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Abstract— This paper presents a solution to the problem of
controlling a general linear time-invariant dynamical system
(plant) to a time-varying economically optimal operating point.
The plant is characterized by a set of exogenous inputs as
an abstraction of time-varying loads and disturbances. The
economically optimal operating point is implicitly defined as
a solution to a given constrained convex optimization problem,
which is related to steady-state operation of the plant. A
subset of the plant’s states and the exogenous inputs represent
respectively the decision variables and the parameters in the
optimization problem. The proposed control structure, which
is proven to solve the considered control problem, is explicitly
defined and is based on the dynamic extension of the Karush-
Kuhn-Tucker (KKT) optimality conditions for the steady-state
related optimization problem.

Index Terms— Real-time optimization, complementarity sys-
tems, constrained control.

I. INTRODUCTION

In many production facilities, the optimization problem re-

flecting economical benefits of production is associated with

a steady-state operation of the system. The control action

is then required to maintain the production in an optimal

regime in spite of various disturbances, and to efficiently

and rapidly respond to changes in demand. Furthermore, it

is desirable that the system settles in a steady-state that is

optimal for novel operating conditions. The vast majority

of control literature is focused on regulation and tracking

with respect to known setpoints or trajectories, while coping

with different types of uncertainties and disturbances in both

plant and its environment. Typically, setpoints are determined

off-line by solving an appropriate optimization problem, and

they are updated in an open-loop manner. The optimization

problem usually reflects variable costs of production and

economical benefits under the current market conditions,

e.g. fuel or electricity prices, and accounts for physical and

security limits of the plant.

If a production system is required to follow a time-varying

demand in real-time, e.g. if produced commodities cannot

be efficiently stored in large amounts, it becomes crucial to

perform economic optimization on-line. A typical example

of such a system are electrical power systems. Increase of

the frequency with which the economically optimal setpoints

are updated can result in a significant increase of economic

benefits accumulated in time. If the time-scale on which eco-

nomic optimization is performed approaches the time-scale
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of the underlying physical system, i.e. of the plant dynamics,

dynamic interaction in between the two has to be considered.

Economic optimization then becomes a challenging control

problem, even more since it has to cope with inequality

constraints that reflect the physical and security limits of the

plant.

In this paper we present a novel feedback control design

procedure as a solution to the problem of regulating

a general linear time-invariant dynamical system to a

time-varying economically optimal operating point. The

considered dynamical system is characterized with a set of

exogenous inputs as an abstraction of time-varying loads

and disturbances acting on the system. Economic optimality

is defined through a convex constrained optimization

problem with a set of system states as decision variables,

and with the values of exogenous inputs as parameters in

the optimization problem.

Nomenclature. For a matrix A ∈ R
m×n, [A]i j denotes

the element in the i-th row and j-th column of A. For a

vector x ∈ R
n, [x]i denotes the i-th element of x. A vector

x ∈ R
n is said to be nonnegative (nonpositive) if [x]i ≥ 0

([x]i ≤ 0) for all i ∈ {1, . . .n}, and in that case we write

x ≥ 0 (x ≤ 0). The nonnegative orthant of R
n is defined by

R
n
+ := {x ∈ R

n | x ≥ 0}. The operator col(·, . . . , ·) stacks

its operands into a column vector. For u,v ∈ R
k we write

u ⊥ v if u⊤v = 0. We use the compact notational form

0 ≤ u ⊥ v ≥ 0 to denote the complementarity conditions

u≥ 0, v≥ 0, u⊥ v. For a scalar-valued differentiable function

f : R
n → R, ∇ f (x) denotes its gradient at x = col(x1, . . . ,xn)

and is defined as a column vector, i.e. ∇ f (x) ∈ R
n,

[∇ f (x)]i = ∂ f

∂xi
. For a vector-valued differentiable function

f : R
n → R

m, f (x) = col( f1(x), . . . , fm(x)), the Jacobian

at x = col(x1, . . . ,xn) is the matrix D f (x) ∈ R
m×n and is

defined by [D f (x)]i j = ∂ fi(x)
∂x j

. For a vector valued function

f : R
n → R

m, we will use ∇ f (x) to denote the transpose

of the Jacobian, i.e. ∇ f (x) ∈ R
n×m, ∇ f (x) , D f (x)⊤, what

is consistent with the gradient notation ∇ f when f is a

scalar-valued function. With a slight abuse of notation we

will often use the same symbol to denote a signal, i.e. a

function of time, as well as possible values that the signal

may take at any time instant.

