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Abstract— We study the distributed control of autonomous
second order agents under persistent disturbances. We show
that the usual averaging rule for convergence to formation is
only able to reject constant disturbances that are identical for
each agent. We also prove that using a distributed dynamic
compensation law the system can be made to converge to
formation under constant perturbations of the control input
even when the perturbations are different for each agent. We
illustrate the results with numerical simulations.

Keywords: formation stability, decentralized control, cooperative
control, disturbance rejection, dynamic compensation, graph Lapla-
cian.

I. INTRODUCTION

There is by now a standard approach to the distributed

control of autonomous agents in order to achieve a prede-

termined formation or a consensus objective. The feedback

law used was originally motivated by the organized motions

of birds in flocks and fish in schools ([1]) and as a model

for self driven particles [2]. The model was first used for the

control of vehicle formations in [3], [4] and latter studied by

many others (see [5], [6], [7], [8], [9], [10], [11], [12], [13],

[14], [15], [16], [17], [18]).

In this paper we focus our attention on proving under

which conditions the feedback law can stabilize the system to

formation in the presence of certain persistent disturbances.

Roughly speaking, the feedback rule simply calculates a

weighted average of the relative errors between the positions

and velocities of an agent and its neighbors and the desired

relative position and velocities of the corresponding forma-

tion objective. The “neighbors” refers to a communication

digraph and the weights can be either assumed to come from

cost on the communication links (edges of the graph) or

from some feedback gains in the control law. The notion

of a communication digraph was introduced in [3]. The

authors of [13], [14], [15] investigate the motions of vehicles

modelled as double integrators. Their goal is for the vehicles

to achieve a common velocity while avoiding collisions.

The control laws involve graph Laplacians for an associated

undirected (neighborhood) graph but also nonlinear terms

resulting from artificial potential functions. More detailed

descriptions of other approaches can be found in [7].

The paper is organized as follows. In Section II we cover

the relevant preliminaries from graph theory. In Section III

we present the mathematical model and give several formal
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definitions. The main results are proven in Sections IV and V.

We illustrate the results in Section VI. The final section

presents conclusions and future work.

II. GRAPH THEORY

For general graph theoretic references we refer the reader

to [19]. A directed graph or digraph Γ consists of a finite set

V of vertices and a set E ⊆ V × V (the directed edges). We

will assume that the digraph has no loops, that is (x, x) 6∈ E
for any x. A graph is undirected if for all x, y ∈ V , (x, y) ∈
E implies (y, x) ∈ E.

Let Γ denote a digraph with vertex set V = {i : i =
1, . . . , N} and edge set E . The adjacency matrix of Γ is

the N × N matrix Q with entries

qij =

{

1 if (j, i) ∈ E ,

0 otherwise
(i, j ∈ V).

When Γ is undirected, the matrix Q is symmetric. The in-

degree matrix of Γ is the diagonal N × N matrix D with

diagonal entries

dii = |{j ∈ V : (j, i) ∈ E}| (i ∈ V)

where |S| denotes the number of elements of the set S. The

directed Laplacian of Γ is the matrix defined by ([20])

LΓ = D+(D − Q),

where D+ is the (Moore-Penrose) pseudoinverse of D.

This is slightly different from the standard matrix Laplacian

(see [21]). A key property of LΓ is that zero is an eigen-

value of LΓ and the all ones vector 1N is an associated

eigenvector (but in general there could be others [22]). All

the eigenvalues of LΓ lie in the circle of radius 1 centered

at the point 1 + 0i in the complex plane. In particular, all

nonzero eignevalues have positive real part (for additional

properties see [7]).

Definition 2.1: A rooted directed tree is a digraph T with

the following properties:

• T has no cycles.

• There exists a vertex v (the root) such that there is a

(directed) path from v to every other vertex in T .

The following result was proved in [7] and [23].

Proposition 2.2: Let G denote a (loopless) digraph. Then,

zero is an eigenvalue of algebraic multiplicity one for the

directed Laplacian LΓ if and only if Γ has a rooted directed

spanning tree.

In what follows we will only be interested in the case when

zero is an eigenvalue of multiplicity one of Γ.
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III. MODEL

We assume we are given N agents (or vehicles) with the

same dynamics

ẋi = Avehxi + Bvehui i = 1 . . . N xi ∈ R
2n (1)

where the entries of xi represent n configuration variables

for agent i and their derivatives, and the ui represent control

inputs. The matrices Aveh and Bveh are of the form

Aveh =















0 1 0 0 · · · 0
0 a22 0 a24 0 a26 · · · a2(2n)

0 0 0 1 0 · · · 0
0 a42 0 a44 0 a46 · · · a4(2n)

...
...

