk@insitu.com

Abstract— Real time planning of optimal paths remains an
open problem in many applications of autonomous systems.
This paper demonstrates a computationally efficient method
for generating a set of feasible paths through parameterization
into a series of nodes. The nodes and the arcs make up a
directed graph. The state of the environment is embedded in
an occupancy based map. A notion of optimality is introduced
by combining the directed graph with this map. Network
optimization techniques are used to find the best path through
the directed graph.

NOMENCLATURE

A Original set of arcs (edges) in network

Ã Arcs to add in network

B Spatial domain of occupancy map

Cs Node subset at step s
d Num steps in prediction horizon

D(j) Span interval of arc j
d−(j) Lower span interval of arc j
d+(j) Upper span interval of arc j
E Incidence matrix of network

f() Returns node coordinate (f : i ∈ I → ℜ2)

g() Returns occupancy map score (g : x → ℜ)

I Set of nodes (vertices) in network

j ∼ (i, i′) Arc starting at node i and ending at node i′

N Num times spatial network algorithm is run

N+, N− Starting/ending node sets in min path algorithm

M Num ops for (℘2) w/ PF Algorithm

M ′ Num ops for (℘2) w/ combinatorial approach

P Path of arcs from N+ to N−

rmax Distance agent can travel in a single step

u0 Initial potential on nodes

x Spatial coordinate

x0 Agent’s starting coordinate

xd Agent’s desired ending coordinate

(℘1) Problem of finding feasible waypoints

(℘2) Problem of adding arcs to network

(℘3) Problem of finding optimal path in network

I. INTRODUCTION

Finding a feasible path for an autonomous agent subject to

dynamic or kinematic constraints in a complex environment

is often a difficult problem. Assuming that feasible paths

*Research Assistant. Department of Aeronautics and Astronautics.
**Advanced Development. Insitu.

exist, optimality of the path is a subjective matter and varies

with environmental conditions and constraints. Efficient com-

putation of optimal paths under such conditions remains an

open problem.

The path planning problem is often addressed as a non-

holonomic planning problem. Although this is accurate,

Donald et al. have shown that finding an exact, time-

optimal trajectories for a system with point-mass dynamics

and bounded velocity and acceleration in an environment

filled with polyhedral obstacles is NP-hard[1]. In order

to find solutions in a reasonable amount of time, several

approximations to this problem have been made. LaValle

and Kuffner addressed the nonholonomic constraints and

solved the kinodynamic planning problem using rapidly

exploring random trees [2]. Groups such as Capozzi et al.

have also looked at semi-randomized methods which provide

quasi-optimal solutions to the path planning problem using

evolutionary programming[3]. Later, Pongpunwattana et al.

incorporated these ideas into overall mission planning and

task management schemes which address an agent’s state and

timing constraints[4]. Previous work investigated classical

convex optimization techniques to generate simple paths

from a starting point to a goal location for agents with

constrained velocity limits [5].

In general, many groups have extensively studied the path

planning problem and there exists a significant amount of

literature detailing the problem and proposed solutions. For

additional material see [6], [7], [8], [9], and [10]. Difficulties

with these strategies are: they require extensive computa-

tional power (evolutionary algorithms [4], [11], are limited

to generating simple paths (convex optimization techniques

[5]), and many other open problems. This paper presents

a set of computationally efficient algorithms for generating

quasi-optimal paths through a complex environment. These

algorithms are most similar to work done by Sun and Reif

where they introduce the concept of optimal path planning

through a non-uniformly discretized two dimensional space

(referred to as a weighted region) and efficiently compute a

path which is an ǫ-accurate approximation of the true optimal

path though this space[12]. Although the work presented

here does not guarantee accuracy within a user defined

limit, its advantages over previously cited works include the

ability to satisfy agent performance and timing constraints

(ie user specified number of edge traversals of the graph)

and extensions to path planning in three dimensional space.

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrA03.5

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 3725

This is accomplished by building a set of feasible paths as a

directed graph (network) and then combining this graph with

information about the environment to introduce a notion of

optimality. Subsequently, an optimal path is selected using

network optimization techniques.

In this framework, the agent plans an optimal path between

its current location and a desired location which it must

reach within a certain time or number of discrete steps.