II. PROBLEM FORMULATION

In this section we formally present the constrained steady-

state optimal control problem considered in this paper. Fur-

thermore, we list several standing assumptions, which will

be instrumental in the subsequent sections.
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Consider an LTI system Σ described by a state-space

realization

ẋ =

(

ẋp

ẋq

)

=

(

App Apq

Aqp Aqq

)(

xp

xq

)

+

(

Fp

Fq

)

w+

(

Bp

Bq

)

u,

, Ax+Fw+Bu, (1a)

y =
(

I 0
)

(

xp

xq

)

, Cx, (1b)

where x(t)∈R
n is the state variable, u(t)∈R

m is the control

input, w(t) ∈ R
nw is an exogenous input and y(t) ∈ R

m is

the measured output. The state x is partitioned into xp ∈ R
m

and xq ∈ R
n−m, inducing the corresponding partitioning of

the matrices A ∈ R
n×n, F ∈ R

n×nw , B ∈ R
n×m as indicated in

(1a). With W ⊂R
nw denoting a known bounded set and for a

constant w ∈W , consider the following convex optimization

problem associated with the partial state vector xp of the

dynamical system (1):

min
xp

J(xp) (2a)

subject to Lxp = h(w), (2b)

qi(xp) ≤ ri(w), i = 1, . . . ,k, (2c)

where J : R
m → R is a strictly convex and continuously

differentiable function, L ∈ R
l×m is a constant matrix, h :

R
nw →R

l and ri : R
nw →R, i = 1, . . . ,k are continuous func-

tions, while qi : R
m →R, i = 1, . . . ,k are convex, continuously

differentiable functions. For the matrix L we require rankL =
l < m. For a constant exogenous signal w(t) = w ∈ W , the

optimization problem (2) reflects the corresponding optimal

steady-state operating point for the state xp in (1). The

inequality constraints (2c) represent the security-type “soft”

constraints for which some degree of transient violation may

be accepted, but whose feasibility is required for steady-

state operation. The state vector xp collects only the states

which appear explicitly in (2). Note that in general not all of

the elements of xp that appear in the constraints (2b), (2c)

need to appear in the objective function J, and vice versa.

The objective of the control input u is to drive the state

xp to the optimal steady-state operating point given by (2).

We continue by listing several assumptions concerning the

dynamics (1) and the optimization problem (2).

Let Il denote the set of indices i for which the function

qi in (2c) is a linear function, and let In denote the set of

indices for which qi is a nonlinear function. We make the

following assumption:

Assumption II.1 For each w ∈W the set

{xp | Lxp = h(w), qi(xp) < ri(w) for i ∈ In,

qi(xp) ≤ ri(w) for i ∈ Il}

is nonempty. 2

Assumption II.1 states that the convex optimization problem

(2) satisfies Slater’s constraint qualification [1] for each

w ∈ W , implying that strong duality holds for the consid-

ered problem. Note also that due to strict convexity of the

objective function in (2), the optimization problem has an

unique minimizer x̃p(w) for each w ∈W .