...















Bveh =























0 0 0 · · ·
1 0 0 · · ·
0 0 0 · · ·
0 1 0 · · ·
0 0 0 0 · · ·
0 0 1 0
...























. (2)

The form of the odd-numbered rows of Aveh and Bveh is

determined by the fact that the even-numbered coordinates

represent the velocities of the (previous) odd-numbered co-

ordinates and that the controls affect the accelerations. The

zeros in the odd-numbered columns of Aveh are necessary

for the vehicles to converge to formation (see [6] Propo-

sition 3.1 and [20] Proposition 4.2). Those zeros indicate

that the velocities should not be affected by the position of

the agents which is intuitively necessary if the formation

is to remain invariant under translations. The entries of

the form a(2k)(2k) affect the acceleration of the formation

as a whole: when negative, the agents achieve formation

and stop, when zero, the agents achieve formation while

drifting, and, when positive, the agents achieve formation

but the formation as a whole accelerates ([7]). The other

entries are related to a rotational movement of the formation

([21]). Those entries result from cross coupling between the

coordinates of the state vectors. One possible source for them

would be flight surfaces that affect motion in two coordinates

simultaneously.

We will refer to the odd-numbered entries of x =
(x1, . . . , xN )T as position-like variables and to the even-

numbered entries as velocity-like variables. We will

use the notation xp = ((xp)1, . . . , (xp)N )T , xv =
((xv)1, . . . , (xv)N )T to denote the vectors of position-like

and velocity-like variables, so x = xp ⊗

(

1
0

)

+ xv ⊗

(

0
1

)

(where ⊗ denotes the Kronecker product).

Definition 3.1: A formation is a vector h = hp ⊗

(

1
0

)

∈

R2nN (where ⊗ denotes the Kronecker product). The N

agents are in formation h at time t if there are vectors

q, w ∈ Rn such that (xp)i(t) − (hp)i = q and (xv)i(t) =
w, for i = 1 . . . N . The vehicles converge to formation

h if there exist Rn-valued functions q(·), w(·) such that

(xp)i(t) − (hp)i − q(t) → 0 and (xv)i(t) − w(t) → 0, as

t → ∞, for i = 1 . . . N (where xp and xv are as indicated

above).

Fig. 1 illustrates the interpretation of the various vectors in

the definition.

q

h1

h2

h3

h5

h4

Fig. 1. Five agents in pentagon formation

Let h = hp ⊗

(

1
0

)

∈ R2nN and let 1N denote the

all ones vector of size N . Notice that x − h = 1N ⊗ γ

is equivalent to (xp)i − (hp)i = q and (xv)i = w where

γ = q ⊗

(

1
0

)

+ w ⊗

(

0
1

)

.

To complete the model we are also given a digraph Γ
which captures the communication links between agents (see

Section II). Each vertex represents an agent and there is

a directed edge from one vertex to another if there is a

communication link sending information from the first agent

to the second. The second agent uses this information in a

feedback formula to adjust its own state. We say that the

first agent is a neighbor of the second. For each agent i,

Ji denotes the set of its neighbors. The decentralized and

cooperative nature of the control is encoded into the fact

that controls ui are functions of xj −xi and hj −hi for each

j ∈ Ji.

The standard model analyzed in the literature ([4], [7],

[23]) uses a linear feedback of the output functions zi

computed from an average of the relative displacements (and

velocities) of the neighboring agents. Furthermore, to allow

for “leaders” (agents which only send information to other

agents but do not receive, so the other agents must adjust

their motion to the leader) the output is rewritten as

zi =

{

1
|Ji|

∑

j∈Ji
((xi − hi) − (xj − hj)) if |Ji| 6= 0

0 otherwise

for i = 1, . . . , N . As a result, the corresponding output

vector z can be written as z = L(x − h) where L =
LΓ ⊗ I2n and LΓ is the (directed) Laplacian matrix of the

communication graph Γ (see Section II).

Collecting the equations for all the vehicles into a single
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system we obtain

ẋ = Ax + Bu (3)

z = L(x − h) (4)

with A = IN ⊗ Aveh, B = IN ⊗ Bveh. The problem of the

existence of feedback matrices F such that the solutions to

ẋ = Ax + BFL(x − h) (5)

converge to formation h, has been well studied. The problem

is solvable if and only if the communication graph admits a

(rooted) directed spanning tree ([7], [23]). From now on we

will assume this is the case.

