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Abstract— This paper presents a new design procedure for
a robust stability, robust H,, control and robust H, control via
dynamic output feedback for a class of uncertain linear
systems. The uncertainties are norm bounded type. The state
space matrices of the controllers are the solutions of some
linear matrix inequalities problems. Finally, these procedures
are applied to an active radial magnetic bearing system to
support a high-speed energy storage flywheel.

I. INTRODUCTION

N active magnetic bearing (AMB) is a collection of

electromagnets used to suspend an object via feedback
control. The principal benefits of AMBs, compared to
mechanical and hydrostatic bearings, are a dramatic
reduction in friction, which, in turn, allows efficient
operation at extremely high speeds, the elimination of
lubricants and their associated supply systems, the ability to
operate in a vacuum and at high temperature, and the
capability for actively controlling the stiffness of the
bearing. Due to these advantages, AMBs have found usage
in many industrial applications, such as electric auxiliaries
for aircraft, energy storage flywheels, as well as high-speed
turbines and compressors, etc. [1].

This paper considers a basic AMB system comprising an
electromagnet on each side of a rigid rotor, as shown in Fig.
1. The model on which the controller design is based is
described by a second-order linear interval system with
unknown disturbances. The parameter uncertainty in the
system is well described by the given parameter intervals,
while the unmodeled dynamics may be included in the
disturbance [2]. To eliminate the need for velocity
feedback, an output feedback controller is proposed which
uses only the rotor position signal.

Linear matrix inequalities (LMIs) have emerged as a
powerful formulation and design technique for a variety of
linear control problems. Since solving LMIs is a convex
optimization problem, such formulations offer a
numerically tractable means of attacking problems that lack
an analytical solution. Consequently, reducing a control
design problem to an LMI can be considered as a practical
solution to this problem.
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Fig. 1: Basic magnetic bearing.

Many researchers have considered the problem of
designing robust stability, H, performance and H,
performance for nom-bounded uncertain systems in recent
years. In this paper, we address robust stability, H,, and H,
performance via output feedback control for the class of
uncertain linear systems. We present the conditions of
problem in terms of a number of linear matrix inequalities .
Finally, these problems are applied to an active radial
magnetic bearing system.

This paper is organized as follows: Section II includes
description of system and required lemmas. In Section III,
theorems for robust stability, H, and H, performance are
presented. The application of design methods in magnetic
bearing system and simulation results are presented in
Section IV. Finally, Concluding remarks are given in
Section V.

II. PRELIMINARIES

This paper is concerned with the class of uncertain linear
systems that can be described by state-space equations of
the form:

% = (A; + AA®)x(t) + (B w(t) + (B, + ABy () )u
Z(t) = C;x(t) + Dyw(t) + Dypu(t) €Y)
y(t) = Cx(t) + Dy w(t)

x is the state vector, w is the disturbance input vector, u is
the control input vector, Z is the controlled output vector, y
is the measurement vector. A, By, By, Cy,Cy, Dy1, D12, Dyq
are constant matrices with appropriate dimensions, and
AA(t), AB,(t) represent norm bounded parameter
uncertainties which are in the following form:

AA = H,F,E;, AB, =H,F,E,
where H,, E;, H,, E, are known real constant matrices, and
Fi, F, is an unknown matrix that belongs to the following
set:



Q-—{ FOIFOTF<I, }
" |F(t)is lebesgue measurable

By applying output feedback controller in the following
form:

{xc(t) = Acxc () + B.y(t) )

u(t) = chc(t) + Dcy(t)

to (1), the closed loop system will be:

{Xcz = (Aq + A4 ()X () + (By + AB4 (1)) w(t) 3)
Z(t) = Cchcl(t) + Dclw(t)

where

A = [A+B2DcC, BZCC] 5 = [31 + BZDCD21]
o BcC, Ac | 7 BcDyy

Cep =[Gy + D13DcC;  Dyi3Cc], Dgp = Dyg + D1;DcDsyyq

and the closed loop uncertainties AA.; and AB,; are:
DAy = HoF B s ABy = HeFoEs e
where
H,
0 9
B~ [eie, gl B~ la00.)
1T E DGy ExCol T3 T |EpDeDyy

H F, 0
Hcl=[01 Fy = ! ]

Lemma 1: Suppose that system (4) is asymptotically
stable.