The constraints on the agent’s state at different times limit

the feasible paths. The environment contains hard obstacles

which the agent must avoid at all costs and undesirable or

desirable regions where the agent is respectively penalized

or rewarded if it travels through these regions. This is similar

to occupancy grid mapping as discussed by Fox et. al [13]

or weighted regions[12].

Section II describes the use of occupancy based maps to

represent the state of the environment. Section III details

the Spatial Network Algorithm that is used to generate

waypoints which satisfy the agent’s spatial and temporal

constraints. The waypoints are formulated as a directed

graph in Section IV, and subsequently, network optimization

techniques are used to optimize a path through the network

as illustrated in Section V. Finally, Section VI presents some

conclusions and future directions of research with this work.

II. OCCUPANCY BASED MAPS

To effectively plan a path through an environment, the

system must keep track of the state of the world in terms of

possible obstacle locations. To accomplish this an occupancy

based map is employed. In this scheme, the domain is dis-

cretized into rectangular cells. Each cell is assigned a score

based on the type of obstacle or reward that is associated with

that cell. This is similar to a two dimensional, discretized

probability density function [14], [15]. The spatial domain of

the occupancy based map, B, consists of a two dimensional

box with coordinates x1 and x2 such that

B =

{

x

∣

∣

∣

∣

x1 ∈ [xmin, xmax]
x2 ∈ [ymin, ymax]

}

(1)

The two dimensional occupancy based map is represented

as a function, g, defined over the set B ×ℜ which assigns a

scalar in the range [0, 1] to each element x ∈ B at a certain

time step k ∈ ℜ.

g(x, k) : B ×ℜ → [0, 1] (2)

For purposes of this paper, the occupancy map is not time

varying [16].

Path planning decisions are based on this map. The map

now represents the world state with locations of obstacles

and reward areas in the environment. The idea of embedding

obstacles in the map is similar to defining obstacles in a

configuration space [17]. The agent’s belief of the world state

is embedded in the occupancy based map. In this application,

the occupancy based map only provides information about

two states of the agent’s pose (ie the planar position). An

(a) Physical environment with hard
obstacles

0 1 2 3 4 5

x

Occupancy Map

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Occupancy based map represen-
tation of environment

Fig. 1. Abstraction of marine environment using occupancy based maps.

(a) Physical environment with soft
and hard obstacles

0 1 2 3 4 5

x

Occupancy Map

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Occupancy based map represen-
tation of environment

Fig. 2. Abstraction of urban environment using occupancy based maps.

example of an occupancy based map is shown below in

Figures 1 and 2.

Figure 1(a) represents a marine environment that an agent

may be forced to navigate through. In this scenario, there

are two islands which are considered hard obstacles. This

environment can be abstracted using an occupancy based

map as shown in Figure 1(b). Here, the dark blue sections

represent cells with zero scores (hard obstacles) and the green

sections represent scores of 0.5 (neutral values).

An example of an urban environment with hard and soft

obstacles is shown in Figure 2(a). The idea is the same except

there are regions which are soft obstacles which should be

avoided if possible but entering these regions does not violate

a constraint. These sections are represented by the lighter

blue shades with scores ranging from 0 to 0.5. If there were

regions that were beneficial to the agent, these would be

assigned scores greater than 0.5.

The occupancy based map and its associated features

provides a versatile framework from which to build a path

planning algorithm.

III. SPATIAL NETWORK ALGORITHM

The problem of autonomous path planning is conveniently

conceptualized as finding a set of waypoints from a start

point to an end point with intermediate waypoints located

a reasonable distance away from the previous point. This

problem is denoted (℘1).

A. Problem Statement

A feasible path for the agent consists of a sequence of

waypoints (xi ∈ ℜ2) where each consecutive waypoint is no

more than a distance rmax away from the previous one. The

problem becomes one of finding a sequence of points which

3726

take the agent from its current point to the end point while

obeying the constraints.