The focus of this paper is to study the effect of various

disturbances on this model. We recast the problem as

a classical output stabilization problem ([24]) and prove

two results:

1) The disturbance decoupling problem is solvable if

and only if the disturbances are constant (zero

velocity) and equal for all agents. This problem

consists of finding a feedback matrix such that the

output of the closed-loop system is unaffected by input

disturbances (see Section IV).

2) The regulator problem with internal stability is

solvable in the presence of constant feedback dis-

turbances (even if different for each agent). This

problem consists of finding a feedback matrix such

that the output converges asymptotically to 0 (see

Section V).

IV. DISTURBANCE REJECTION

We consider first the disturbance decoupling problem

([24]). More precisely, we investigate the model

ẋ = Ax + Bu + Sq (6)

z = L(x − h) (7)

where S is constant. We will assume that the disturbances

are piecewise continuous, but otherwise arbitrary. The main

question is whether there exist matrices F such that setting

u = Fz in Eq. (6-7) guarantees that z(·) is the same for

any disturbance q(·). We refer to this as the Disturbance

Decoupling Problem (DDP) (see [24]).

Proposition 4.1: The DDP is solvable if and only if S ⊆
Null(L).

Proof. Using the explicit form for the solution of the

system we have,

z(t) = L

(∫ t

0

e(t−s)(A+BFL)(Sq(s) − BFLh) ds − h

)

The problem is then that of determining if there exists F

such that for any function q(·)

z(t) = L

(∫ t

0

e(t−s)(A+BFL)Sq(s) ds

)

= 0. (8)

Since the null space of LG consists solely of vectors of

the form c1N , the null space of L consists of vectors of the

form 1N⊗α, where α ∈ R2n. Equation (8) is then equivalent

to
∫ t

0

e(t−s)(A+BFL)Sq(s) ds = 1N ⊗ α(t) (9)

for some R2n-valued continuous function α(·). To facilitate

the explanation we introduce some additional notation. Given

a p×p matrix M and a vector subspace T of Rp we denote

by 〈M |T 〉 the subspace

T + MT + · · · + Mp−1T .

(This is the controllable subspace of (M, T ) for any matrix

T with column space T .) Denote by S the column space of

the matrix S above. With this notation (9) holds if and only if

〈A+BFL|S〉 ⊆ {1N ⊗α : α ∈ R2n} = Null(L) (this can be

shown by a standard argument, see for example [24]). From

this it follows that if the DDP is solvable, S ⊆ Null(L).
Conversely, assume S ⊆ Null(L). Since L(1N ⊗ α) = 0,

we get (A+BFL)k(1N⊗α) = Ak(1N⊗α) for k = 1, 2, . . ..

Recalling that A = I ⊗ Aveh, we see that Ak(1N ⊗ α) =
I ⊗Ak

vehα which is again in the Null space of L. Therefore

〈A + BFL|S〉 ⊆ Null(L), and so Equation (9) holds. ¤

To paraphrase, the only disturbances that can be decoupled

are those that are exactly the same for each agent. One such

example, in case the agents are flying vehicles, would be

a wind that could vary over time. The wind could include

sudden gusts as long as all vehicles are affected equally.

The output would ignore this type of inputs, meaning that

the formation will not be perturbed. Given the nature of

the feedback law (neighboring data averaging) this result is

rather intuitive.

V. OUTPUT STABILIZATION

We now consider the problem of asymptotic stabilization

(convergence to formation) in the presence of persistent

control errors. We consider the system

ẋ = Ax + Bu (10)

z = L(x − h) (11)

but this time we look for matrices F such that if we

set u = Fz + v for an arbitrary constant v the system

will still converge to formation. In fact, the theory can be

applied as long as the disturbance v satisfies a known time-

invariant linear differential equation. This becomes clear in

the approach because we will expand the system to include

the disturbances as state variables. Here we just assume they

are constant and so they satisfy the equation v̇ = 0. We

will expand the system to include the compensator ˙̃x = z,

essentially integrating the average output error.

We first observe that given the structure of Aveh we can

dispose of h altogether. Indeed, notice that Ah = 0 (see

Section III). Therefore we can write the system as follows

ẋ = Ax + Bu = A(x − h) + Bu

z = L(x − h)
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Since h is constant we can change variables to x̃ = x − h

and we obtain the same dynamics and output as before but

with h = 0. To avoid more cumbersome notation we will

heretofore assume that h = 0.

To cast the problem in classical terms we expand the

system to include v as a state variable with appropriately

modified dynamics. We use the subscript e to denote the

expanded objects, so

xe =

(

x

v

)

Ae =

(

A B

0 0

)

Be =

(

B

0

)

Le =
(

L 0
)

The extended system is as follows.