{:’c(t) = Ax(t) + Bw(t) @)

z(t) = Cx(t) + Dw(t)

let T, = C(IS — A)™1B + D denote its transfer function. if
D = 0 then the following statements are equivalent:

@.ITllz <v

(b).There exists X = XT > 0 and Z such that:

ATX+XA XB X cT
BTX —yI < 0’[5‘ Z] >0,
trace(Z) <y (5

Lemma 2 (Bounded Real Lemma): For system (4), H,,
performance, with y > 0 is equivalent to the existence of
X > 0 satisfying:

AX +XAT B XCT
BT -yl DT |<0 (6)
cx D -yl
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Lemma 3 (Schur Complement): The Linear inequality:

QX)) S

ST(X) R(X)
with Q = QT, R = RT > 0 and S is an affine function of X,
is equivalent to:

>0

{Q(X) —SCOR™L(X)ST(X) >0
RX)>0

Lemma 4: Let X,Q,I' be matrices with appropriate
dimensions which Q is a symmetric matrix Then for every
matrix F with FFT <I, Q+TFZ+ (TFZ)T <0 is
equivalent to the Q + eITT + ¢7127% <0 , if and only if
there exist a constant € > 0 [6].

III. MAIN RESULTS

A. Robust Stability via Output Feedback

The following theorem proposes an LMI for designing
output feedback controller satisfying robust stability.

Theorem 1: consider the change of controller variables
as follows [3]:

Ac = SAR + NB.C,R + SB,CcMT + NAMT

+ SB,D:C,R
B, = NB¢ + SB,D.
Cc = CcMT™ + DeC,R @)

DC=DC

where M and N are invertible and should be chosen such
that:

MNT =] —RS ®

For system (1), there exists an output feedback controller in
the form of system (2) such that closed loop system (3) for
every admissible uncertainties, satisfies robust stability, if
the following system of LMI's is feasible.

Find R =RT e R, 5 =ST e R, A,,B,,C.,D; and
scalar € > 0 such that:

R I
[1 s]>0 ©)
and
T T
Yo+ Y ey
n -l 0 [|<0 (10)
] [ ] —el
where:

b, = [AR +B,C, A+ BZBCCZ]
4 A SA+B.C, |
_[E:R E; _[H, H,
Ve = [EZCC EZECCZ]’ Y = SH, SHZ]
The state matrices of the controller (A¢, B¢, Be and D) can
be recoverd from (7). Note that m is used to show
symmetric terms.



Proof: The system (3) is said to be stable for
perturbations A if there exists a matrix X = X7 > 0 such
that:

(A + AAG(O)X + X(Aq + DA4(1)) <0 (11)
By separating uncertain part of inequality (11) and using
lemma 4, the following inequality is obtained:

AyX + XAT, + eH HY 4+ e *XET E, X <0 (12)
Using Schur complement for inequality (12), yields:
AgX + XAT, XET, eH,
" —el 0 [<0 (13)
] [ ] —el

Since matrices A.; and X are multiplied in inequality (13),
it is non convex. Therefore X and X lare partitiond as
follow:

_[R M 1_[S N
X_[MT U]’ X _[NT %4 14
It is readily verified that X satisfies the identity
_ [R I [ S
M= XM L=, o ey o7l (15)

with pre-and post multiplying inequality X > 0 by IT,” and
I1, respectively, inequality (9) is obtained. Similarly, the last
LMI condition (10) is derived from (13) by pre- and post
multiplication by  diag(I,”,1,]) and diag(Il,, I, 1)
respectively.

B. Robust H,, Control via Output Feedback

The following theorem proposes an LMI for designing
output feedback controller satisfying H,, performance.

Theorem 2: For system (1), there exists an output
feedback controller in the form of system (2) such that
closed loop system (3) for every admissible uncertainties,
satisfies H,, performance with y > 0, if the following system
of LMI's is feasible.

Find R = RT € R, 5 = ST € R, A,,B.,C,, D and
scalar € > 0 such that:

R 1
| ) 5] >0 (16)
and
T T T
Ya+ Py Vg  Y¢ Vg &Py
[ -yl D} El, 0
n I 0 o |<O (17)
] [} [ | —el 0
[ ] [ ] [ ] m &l
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where

by = [AR -I-ABZCAC A+ BZ?CCZ]
A; SA+ B.C,

Ve = [CiR + Dy, C,

_[E:R E, [H H,

B [Ezéc Ezﬁccz]’ Yn = [sm SHZ]

_ B; + BzﬁcD21
»7B | SB, + B:D,y

C; + D1,DcC,) (18)

where A, B,, C., D are defined in (7).