Given: x0 Agent’s current location (starting point)

xd Desired final location (ending point)

rmax Distance agent can travel in one step

d Number of steps

Assumptions: ||x0 − xd|| ≤ d · rmax (A.1)
rmax > 0 (A.2)
d ∈ Z, d > 1 (A.3)

Goal: Find a sequence {xi} : ||xj − xj−1|| ≤ rmax

for i = 1, ..., d − 1 and j = 1, ..., d

The problem can be visualized as having a beaded neck-

lace where each bead (represented by a waypoint) is con-

nected to the next with a string of length rmax or less. One

end of the necklace is fastened to x0 and the other is fixed at

xd. Different paths correspond to different ways the necklace

can be stretched while the two end points remain fixed. A

stable algorithm to find the sequence {xi} is presented next.

B. Spatial Network Algorithm

A flow diagram of the Spatial Network Algorithm is shown

in Figure 3.

Fig. 3. Spatial Network Algorithm for solving the (℘1) problem.

As can be seen from the flowchart, the algorithm works

by defining three sets: Pi, Qi, and Ri.

The set Pi makes up a circle (if x ∈ ℜ2) or a sphere (if

x ∈ ℜ3) centered around the point xi−1 with radius of rmax.

The set Qi is also a circle or sphere centered around xd

(the end point). The radius of these sets changes as i changes.

Namely, as i increases by 1, the radius decreases by rmax

until at the step i = d − 1, the radius is rmax.

Finally, the set Ri is simply the intersection of the the sets

Pi and Qi.

The algorithm is a recursive procedure. Choosing the

next point xi requires knowledge of the previous point

xi−1. Some parts of the algorithm do not have this coupled

behavior. Namely, the sets Q1, Q2, ..., Qd−1 can be defined

a-priori outside of the main algorithmic loop. Inside the main

loop, the additional two sets Pi and Ri are computed. The

next waypoint xi is then simply chosen from the set Ri. The

natural question becomes, is there a situation where Ri = ∅?

The set Ri is all the points which satisfy the following two

inequalities.

Ri =

{

x

∣

∣

∣

∣

||x − xi−1|| ≤ rmax,
||x − xd|| ≤ (d − i)rmax

}

(3)

Provided that the problem adheres to the assumptions

stated previously, it can be shown that Ri 6= ∅ for i =
1, ..., d − 1. The proof is started for the case of i = 1. For

the set R1 to be non-empty, there must be a point which

satisfies both inequalities in Eq.3. Consider the point

x̃i = xi−1 +
xd − xi−1

||xd − xi−1||
rmax (4)

At a given step i, the point x̃i is generated by taking the

vector directed from the previous point xi−1 towards xd and

traveling along this vector a distance rmax (this would be the

point to go to if the agent is trying to reach xd as quickly as

possible). From construction, ||x̃i − xi−1|| = rmax ≤ rmax

for all i, so the candidate point x̃i ∈ Pi.

For the case of i = 1, it is now shown that this point

satisfies the second inequality (and is therefore in the set

Q1).

||x̃1 − xd|| = ||x0 + xd−x0

||xd−x0||
rmax − xd||

= ||(1 − rmax

||xd−x0||
)(x0 − xd)||

From assumption A.1, A.2, and A.3 in the problem

statement, ||x0 − xd|| ≤ d · rmax, rmax > 0, and d > 1
respectively.

≤ ||(1 − rmax

d·rmax

)(x0 − xd)||

= d−1
d

||x0 − xd||

≤ d−1
d

(d · rmax)

||x̃1 − xd|| ≤ (d − 1)rmax

Therefore the candidate point x̃1 ∈ Q1. Since this can-

didate point satisfies both inequalities, it is in the set R1

and therefore R1 is non-empty. This demonstrates that the

algorithm cannot fail at step i = 1. As the algorithm

progresses for i = 2, ..., d − 1, the set Ri can be shown

3727

to always be non-empty using a similar proof as outlined

below.