Assumption II.2 For each w ∈W , in the optimization prob-

lem (2) the minimum is attained. 2

Assumption II.3 The matrix A is Hurwitz. The sub-matrix1

of A−1B formed by taking the first m rows of A−1B has full

rank. 2

Assumption II.3 guarantees that for all constant w(t) =
w ∈ W , the partial state vector xp can be driven to an

arbitrary steady-state point, which is then characterized by a

unique, constant value of the input signal u. In other words,

Assumption II.3 implies that the steady-state relations from

(1) do not pose any additional constraints to the optimization

problem (2). Although seemingly restrictive, this assumption

is in practice almost always fulfilled since xp represents the

states which directly appear in the economical objective of

the plant, e.g. the optimization problem (2). Well designed

systems allow complete steady-state control (in the sense

of the above stated assumption) of these “economically

relevant” states. However, it is also possible to relax this

assumption. Then, any constraint on the steady-state imposed

by (1) should be included in (2b). The assumption that A is

Hurwitz is also reasonable. Thinking of u as a setpoint signal

for steady-state operation, (1) represents the plant which

already includes a stabilizing controller.

Assumption II.4 In (1) the output matrix C in (1b) is given

by C =
(

I 0
)

, i.e. the state vector xp can be measured.

Furthermore, all components of w that appear in (2) are

known at all time instants. 2

Assumption II.4 implies that violations of the constraints (2b)

and (2c) are available for control. In practice, and in contrast

to the above assumption, violations of the constraints are

often directly measurable, and not only indirectly through

xp and w. To illustrate this, consider an example of an

electrical power system. Demand for electrical power, which

corresponds to the exogenous signal w, is never explicitly

known. However, the network frequency serves as a direct

measure of production-demand imbalance, i.e. as a direct

measure of the violation of an equality constraint in (2b).

Assumption II.4 is made only for the purpose of simplifying

the presentation in the next section and in Remark III.2 this

assumption is relaxed.

With the definitions and assumptions made so far, we are

now ready to formally state the control problem considered

in this paper.

Problem II.5 Constrained steady-state optimal control.

For a dynamical system Σ given by (1), design a feedback

controller that has y as input signal and u as output signal,

such that the following objective is met for any constant-

valued exogenous signal w(t) = w ∈ W : the state of the

1Note that this is a square matrix.
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closed-loop system globally converges to an equilibrium

point with xp = x̃p(w), where x̃p(w) denotes the minimizer

of the optimization problem (2) for some w ∈W . 2

III. DYNAMIC KKT CONTROLLERS

In this section we present two controllers that guarantee

the existence of an equilibrium point with xp = x̃p(w) as

described in Problem II.5.

Assumption II.1 implies that for each w ∈ W , the first

order Karush-Kuhn-Tucker (KKT) conditions are necessary

and sufficient conditions for optimality. For the optimization

problem (2) these conditions are given by the following set

of equalities and inequalities:

∇J(xp)+L⊤λ +∇q(xp)µ = 0, (3a)

Lxp −h(w) = 0, (3b)

0 ≤ −q(xp)+ r(w) ⊥ µ ≥ 0, (3c)

with the abbreviations q(xp) = col(q1(xp), . . . ,qk(xp)),
r(w) = col(r1(w), . . . ,rk(xp)) and λ ∈ R

l , µ ∈ R
k denoting

Lagrange multipliers. Since the above conditions are neces-

sary and sufficient conditions for optimality, it is apparent

that the existence of an equilibrium point with xp = x̃p(w)
is implied if for each w ∈ W the controller guarantees the

existence of the vectors λ and µ , such that that the conditions

(3) are fulfilled in a steady-state of the closed-loop system.

Max-based KKT controller. Let Kλ ∈ R
l×l , Kµ ∈ R

k×k,

Kc ∈ R
m×m and Ko ∈ R

k×k be diagonal matrices with non-

zero elements on the main diagonal and Ko ≻ 0. Consider a

dynamic controller with the following structure:

ẋλ = Kλ (Lxp −h(w)), (4a)

ẋµ = Kµ(q(xp)− r(w)+ v), (4b)

ẋc = Kc(L
⊤xλ +∇q(xp)xµ +∇J(xp)), (4c)

0 ≤ v ⊥ Ko xµ +q(xp)− r(w)+ v ≥ 0, (4d)

u = xc, (4e)

where xλ , xµ and xc denote the controller states and the

matrices Kλ , Kµ , Kc and Ko represent the controller gains.