ẋe = Aexe + Beu (12)

z = Lexe (13)

The problem is now to find F , (if possible) such that under

the feedback u = Fz, for any initial condition xe(0), we

get z → 0 as t → ∞. Notice that the disturbance enters

the equations through the submatrix B within Ae. This

is a special case of the Regulator Problem with Internal

Stabilization (RPIS) (see [24], Chap. 7). As such we will

show that it is indeed solvable.

Notice that in (12)-(13) xe ∈ R2nN+nN , u ∈ RnN , and

z ∈ R2nN . The matrices and their blocks have the corre-

sponding dimensions. We denote by Be the space spanned

by the columns of Be, and by N the space

N =
3nN−1

⋂

i=0

Null(LeA
i
e).

The space N is the unobservable space ([24]). Finally, we

denote by X+(Ae) the unstable subspace of Ae, that is, the

null space of p+(Ae), where p+(λ) is the unstable part of

the minimal polynomial of Ae. We will use the following

result.

Theorem 5.1 (Wonham [24]): RPIS is solvable if and

only if there exists a subspace V of R3nN such that

V ⊂ Null(Le) ∩ A−1
e (V + Be) (14)

X+(Ae) ∩N + Ae(V ∩ N ) ⊂ V (15)

V ∩ (〈Ae|Be〉 + N ) ⊂ N (16)

X+(Ae) ⊂ 〈Ae|Be〉 + V (17)

We now proceed to characterize the relevant spaces above

in more detail. Note first that the columns of Be are the

canonical vectors e2j in R3nN for j = 1, . . . , nN .

Proposition 5.2: The subspace V = Null(Le) satis-

fies (14)-(17).

Proof. The space V consists of all vectors of the form
(

x

v

)

=

(

1N ⊗ α

v

)

with α and v arbitrary. This follows directly form the shape

of Le and the characterization of the null space of L given

earlier (see the proof of Proposition 4.1). If xe ∈ V then

Aexe =

(

Ax + Bv

0

)

=

(

A(1N ⊗ α) + Bv

0

)

=

(

IN ⊗ Avehα + Bv

0

)

.

Therefore Aexe ∈ V + Be. This proves (14).

To compute N observe that LeA
i
e =

(

LAi LAi−1B
)

.

Therefore, for xe =

(

x

v

)

to be in N we must have, in

particular, Lx = 0 and L(Ax + Bv) = 0. This means that

x = 1N⊗α and Ax+Bv = 1N⊗γ for some γ ∈ R2n. Since

A(1N ⊗ α) = 1N ⊗ Avehα we get L(Ax + Bv) = LBv.

Using the special form of B (given in (3)) we then get v =
1N⊗β with β ∈ Rn. So far we have xe = (1N⊗α,1N⊗β)T .

For i ≥ 2 we get

LeA
i
exe =

(

LAi(1N ⊗ α) LAi−1B(1N ⊗ β)
)

Moreover, LAi(1N ⊗ α) = L(1N ⊗ Avehα) = 0 and

LAi−1B(1N ⊗ β) = LAi−1

(

1N ⊗

(

β ⊗

(

0
1

)))

= L

(

1N ⊗ Ai−1
veh

(

β ⊗

(

0
1

)))

= 0

This implies that LeA
i
exe = 0 for all i ≥ 2 and therefore

the vector xe has the form above. In summary,

N =

{(

1N ⊗ α

1N ⊗ β

)

: α ∈ R
2n, β ∈ R

n

}

.

Let xe ∈ N . Then

Aexe =

(

A(1N ⊗ α) + B(1N ⊗ β)
0

)

=





1N ⊗ Avehα + 1N ⊗

(

β ⊗

(

0
1

))

0



 .

Which shows that Aexe ∈ V . Together with N ⊂ V the

above proves (15). For the next two inclusions, (16) and (17),

we need to compute 〈Ae|Be〉. A direct calculation shows

Ak
eBe =

(

IN ⊗ Ak
vehBveh

0

)

and the controllability matrix

[Ae, Be] has the form

(

IN ⊗ [Aveh, Bveh]
0

)

. Since the pair

(Aveh, Bveh) is completely controllable, the space 〈Ae|Be〉

consists of all vectors of the form

(

α

0

)

for α ∈ R2nN . Then

〈Ae|Be〉+N consists of vectors of the form

(

α

1N ⊗ β

)

and

so V ∩ (〈Ae|Be〉 + N ) = N . Therefore (16) holds.