Proof: By considering (6) for closed loop system (3),
following inequality is obtained:

Herm(Ay + AA )X (B +ABy) XCy"
n —yl D"
[ | | —vI
where Herm denotes the Hermitian transpose.
By separating uncertain part of inequality (19) and using
lemma 4, the following inequality is obtained:

<0  (19)

AaX + XAT, + eHo HY + e *XET B X ] n
By + e Bl EraX VI + & Bl
Cch Dcl _yl
<0
(20)
Using Schur complement for inequality (20), yields:
AgX + XAy By XCG XE{y ¢eHy
L] -yl D} ET,
n .yl 0 0 |<0 (2D
] ] ] —el 0
[ | [ | u m —<l

Since matrices A, and X are multiplied in inequality (21),
it is non convex. Therefore X and X ~lare partitioned the
same as (14) and IT; and II, are defined similar to (15).
With pre-and post multiplying inequality X > 0 by II,”
and TII, respectively, inequality (16) is obtained. Similarly,
the last LMI condition (17) is derived from (21) by pre- and
post multiplication by diag(I1, T LI and
diag(I1,,1,1,1,1) respectively.

Remark: Since ¢ and Yy are multiplied in (17), this
inequality is non convex, but according to that € is a scalar,
this inequality can be easily solved by line search on &.
Suppose an arbitrary positive scalar, then if the problem
was infeasible, change it with respect to this fact that the
problem is feasible.

C. Robust H, Control via Output Feedback

The following theorem proposes an LMI for designing
output feedback controller satisfying H, performance.

Theorem 3: For system (1), there exists an output
feedback controller in the form of system (2) such that
closed loop system (3) for every admissible uncertainties,



satisfies H, performance, if the following system of LMI's is
feasible.

Find R = R” € R, § = ST € R™", matrices 4., B,, C, ,
scalar € > 0 and Z such that:

(22)
1/’ET &y
Ela 0 |<o (23)
—&l
. m u m <l
trace(Z) <y, D, =0
where Y, Yp, Yo, Y, Yy are defined in (18) and

A, B.,C,, D, are defined in (7).

Proof: By considering (5) for closed loop system (3),
following inequalities is obtained:

[HermX(Ad +AA,;) X(B+ ABcl)] <0

[ | —vI ’

[ X CclT
Cq Z

trace(Z) <y

>0
(24)

By separating uncertain part of inequality (24) and using
lemma 4, the following inequality is obtained:

AT X 4+ XA, + eXH HLX + e EL B, n “o
By"X + e E Eral € EjeBaa — 1
X ¢,
cl > 0’
Ca Z
trace(Z) <y (25)

Using Schur complement for inequality (25), yields:

[ATX + XA, XB, Eia' eXHg
[ ] -1 E;cl 0 <0 (26)
[ ] [ | —&l 0
] ] m  —&l

r T

-C)iz Cch >0, trace(Z) <y

Since matrices A.; and X are multiplied in inequality (26),
it is non convex. Therefore X and X ~lare partitiond the
same as (14) and I1; and II, are defined similar to (15).

T
With pre-and post multiplying inequality [C)‘( Cch >0
cl

by (I1;,1)T and (I1,, 1) respectively, inequality (22) is
obtained. Similarly, LMI condition (23) is derived from
(26) by pre- and post multiplication by diag(I1,”, 1,1, 1) and
diag(I1,, 1,1, 1) respectively.
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IV. APPLICATION TO MAGNETIC BEARING

A. Problem Formulation

A dynamical mathematical model for the AMB shown in
Fig. 1, can be established as follows:

e () - () e
where

m Mass of the rotor (kg);
q Position displacement of the rotor (m);
qo Nominal air gap (m);
Uy  Permeability of free space H/m;
A Total pole-face area of each electromagnet (m );
N Number of turns on each electromagnet coil;
11,1, Electromagnet coil currents (A);
f An unknown disturbance (N);
F Some known force acting on the rotor (N).

mg = (27)

When (1) is linearized at the equilibrium point,
L=L=1, , gq=0
and augmented with the control structure shown in Fig. 2,
the linearized model is obtained as the following second-
order system:

i—wlq=out—(f+F) (28)
where

_ HoAN?IG _ HoAN?Io

= o= i (29)

Fig. 2. Diagram of the control system.