Note that the input vector v(t) ∈ R
k in (4b) is at any time

instant required to be a solution to a finite-dimensional linear

complementarity problem (4d). 2

Saturation-based KKT controller. Let Kλ ∈ R
l×l , Kµ ∈

R
k×k and Kc ∈ R

m×m be diagonal matrices with non-zero

elements on the main diagonal and Kµ ≻ 0. Consider a

dynamic controller with the following structure:

ẋλ = Kλ (Lxp −h(w)), (5a)

ẋµ = Kµ(q(xp)− r(w))+ v, (5b)

ẋc = Kc(L
⊤xλ +∇q(xp)xµ +∇J(xp)), (5c)

0 ≤ v ⊥ xµ ≥ 0, (5d)

u = xc, (5e)

xµ(0) ≥ 0, (5f)

where xλ , xµ and xc denote the controller states and the

matrices Kλ , Kµ and Kc represent the controller gains.

Note that the input vector v(t) ∈ R
k in (5b) is at any time

instant required to be a solution to a finite-dimensional linear

complementarity problem (5d). 2

The choice of names max-based KKT controller and

saturation-based KKT controller will become clear later in

this section. Notice that both controllers belong to the class

of complementarity systems [2], [3].

Theorem III.1 Let w(t) = w ∈ W be a constant-valued sig-

nal, and suppose that Assumption II.1 and Assumption II.3

hold. Then the closed-loop system, i.e. the system obtained

from the system (1) connected with controller (4) or (5) in

a feedback loop, has an equilibrium point with xp = x̃p(w),
where x̃p(w) denotes the minimizer of the optimization prob-

lem (2) for some w ∈W . 2

Proof. We first consider the closed-loop system with the max-

based KKT controller, i.e. controller (4). By setting the time

derivatives of the closed-loop system states to zero and by

exploiting the non-singularity of the matrices Kλ , Kµ and Kc,

we obtain the following complementarity problem:

0 = A

(

xp

xq

)

+Bxc +Fw, (6a)

0 = Lxp −h(w), (6b)

0 = q(xp)− r(w)+ v, (6c)

0 = L⊤xλ +∇q(xp)xµ +∇J(xp), (6d)

0 ≤ v ⊥ Ko xµ +q(xp)− r(w)+ v ≥ 0, (6e)

with the closed-loop system state vector xcl :=
col(xp,xq,xλ ,xµ ,xc) and the vector v as variables. Any

solution xcl to (6) is an equilibrium point of the closed-loop

system. By substituting v = −q(xp) + r(w) from (6c) and

utilizing Ko ≻ 0, the complementarity condition (6e) reads

as 0 ≤−q(xp)+ r(w) ⊥ xµ ≥ 0. With λ := xλ and µ := xµ ,

the conditions (6b),(6c),(6d),(6e) therefore correspond to

the KKT conditions (3) and, under Assumption II.1, they

necessarily have a solution. Furthermore, for any solution

(xp,xλ ,xµ ,v) to (6b),(6c),(6d),(6e), it necessarily holds that

xp = x̃p(w). It remains to show that (6a) admits a solution

in (xq,xc) for xp = x̃p(w). This, however, readily follows

from Assumption II.3. Moreover, Assumption II.3 implies

uniqueness of xq and xc in an equilibrium. Now, consider

the closed-loop system with the saturation-based KKT

controller, i.e. controller (5). The difference in this case

comes only through (5b) and (5d). It is therefore sufficient to

show that (5b) and (5d) imply 0≤−q(xp)+r(w)⊥ xµ ≥ 0 in

a steady-state. This implication is obvious since Kµ ≻ 0. 2

Remark III.2 This remark concerns Assumption II.4. Sup-

pose that the output y of the system (1), instead of being

given by (1b), has the form y = col(α(x,w),β (x,w),xp),
where α : R

n × R
nw → R

l and β : R
n × R

nw → R
k are

continuous functions, characterized by the following steady-

state-related properties:

[α(x,w)]i = 0 ⇔ [Lxp −h(w)]i = 0, i = 1, . . . , l, (7a)

[β (x,w)] j ≤ 0 ⇔ [q(xp)− r(w)] j ≤ 0, j = 1, . . . ,k. (7b)
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Here, by steady-state-related we mean that the above pro-

porties hold when w ∈W is a given constant signal and the

system is in a steady-state. The values of α and β therefore

carry the information of the violation of the constraints, and

as such they can be directly used for control purposes. From

(7) it follows that by replacing Lxp − h(w) by α(x,w) and

q(xp)− r(w) by β (x,w) in (4a),(4b),(4d),(5a), and (5b), the

statement of Theorem III.1 still holds. 2

A. Complementarity integrators

The main distinguishing feature between the max-based

KKT controller (4) and the saturation-based KKT controller

(5) is in the way the steady-state complementarity slackness

condition (3c) is enforced. Although characterized by the

same steady-state relations, the two controllers, and therefore

the corresponding closed-loop systems, have some signifi-

cantly different dynamical features which will be discussed

further in this section. In the following two paragraphs our

attention is on the equations (4b),(4d) and (5b),(5d), and the

goal is to show the following:

• The max-based KKT controller, i.e. controller (4), can be

represented as a dynamical system in which certain variables

are coupled by means of static, continuous, piecewise linear

characteristics;

• The saturation-based KKT controller, i.e. controller (5),

can be represented as a dynamical system with state satura-

tions.

Max-based complementarity integrator. Let a, b and c be

real scalars related through the complementarity condition

0≤ c⊥ a+b+c≥ 0. It is easily verified, e.g. by checking all

possible combinations, that this complementarity condition

can equivalently be written as b+c = max(a+b,0)−a. With

max(·, ·) defined for vectors as an elementwise maximum, i.e.

for v,w ∈ R
n, (z = max(v,w)) ⇔ ([z]i = max([v]i, [w]i), i =

1, . . . ,n), the above equivalence holds as well for the case

when a,b,c are vectors of the same dimension. Now, by

taking c = v, a = Koxµ and b = q(xp)− r(w), it follows that

(4b) and (4d) can be equivalently described by

ẋµ = Kµ(max(Ko xµ +q(xp)− r(w),0)−Ko xµ). (8)

With β := q(xp)− r(w), Figure 1 presents a block diagram

representation of the i-th row in (8). The block labeled “Max”

in the figure, represents a scalar max relation as a static

piecewise linear characteristics.

Fig. 1. Max-based complementarity integrator.

With [Ko]ii > 0, it is easy to verify that if the system

in Figure 1 is in steady-state, than the value of its input

signal [β ]i and the value of its output signal [xµ ]i necessarily

satisfy the complementarity condition [xµ ]i ≥ 0, [β ]i ≤ 0,

([xµ ]i [β ]i) = 0. 2

Saturation-based complementarity integrator. The differ-

ential algebraic equations (5b), (5d) restrict the state vector

xµ to the nonnegative orthant R
k
+. For xµ > 0, i.e. when

Fig. 2. Saturation-based complementarity integrator.

xµ is in the interior of R
k
+, its dynamics is described by

the equation ẋµ = Kµ β (x,w), where β (x,w) := q(xp)−r(w).
However, on the boundary this dynamics is modified to pre-

vent the solution from leaving R
k
+. Precisely, the dynamics

of the i-th element in xµ is given by

[ẋµ ]i =

{

0 if [xµ ]i = 0 and [Kµ ]ii[β ]i < 0,

[Kµ ]ii[β ]i otherwise.

(9)

Figure 2 presents a block diagram representation of (9),

which is a saturated integrator with the lower saturation point

equal to zero. The equivalence of the dynamics (5b), (5d) and

the saturated integrators defined by (9) directly follows from

the equivalence of gradient-type complementarity systems

(GTCS) ((5b), (5d) belong to the GTCS class) and projected

dynamical systems (PDS) ((9) belongs to the PDS class). For

the precise definitions of GTCS and PDS system classes and

for the equivalence results see [4] and [5].