Finally, notice that 〈Ae|Be〉+V = R3nN and therefore (17)

holds as well, regardless of the entries a(2j)(2k) in the matrix

Aveh. ¤

Combined, the last theorem and proposition give the main

result.

Proposition 5.3: The RPIS for the agent formation prob-

lem with constant feedback error is solvable.

The above results, while useful because they allow for an

easy check, do not indicate how to compute a stabilizing

feedback. However, a more detailed approach used in [24]
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reduces in this case to finding a feedback law F which

stabilizes A+BFL on the observable quotient space. When

using a feedback law in block form identical for each agent,

that is, for F = IN ⊗ Fveh, the desired F is obtained when

Fveh is such that Aveh + λBvehFveh is Hurwitz for each

nonzero eigenvalue λ of the Laplacian LG ([7]).

VI. EXAMPLES

We illustrate the RPIS results with some numerical sim-

ulations representing five autonomous agents moving on a

plane (n = 2). The entries a(2k)(2k) are set to zero to allow

some drift and better illustrate the effects. In all figures below

the agents start in a straight line (the vertical line on the left)

and the goal is for them to arrange themselves in a regular

pentagon formation. The overall formation motion path is

not planned nor is it tracked. Instead, the shown trajectories

are arbitrary results of both the vehicle dynamics needed to

achieve the commanded formation and external disturbances.

In Figs. 2 and 3 all even rows in Aveh are set to zero. In Fig. 2

the standard averaging feedback law is used but a constant

disturbance is added to the feedback loop as explained in the

RPIS problem. The final positions of the agents are indicated

by the colored dots. The color traces indicate the path of

each agent (red, green, blue, magenta and cyan for agents

1 through 5 respectively). The pentagon edges are included

to make it easier to visualize the relative positions of the

agents. In the top plot the agents fail to achieve the regular

0 2 4 6 8 10

1

2

3

4

5

6

7

8

9

5−agent formation: r=1,g=2,b=3,m=4,c=5

x

y

0 2 4 6 8

1

2

3

4

5

6

7

8

9

5−agent formation: r=1,g=2,b=3,m=4,c=5

x

y

Fig. 2. Top: Agents do not achieve formation with feedback disturbance.
Bottom: Agents achieve formation by using a compensator

pentagon formation as is clearly visible. As discussed above,

this is because only the averaging feedback law is used, but

no integral compensator. The second plot in the same figure

shows a simulation run for the same time and with the same

parameters but using a compensator.

In Fig. 3 the compensator is turned on about a third of

the way through the motion to illustrate its effect. Initially

the agents settle in an irregular pentagon formation. After the

compensator is turned on there is some intermediate transient

behavior and then the regular pentagon formation is achieved.

0 5 10 15 20 25 30

0

5

10

15

20

25

5−agent formation: r=1,g=2,b=3,m=4,c=5

x

y

Fig. 3. Convergence with compensator. The first third is identical to the
top plot of Fig. 2, but then the compensator is turned on.

In Figs. 4 and 5 we present a similar situation while the

agents perform a circular motion. Here we set a24 = −a42 6=
0. In Fig. 4, top plot, there is no integral compensation and

the agents converge to a distorted formation. In the bottom

plot of the same figure a compensator is used.

Finally, in Fig. 5 about half way through the motion the

agents have again settled in an irregular pentagon pattern

while running without a compensator. At that point the

compensator is turned on and, after an initial transient,

the agents then achieve the desired formation. Because of

the effect of the disturbances the resulting motion is not

perfectly circular. The compensator cancels the effect of

the disturbance on the formation but not on the absolute

positions of the agents. Such absolute motions reside in the

unobservable space of the model.

VII. CONCLUDING REMARKS AND FUTURE WORK

We showed that the standard formation problem discussed

in the literature is disturbance decoupled as long as the

disturbance is constant across agents. We also showed that

by using a simple compensator the system can cancel out

constant perturbations in the feedback control loop. It should

be pointed out that the compensator is also distributed in the

sense that each agent need only know its own and its neigh-

bors’ relative errors in order to generate the compensating

feedback.

The underlying theory is more general than illustrated

in the paper, as far as the types of disturbances that can
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5−agent formation: r=1,g=2,b=3,m=4,c=5
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Fig. 4. Feedback disturbance in circular motion. Top: without compensator.
Bottom: with compensator
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5−agent formation: r=1,g=2,b=3,m=4,c=5
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y

Fig. 5. Convergence while in circular motion. The beginning half of the
path is identical to the top plot of Fig. 4. Then the compensator is turned
on.

be handled. More complicated disturbances will require

correspondingly more complex dynamics in the compensator.

The input to the compensator will still be the output error

z = L(x − h).
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