Once again, Ri 6= ∅ is proven by showing that the

candidate point x̃i ∈ Ri. As stated previously, x̃i ∈ Pi ∀i by

construction of x̃i. Showing that x̃i ∈ Qi for i = 2, ..., d− 1
relies on the fact that the algorithm is recursive and therefore

the previous point xi−1 ∈ Ri−1. More specifically,

{xi−1 ∈ Ri−1} ⇒ {xi−1 ∈ Qi−1}
⇔ {||xi−1 − xd|| ≤ (d − i + 1)rmax}

(5)

The proof that x̃i ∈ Qi proceeds in an identical fashion to

the proof x̃1 ∈ Q1, except instead of overbounding the right

hand side using assumption A.1 from the problem statement,

Eq.5 is used instead.

||x̃i − xd|| = ||xi−1 + xd−xi−1

||xd−xi−1||
rmax − xd||

≤ ||(1 − rmax

(d−i+1)rmax

)(xi−1 − xd)||

≤ d−i
d−i+1 (d − i + 1)rmax

||x̃i − xd|| ≤ (d − i)rmax

(6)

This shows that x̃i ∈ Qi. Together with the previous proof

{x̃i ∈ Ri} ⇒ {Ri 6= ∅}, the algorithm is shown to always

generate feasible flight paths because the set Ri is never

empty at any step of the process.

C. Spatial Network Algorithm Results

Since the algorithm always generates feasible paths, it

can now be computationally implemented and evaluated.

Flexibility in the algorithm comes from the freedom to

choose xi ∈ Ri. For example, by choosing xi = x̃i, a

straight flight path from x0 to xd is achieved where the

agent attempts to reach xd as fast as possible. There exists

significant literature regarding how to intelligently choose

these points. An example would be to choose xi ∈ Ri such

xi maximizes the reward from the occupancy based map (ie

xi ∈ arg maxxi∈Ri
g(xi). An example of xi ∈ Ri chosen to

generate longer flight paths is shown below in Figure 4.

IV. NETWORK REPRESENTATION

The Spatial Network Algorithm generates a sequence {xi}
which represents the waypoints for a path from start to

end point. By executing the Spatial Network Algorithm

multiple times and indexing the corresponding waypoints,

the resulting set of paths can be represented as a structured

network.

A. Generating Primary Paths

Waypoints form the nodes in the network and paths

between them are referred to as arcs or edges. Each node

embeds information about its spatial location, i.e. the coordi-

nates xi. The spatial network algorithm generates a sequence

{xi} for i = 1, ..., d − 1. Running the algorithm multiple

times, only the coordinates for nodes in the middle of the

Fig. 4. A single path generated using the Spatial Network Algorithm by
choosing xi ∈ Ri where xi has the minimum possible y value. Situation
shown for d = 5, rmax = 3.

path will change, the start and end points remain the same

for all paths. The nodes associated with start and end points

are numbered as nodes i1 and i2 respectively. After running

the algorithm once, an additional d− 1 nodes are generated.

These are labeled as nodes i3 through i3+d−2. The second

time the algorithm is run, it adds another d − 1 nodes to

the network. These nodes are labeled nodes id+2 through

nodes i2·d. This process of sequential number continues for

as many times as the spatial network algorithm is run.

The arcs are defined in a similar manner. For the first

path, the agent goes from node i1 to node i3. To represent

this motion, an arc j1 is added which originates at i1 and

terminates at i3 (so j1 ∼ (i1, i3)). The agent then goes from

i3 to i4, so j2 ∼ (i3, i4) is added to the network. This

continues until finally, the arc jd ∼ (id+1, i2) is added. When

the Spatial Network Algorithm is run again, this numbering

scheme of arcs continues in a similar fashion.

An example for d = 3 (number of time steps for agent to

reach end point) and N = 3 (number of times the Spatial

Network Algorithm is run) is shown in Figure 5.

Fig. 5. An example network with d = 3 and N = 3.

Each time the algorithm is executed another path is

generated from i1 to i2. For example, the first path is given by

P1 : j1, j2, j3. Figure 5 is drawn specifically to draw attention

to the fact that each node has coordinate data associated with

3728

it and each node represents a waypoint in the path. Simple

heuristics can be added to the algorithm to ensure that these

paths do not share any nodes. These individual paths are

called primary paths.

The resulting network has a one-to-one mapping with its

incidence matrix. The incidence matrix becomes a useful

way to represent the network. Recall that the incidence

matrix is defined as

[E]ij =







+1 if i is initial node of arc j
−1 if i is terminal node of arc j
0 in all other cases

(7)

The benefit of the proposed numbering system is that

the network composed of N primary paths may now be

represented with the convenient form of Eq. 8.

E =

















J J . . . J
K L . . . L

L K . . .
...

...
...