Due to inaccuracies in the measurement of some of the
physical parameters and changing environmental
conditions, the system parameters w and ¢ are generally
uncertain. However, without loss of generality, it can be
assumed that their values lie within some known intervals:

w € [w; wy] 0 € [0y 0,

where, w;, w,, 0,and g, are known scalars satisfying:
Wy = wy >0 0,<0,<0
In order to avoid the need for velocity feedback, while at

the same time achieving satisfactory stability, this paper
addresses the control of the system (28) using a output



feedback controller. Assuming that only the rotor

displacement position is measured, and denoting:

B. Simulation Results
The values of w and, and those of the interval

boundaries, w; and a;, i = 1,2, are given in Table 1.

the system (28) can be converted into the following
equivalent state-space form:[2]

TABLE 2
Magnetic Parameters

TABLE 1
Parameters w and o and lower
and their upper bounds

{x = (A+ AA)x + By(f + F) + (B, + ABy)u
y=cx

(A+AA)=[; (1)] , BF[E], (32+A32)=[g]

Parameter Value Parameter value
W 359.6 m 6kg
o -10.35 A 4x2.6107*m?
w, 240 N 40
Wy 390 I 5A
41 -22 qo Amm
02 -4.5

c=[1 0] (30)
where, @ = w?, and the parameters w and o satisfy
wy,2w=2w; >0 and 0y £0<0,<0. By defining

= 172 0:=——2 and scaled

0-0g _ m-m . .
p— A, P then they implies:
0 = 0y + WlAl with W1 = 0, — 0y and w = Wy + WZAZ

with W, = @, — @, by the class of uncertainties:

nominal values oy :
g—0p

]

errors as A; =

Note that the original parameters w € [w; w,], 0 €
[0 0,] has been transformed into the new parameters

Ay, 4, € (—1, 1) by using a nominal values a,, @wyand W,
W, as weights. Therefore:

1 0 0 0
A=|m, o] 24= [, 0]’31‘[$]’32‘[

AB, cg=¢c;=[1 0], Dyy =Dy, =D, =0

0

|

g

0
Wy

0
W>4,]°
and uncertain matrices are:

[0 O [0 O 10 _
Hy = [W1 0]’”2 = [WZ 0]’ Ey [0 o E2= [0]
A general output feedback controller for the system (30)
can be written in the following form:

{

where A.,B.,C. and D,are four scalar controller
coefficients, to be designed, and the term K is introduced
to compensate for the effect of the force F, the coefficient
being given by [2]:

X () = Acxc(t) + Bey(t)

u(t) = Coxo(t) + D.y(t) + KF (31

1 q

K=——=———
! mo  UgANZ?I,
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Fig. 3. Closed-loop system response using robust stabilizer controller: Wy
=1.8, W,=6.5 (solid), W4 =0.1, W,=1 (dotted), W4 =0.4, W,=3 (dash).

The nominal parameters for the bearings are given in
Table 2. The close loop system response with respect to
robust stabilizer controller is shown in Fig. 3. The close
loop system response with respect to robust H,, controller
is shown in Fig. 4 and its bode-magnitude diagram is
shown in Fig. 5, Fig. 6 shows the ratio of regulated output
energy to The disturbance energy of this system. The close
loop system response with respect to robust H, controller is
shown in Fig. 7 and its bode-magnitude diagram is shown
in Fig. 8. The obtained value of y from H, controller
without uncertainty is 0.016, and the obtained value of y
from H, controller without uncertainty is 2.1538e-
006.Comparing Fig. 3, Fig. 4 and Fig. 7 shows that H,
controller has a better robustness than the other controllers,
but H, controller has a better transient response.

V. CONCLUSION

In this paper, we addressed robust stability, H,, and H,
performance via output feedback control for the class of
uncertain linear systems. We presented the conditions of
problem in terms of a number of linear matrix inequalities.
Then these problems were applied to an active radial
magnetic bearing system to support a high-speed energy
storage flywheel. The effectiveness of the design was
shown in simulation results.
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