With [Kµ ]ii > 0, it is easy to verify that in steady-state

the value of the input signal [β ]i and the value of the output

signal [xµ ]i necessarily satisfy the complementarity condition

[xµ ]i ≥ 0, [β ]i ≤ 0, ([xµ ]i [β ]i) = 0. 2

The above presented complementarity integrators provide

the basic building blocks for imposing steady-state com-

plementarity conditions. We will use the term max-based

complementarity integrator to refer to a system with the

structure as depicted in Figure 1, and the term saturation-

based complementarity integrator for the system in Figure 2.

Together with a pure integrator, complementarity integrators

form the basic building block of a KKT controller.

B. Well-posedness and stability of the closed-loop system

In this subsection we shortly address some results concern-

ing the well-posedness and stability analysis problems of the

closed-loop system, i.e. of the system (1) interconnected with

a dynamic KKT controller in a feedback loop. We refer to

[6] for a more detailed treatment of these topics.

Well-posedness. Since the function max(·,0) is globally

Lipschitz continuous, for checking well-posedness of the

closed-loop system with max-based KKT controller one

can resort on standard Lipschitz continuity conditions. The

closed-loop system with saturation-based KKT controller

belongs to a specific class of gradient-type complementarity

systems for which sufficient conditions for well-posedness

have been presented in [4] and [5].

Stability analysis. Theorem III.1 states that for any

constant-valued exogenous signal w(t) ∈W , the closed-loop
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Fig. 3. The values of w and x1 + x2, i.e. the right hand and the left hand
side of the equality constraint (11b), as a function of time.

system necessarily has an equilibrium. Furthermore, from the

proof of this theorem it follows that for all corresponding

equilibrium points the values of the state vectors (xp,xq,xc)

are unique. For a given w(t) = w ∈ W , the necessary and

sufficient condition for uniqueness of the remaining closed-

loop system state vectors (xλ ,xµ), and therefore necessary

and sufficient condition for uniqueness of the closed-loop

system equilibrium, corresponds to the condition for unique-

ness of the Lagrange multipliers in (3). This condition is

know as strict Mangasarian-Fromovitz constraint qualifica-

tion (SMFCQ) and is presented in [7]. Since both types of

complementarity integrators can be presented in a piecewise

affine framework [8], for a given w(t) = w∈W characterized

by unique equilibrium, one can perform global asymptotic

stability analysis based on: i) the analysis procedures from

[9]–[11] in case when (2) is a quadratic program; ii) the

analysis procedure from [12] in case when (2) is given with

a (higher order) polynomial objective function and (higher

order) polynomial inequality constraints. In the case when

w(t) = w ∈ W is such that the SMFCQ does not hold, the

closed-loop system is characterized by a set of equilibria (not

a singleton), which is then an invariant set for the closed-

loop system. Each equilibrium in this set is characterized

by different values of the state vectors (xλ ,xµ), but unique

values of the remaining states. Under additional generalized

Slater constraint qualification, see [13] for details, the set of

equilibria is guaranteed to be bounded. For stability analysis

with respect to this set, one has to invoke LaSalle’s invariance

theorem, see [14] for a general introduction and [15]–[17],

including the references therein, for generalizations of the

invariance theorem to hybrid systems. Finally, to perform

stability analysis for all possible constant values of the

exogenous signal w(t), i.e. for all w(t) = w where w is any

constant in W , it is possible to reformulate this problem

into suitably defined robust stability analysis problem of a

LTI system affected by structured uncertainties, see [6] for

details. In [6] several remedies for dealing with non-unique

equilibria were proposed.