. . . L
L . . . L K

















(8)

where J =

(

1 0 . . . 0 0
0 0 . . . 0 −1

)

K =



















−1 1 0 . . . 0

0 −1 1 0
...

... 0 −1 1
...

...
. . .

. . .
. . . 0

0 . . . 0 −1 1



















L = zeros(d − 1, d)

The incidence matrix is composed of three submatrices.

The matrix J is a 2×d matrix composed of all zeros except

for a 1 in the top left entry and a -1 in the bottom right entry.

The matrix K is a d−1×d matrix. The first row has entries

-1 and +1 as the first two and then zeros elsewhere. This

pattern of a -1 followed by a +1 moves down the diagonal

of the matrix. The matrix L is simply a d − 1 × d matrix

of zeros. So the overall incidence matrix is a matrix of size

2 + N(d− 1)×Nd with non-zero entries along the top two

rows and in a somewhat block diagonal shape.

B. Generating Secondary Paths

All of the forward paths in the network are feasible paths

for the agent and transition it from its current location to the

desired end location in d steps or less. However, the number

of feasible paths is exactly equal to the number of times

the Spatial Network Algorithm is run. In order to generate

another feasible path, the Spatial Network Algorithm must

be run again.

In Figure 5, notice that a path from i1 to i3 to i8 to i2
would also take the agent to the desired final coordinate

in d steps. However, an arc from i3 to i8 does not exist.

To represent a feasible path, an arc must satisfy several

requirements. First, the arc must join two nodes that are

separated by a distance rmax or less. Second, traversal of

the arc must take the agent closer to the desired end state.

Third, the complete sequence of arcs must place the agent

at the end state in d steps or less. The question becomes,

where can arcs be added so that positive paths in the network

are still feasible paths for the agent and places the agent at

the end state in d steps or less? This problem is referred to

as (℘2). To solve (℘2), the node subsets Cs are defined as

follows.

Cs = {i2+s+t(d−1), for t = 0, 1, . . . , N − 1}
for s = 1, 2, . . . , d − 1

(9)

Using Figure 5 as an example, the sets defined by Eq. 9

yield C1 = {i3, i5, i7}, C2 = {i4, i6, i8}. The set C1

represents the nodes which are 1 arc away from the initial

point (therefore d − 1 away from the final point). Similarly,

the set C2 represents the nodes that are 2 arcs away from the

initial point (therefore d− 2 arcs away from the final point).

An algorithm for solving (℘2) is shown in Figure 6. We refer

to this algorithm as the Progressive Frontier Algorithm.

Fig. 6. Progressive Frontier Algorithm flowchart.

The Progressive Frontier Algorithm is a series a three

loops. At a given s, the algorithm functions by choosing

a node i0 ∈ Cs and then comparing it with every node in

if ∈ Cs+1 (except for the next consecutive node because an

arc already exists between them). If the distance is less than

or equal to rmax, an arc from i0 to if is added to the set Ã.

Once this is completed for all nodes in Cs, s is incremented

by one and the process is repeated.

Using Figure 5 as an example, the algorithm first chooses

i0 = i3 and compares the distance between this node and

3729

nodes i6 and i8 (but not with i4 because j ∼ (i3, i4) already

exists). Whenever the distance is less than or equal to rmax

an arc is added to Ã. Then i0 is changed to i5 and it is

compared with nodes i4 and i8. Finally, i0 is changed to i7
and it is compared with nodes i4 and i6.

The Progressive Frontier Algorithm performs the logical

test of ||f(i0) − f(if)|| ≤ rmax exactly M = (d − 2)N2 +
(2−d)N times. If a combinatorial approach is taken and the

distance between a given node is compared with every other

intermediate node in the network, the logical test must be

performed exactly M ′ = d(d− 2)N2 +N2 +3(d− 1)N +2
times. Assuming that N >> d, the ratio of the two quantities

is approximately M ′/M ≈ d. The advantage of this approach

instead of a combinatorial approach is immediately evident

by the significant computational savings.

5 10 15 20 25 30 35 40 45 50

4

5

6

7

N

M
’/
M

d = 4

5 10 15 20 25 30 35 40 45 50

8

10

12

N

M
’/
M

d = 8

5 10 15 20 25 30 35 40 45 50

12

14

16

N

M
’/
M

d = 12

Fig. 7. Ratio of M ′/M approaching d for d =4, 8, and 12.

When the Progressive Frontier Algorithm terminates, the

network is updated by adding the new arcs, Ã, to the current

arc set, A, to obtain a new set of arcs, A′.

A′ = A
⋃

Ã (10)

An example of the Progressive Frontier Algorithm run

on a network with d = 5, N = 3 is shown in Figure 8.

The original, primary paths are shown as black arcs. The

algorithm is run with rmax = 1.5 and the new arcs which

make up Ã are shown in green.

V. NETWORK OPTIMIZATION

The remaining goal is to find an optimal path among all

the generated feasible paths from node i1 to node i2. This

problem is referred to as (℘3).

A. Combining with Occupancy Based Map

To solve problem (℘3), the notion of span intervals are

introduced. The span interval is a a nonempty real interval

D(j) assigned to each arc j ∈ A. [18]

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Spatial Network

Fig. 8. Arcs added for d = 5, N = 3, and rmax = 1.5.

D(j) = [d−(j), d+(j)] (11)

The value d−(j) is the lower span interval and in the

context of (℘3), this represents the cost of traversing the arc

j in the reverse direction. Similarly, d+(j) is the upper span

interval and represents the cost of traversing the arc j in

the forward direction. Information about the environment is

embedded into the network by combining the location of the

nodes with the scores of the occupancy based map.

d−(j) = −∞
d+(j) = 1

g(f(i′))
∀j ∼ (i, i′) ∈ A (12)

The lower span intervals are set to −∞ for all arcs.

The upper span intervals are set using information from the

occupancy based map. For the arc j ∼ (i, i′), the terminal

node’s coordinates are returned by the function f . The

function g then maps these coordinates to the corresponding

score in the occupancy based map. Since the range of g
is [0, 1], the upper span interval ranges from 1 (when the

terminal node is located in a region with score equal to 1)

to +∞ (when the terminal node is located in a region with

score equal to 0).

One final detail must be addressed in order to formulate

the (℘3) as a network optimization problem. This concerns

the initial potential u0 which assigns a scalar value to each

node i ∈ I . The differential induced by this potential must

be feasible with respect to the span intervals. In other words,

the differential v0 = −u0E must be in the span interval D(j)
for all j ∈ A. Note that since 0 ∈ D(j) ∀j ∈ A, the initial

potential can always be taken as u0 = 0 ∀i ∈ I . [18]

B. Min Path Optimization

With the span intervals and initial potential set, (℘3) is

now in the form of a network optimization problem. A

path P is a signed, ordered set of arcs that can be further

decomposed into sets P+ and P− (arcs which are traversed

3730

in the positive and negative direction, respectively). The cost

function below evaluates the cost of traversing a certain path

P .

d+(P) =
∑

j∈P+

d+(j) −
∑

j∈P−

d−(j) (13)

The well known Min Path Problem consists of minimizing

d+(P) over all paths P : N+ → N−. In the context of

this path planning algorithm, N+ = i1 and N− = i2. The

Min Path Problem is solved efficiently using the well known

Min Path/Max Tension algorithm [18] or the Bellman-Ford

algorithm [19]. With some problem reformulation, Dijkstra’s

Method may also be used to further increase computational

efficiency [20].

Assuming that assumption (A.1) is satisfied in (℘1), a

forward path P : N+ → N− must exist. By setting d−(j) =
−∞ ∀j, the resulting cost function has the behavior that

{P− 6= ∅} ⇒ {d+(P) = ∞}. Therefore, this formulation

ensures that only forward paths can solve the min path

problem. In some situations, it may be optimal to traverse an

arc in a backwards direction. However, if this is done it is

not possible to guarantee that the path will take the agent to

the final positing in d steps or less. Furthermore, the careful

selection of d+(j) also yields the behavior that if an arc

terminates in a location where the score of the occupancy

map is zero, then d+(P) = ∞ as well. This allows the

notion of a hard constraint (or obstacle) to be enforced. In

other words, the Min Path/Max Tension algorithm will only

find paths that do not have arcs which terminate in a location

where the occupancy map score is zero. Applying the Min

Path/Max Tension algorithm to the network constructed for

the marine situation depicted in Figure 1 yields an optimal

path P ∗ shown in Figure 10.