IV. EXAMPLE

As already reported in [18] and [19], the dynamic KKT

controllers (with certain application oriented modifications)
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Fig. 4. Violation of the inequality constraint (11c) as a function of time.
When the curves are above zero (horizontal dashed line), the constraint is
violated.

have a large potential for application in real-time, price-

based power balance and network congestion control of

electrical energy transmission systems, what is considered to

be one of the toughest problems in operation and control of

restructured, market-based power systems [20]. Specifically,

the KKT control structure is suitable for this particular

application since it explicitly manipulates with the Lagrange

multipliers, which, in electrical power systems, have an

interpretation of nodal prices for electricity. Due to space

limitations, in this section we will illustrate the effectiveness

of the KKT controllers on an academic example.
Consider a third-order system of the form (1) with (1a)

given by





ẋ1

ẋ2

ẋ3



 =





−2.5 0 −5
0 −5 −15

0.1 0.1 −0.2









x1

x2

x3



+





0
0

−0.1



w+





2.5 0
0 5

0 0





(

u1

u2

)

, (10)

where xp = col(x1,x2), xq = x3 and u = col(u1,u2). The as-
sociated steady-state related optimization problem is defined
as follows:

min
xp

1

2
x⊤p Hxp +a⊤xp (11a)

subject to x1 + x2 = w, (11b)

(x1 −4.7)2 +(x2 −4)2 ≤ 3.52
, (11c)

where H = diag(6,2), a = col(−4,−4), and the value of

the exogenous signal w is limited to be in the interval W =
[4,11.5]. It can be verified that for this W and the constraints

(11b) and (11c), the Assumption II.1 holds true. Furthermore,

it can easily be verified that the condition in the Assump-

tion II.3 is fulfilled. We assume that the complete state vector

is available for control, i.e. that the output equation (1b) is

given by y = x. From the dynamics of the state x3, it follows

that in steady-state the equality x1 + x2 − 2x3 = w holds.

Therefore, in steady-state, x3 = 0 implies fulfilment of the

constraint (11b). This implies that for control we can directly

use the value of the state x3 as a measure for violation

of this constraint (see Remark III.2). Simulations of the

closed-loop system response to the stepwise exogenous input

w(t), which is presented in Figure 3, have been performed.
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Fig. 5. Simulated trajectory of the controller state xµ .

Figures 3-6 present both the results of the simulation when

the system is controlled with a saturation-based and when

it is controlled with a max-based KKT controller. Both

controllers were implemented with the gains Kλ = 0.15,

Kµ = 0.1, Kc = −0.7I2, and the gain Ko in the max-based

controller was set to 0.5. Figure 3 and Figure 4 clearly

illustrate that the controllers continuously drive the closed-

loop system towards the steady-state where the constraints

(11b), (11c) are satisfied. Figures 4 and 5 illustrate fulfilment

of the complementarity slackness condition (3c) in steady-

state. Finally, Figure 6 illustrates that the controllers drive

the system towards correspondent optimal operating point as

defined by (11). In this figure the straight dashed lines labeled

wi, i = 1, . . . ,4, represent the equality constraint x1 +x2 = wi

where the values of wi are the ones given in Figure 3.

The dashed circle represents the inequality constraint (11c),

i.e. the steady-state feasible region for xp is within this circle.

Thin dotted lines represent the contour lines of the objective

function (11a), while the dash-dot line represents the locus

of the optimal point x̃p(w) for the whole range of values w

in the case when the inequality constraint (11c) would be

left out from the optimization problem.

V. CONCLUSIONS

We have presented a control design procedure as a solution

to the problem of regulating a general linear time-invariant

dynamical system to a time-varying economically optimal

operating point. The system was characterized with a set of

exogenous inputs as an abstraction of time-varying loads and

disturbances acting on the system. Economic optimality was

defined through a constrained convex optimization problem

with a set of system states as decision variables, and with the

values of exogenous inputs as parameters. A distinguishing,

advantageous feature of the presented approach is that it

offers an explicitly defined dynamic controller as a solution,

i.e. the resulting controller is not based on solving on-line

the corresponding optimization problem.
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