Fig. 9. Optimal path through environment with d = 7, rmax = 1.06,
N = 6. Optimal path P ∗ shown in red.

Figure 9 is generated using the methods described in

the previous sections. First, the Spatial Network Algorithm

is executed six times to generate the six primary paths

which are shown in black. Then, the Progressive Frontier

Algorithm is run to solve (℘2) which adds the green arcs.

The span intervals of each arc (both black and green arcs)

are set by combining the network with the occupancy based

map using Eq.12. In this example, the islands which the

agent must navigate around represent hard obstacles which

must be avoided. Therefore, the occupancy based map cells

corresponding to the islands are given a score of zero (the

dark blue regions). Once the span intervals are set, the

initial potential is set to zero for all nodes and the Min

Path/Max Tension algorithm is run to generate the optimal

path, which is shown in red. The agent successfully plans

a path which circumnavigates the islands on its way to the

final destination. Notice that this problem is one of simply

finding a feasible path since all the scores of each cell are

either 0 or 0.5. Any of the feasible paths yield the exact

same score under the cost function of Eq. 13. This is why

the optimal path appears to go in the backwards direction

from step 2 to step 3. Despite this, the agent is still placed

at the desired end goal in d steps or less. This issue can be

addressed by incoporating the concept of Euclidean distance

into the cost function (Eq.13) by changing the way the span

intervals are defined in Eq. 12. Namely, adding a term of

+α||f(i) − f(i′)|| to the definition of d+(j) where α is a

parameter to trade off between occupancy map score and

distance traveled.

Note that the middle island has a box canyon type shape.

Many methods which plan using a receding horizon type

algorithm may fail with this geometry. The agent enters into

the canyon and does not realized until it is too late that it

has effectively entered a dead-end. This algorithm avoids this

pitfall by planning waypoints over the entire path.

Path planning in the urban environment depicted in Fig-

ure 2 is done using the same methods. The optimal path

through this environment is shown in Figure 10.

Fig. 10. Optimal path through environment with d = 5, rmax = 1.5,
N = 6. Optimal path P ∗ shown in red.

The main difference between this example and the marine

3731

one is that this environment contains soft obstacles (the

radar stations). Therefore in addition to finding feasible

paths, an optimal one can be selected. As can be seen, the

agent’s first waypoint avoids the areas of low score but the

second waypoint must enter the area slightly so that the third

waypoint can avoid the region with zero score. The fourth

waypoint also avoids the obstacle and the final, fifth waypoint

brings the agent to the desired final position.

VI. CONCLUSION AND FURTHER RESEARCH

This paper presents a computationally efficient approach

to obtain feasible paths through complex environments. The

approach formulates path planning as a network optimization

problem. A network of feasible paths is generated first. Next,

the network is combined with occupancy based maps to

embed information about the environment. The well known

Min Path Algorithm generates optimal paths through the

network. Although these algorithm are not able to claim

a bounded error from a true optimal path, the network

formulation ensures that a quasi-optimal path avoids hard

obstacles and reaches the goal in the required number of

discrete steps.

In the current implementation, an arc is given an infinite

upper span interval only if the terminating node is located in

a region of zero score. Therefore, an arc that passes through

but does not terminate in a region of zero score would receive

an upper span interval of less than infinity. In some situation,

this may be unacceptable because the agent will intersect

with a hard obstacle in the environment. The upper span

interval can be assigned to be infinite if any part of the

arc passes through a region of zero score. This significantly

increases computational complexity but guarantees that all

paths are feasible in the sense that there are no intersections

with hard obstacles. Methods are currently being investigated

which can make this problem more tractable.

Although the examples presented were two dimensional,

the algorithms and proofs presented apply to three dimen-

sions. This may have applications for path planning for

underwater vehicles or unmanned aerial systems which can

maneuver in three dimensions.

VII. ACKNOWLEDGEMENTS

This work is sponsored in part by the Washington Tech-

nology Center (WTC) under grants F04-MC2 and F05-MC3

and the Osberg Family Trust Fellowship.

REFERENCES

[1] Donald, B., Xavier, P., Canny, J., and Reif, J., “Kinodynamic Motion
Planning,” Journal of the Association for Computing Machinery,
November 1993, pp. 1048–1066.

[2] LaValle, S. M. and Kuffner Jr, J. J., “Randomized Kinodynamic
Planning,” International Journal of Robotics Research, May 2001,
pp. 378–400.

[3] Capozzi, B. J. and Vagners, J., “Navigating Annoying Environments
Through Evolution,” Proceedings of the 40th IEEE Conference on

Decision and Control, University of Washington, Orlando, FL, 2001.

[4] Pongpunwattana, A. and Rysdyk, R. T., “Real-Time Planning for
Multiple Autonomous Vehicles in Dynamic Uncertain Environments,”
AIAA Journal of Aerospace Computing, Information, and Communi-

cation, December 2004, pp. 580–604.

[5] Lum, C. W., Rysdyk, R. T., and Pongpunwattana, A., “Occupancy
Based Map Searching Using Heterogeneous Teams of Autonomous
Vehicles,” Proceedings of the 2006 Guidance, Navigation, and Control

Conference, Autonomous Flight Systems Laboratory, Keystone, CO,
August 2006.

[6] Mitchell, J. S. B. and Papadimitriou, C. H., “The Weighted Region
Problem: Finding Shortest Paths Through a Weighted Planar Subdivi-
sion,” Journal of the ACM, January 1991, pp. 18–73.

[7] Alexander, R. and Rowe, N., “Path Planning by Optimal-Path-Map
Contruction for Homogeneous-Cost Two-Dimensional Regions,” Pro-

ceedings of the IEEE International Conference on Robotics and

Automation, IEEE, 1990.
[8] Rubio, J. C., Vagners, J., and Rysdyk, R. T., “Adaptive Path Planning

for Autonomous UAV Oceanic Search Missions,” Proceedings of the

1st AIAA Intelligent Systems Technical Conference, 2004.
[9] Pongpunwattana, A., Rysdyk, R. T., Vagners, J., and Rathbun, D.,

“Market-Based Co-Evolution Planning for Multiple Autonomous Ve-
hicles,” Proceedings of the AIAA Unmanned Unlimited Conference,
Autonomous Flight Systems Laboratory, 2003.

[10] LaValle, S. M., Planning Algorithms, Cambridge University Press,
2006.

[11] Rathbun, D. and Capozzi, B., “Evolutionary Approaches to Path
Planning Through Uncertain Environments,” Proceedings of the AIAA

Unmanned Unlimited Conference, AIAA, May 2002.
[12] Sun, Z. and Reif, J. H., “On Finding Approximate Optimal Paths in

Weighted Regions,” Journal of Algorithms, January 2006, pp. 1–32.
[13] Thrun, S., Burgard, W., and Fox, D., Probabilistic Robotics, MIT

Press, 2005.
[14] Bourgault, F., Furukawa, T., and Durrant-Whyte, H., “Coordinated

Decentralized Search for a Lost Target in a Bayesian World,” Pro-

ceedings of the 2003 IEEE/RSJ Intl. Conference on Intelligent Robots

and Systems, Australian Centre for Field Robotics, Las Vegas, NV,
October 2003.

[15] Elfes, A., “Using Occupancy Grids for Mobile Robot Perception and
Navigation,” IEEE Computer, 1989, pp. 46–57.

[16] Lum, C. W., Rysdyk, R. T., and Pongpunwattana, A., “Autonomous
Airborne Geomagnetic Surveying and Target Identification,” Proceed-

ings of the 2005 Infotech@Aerospace Conference, Autonomous Flight
Systems Laboratory, Arlington, VA, September 2005.

[17] Latombe, J.-C., Robot Motion Planning, Kluwer Academic Publishers,
1991.

[18] Rockafellar, R., Network Flows and Monotropic Optimization, Athena
Scientific, Belmont, Mass, 1st ed., 1998.

[19] Bellman, R., “On a Routing Problem,” Quarterly of Applied Mathe-

matics, April 1958, pp. 87–90.
[20] Bertsekas, D. P., Network Optimization: Continous and Discrete

Models, Athena Scientific, Belmont, Mass, 1st ed., 1998.

3732

