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Abstract: In this paper, a novel self-calibration method is

developed for a camera attached to a mechanical system with

known kinematics. An innovative least squares estimator is

developed to compute the unknown intrinsic and extrinsic

camera calibration parameters while an adaptive parameter-

ized error prediction formulation is presented to compensate

for the unknown pixel coordinates of the static objects

projection. The estimator is based on a Lyapunov stability

analysis which verifies convergence of the signals provided a

persistent excitation condition is satisfied. Simulation results

with and without additive pixel noise are also provided to

illustrate the performance and robustness of the algorithm.

I. INTRODUCTION

With the advent of computer vision, camera calibration has

become a fundamental research problem. From the broad

perspective of computer vision, there are two aspects of

camera calibration that have to be addressed, that of the

cameras intrinsic parameters, specifically its geometric and

optical characteristics, and its extrinsic attributes, given by its

position and orientation in space. The intrinsic specifications

are scale factors for each axis, coordinates of the image

planes origin and the intersection of the optical axis with the

image plane. The Euclidean transformation that yields the

camera image frames 3-dimensional position and orientation

in space with respect to the fixed world frame represents

the extrinsic characteristics of the camera system and is

independent of the cameras intrinsic parameters as described

by [1].

Most of the previously published calibration methods

predominantly looked at solving the hand-eye extrinsic cal-

ibration problem or the intrinsic calibration problem sepa-

rately. algorithms that look at determining the position and

orientation of a mounted camera with respect to the robot

end-effector, observe the motion of the camera while the

robot moves. The relationship between the end-effector and

the camera is then described by a homogenous transform

AX = XB, where A and B are matrices representing
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the change in end-effector and camera position respectively,

while X is the unknown transform representing the extrinsic

parameters, a problem first conveyed by Shiu & Ahmad [2].

Young et al. [3] used a Denavit-Hartenberg model of the

manipulator to simplify the problem, while Park & Martin

[4] found a solution using Lie theory and least squares. Remy

et al. [5] solved for the extrinsic parameters as well as

simultaneously determining the structure of the calibration

object, while Li [6] decomposed the transformation matrix

into its rotational and translational components resulting in

two independent equations which could be solved separately.

Quaternions were used by Dornaika & Horaud [7] to

derive a linear solution for the AX = ZB problem, a mod-

ification of the previously described homogenous transform.

In this case, a gripper was used as an end-effector along

with the camera, where X represented the transform from the

gripper to the camera while Z denoted the robot-world frame

transformation. Strobl & Hirzinger [8] used a stochastic

model to estimate the transformation for both versions of the

homogenous equation and Zhao & Liu [9] described a screw

theory solution. It is seen that most extrinsic calibration

methods attempt to linearize the system models allowing for

the use of various optimization and estimation techniques to

reach a closed-form solution.

Brown [10] and Faig [11] were among the first to discuss

the computation of intrinsic parameters. Sinc then, most

methods involve the observation of a simple planar pattern

described by Zhang [12], whose algorithm requires no con-

straint on the motion of the camera. Stein [13] employed

a nonlinear search to predict the motion of feature points

in a set of images from a camera that had undergone a

known rotation. Nakazawa et al. [14] described a cue-based

method that calibrated the internal parameters of the camera

while also estimating the structure of the 3-D object being

projected, and Frahm et al. [15] demonstrated a linearized

form of the intrinsic parameter problem for a rotating camera.

Over time, the idea of self-calibration initially proposed

by Faugeras & Maybank [16] has taken prominence due

to the ease of application, reduced complexity and lower

computational and equipment costs as the method requires

little or no knowledge of the enviroments structure in the

cameras field-of-view. The authors explained the use of

epipolar transformations that could be recovered when the

camera underwent a displacement. This work, along with

Tsai [17] is possibly the first instance where the intrinsic

and extrinsic parameters for a camera system were computed

simultaneously. Additionally, exhaustive literature can be

found including, but not restricted to [14], [18], [19] and

[15].
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Unlike the works described before, the self-calibration

algorithm described in this paper employs the nonlinear sys-

tem equation along with the measured mechanical system1

position and the known position of fixed object features to

provide a least squares solution for the extrinsic and intrinsic

parameters of the camera system. Because of the structure

of the parameterizd pixel coordinate equation, an atypical

nonlinear adaptive predictive error formula is proposed based

on the methodology shown in [20]. Upon satisfaction of the

persistent excitation condition, a Lyapunov-based stability

technique verifed convergence of the estimation.

In this paper, Section 2 briefly explains the pinhole camera

model and outlines the development of the geometric model

relating the images pixel coordinates to the Euclidean coor-

dinates of the feature points along with the transformation

from the robot world frame to the camera frame. Section

3 details the prediction error formulation for every features

pixel coordinates along with a least squares estimation law.

Simulation results are shown in Section 4 for the cases with

and without additive pixel noise to highlight the robustness of

our estimation algorithm and Section 5 concludes the paper.

II. MODEL DEVELOPMENT

A. An Overview of the Pinhole Camera Model

Fig. 1. The pinhole camera model

Figure 1 shows a simple pinhole camera model with a

feature point whose Euclidean coordinates in the world frame

are given by F ∈ R
3, resulting in projected pixel coordinates

P ∈ R
3 on the image plane. The world frame is related

to the camera frame by a rotation and translation, thus

the relationship between the feature point, F and the pixel

coordinates, P can be given by

P = A
[

R, X
]
F, (1)

where R ∈ SO(3) and X ∈ R
3 are the extrinsic camera cal-

ibration parameters, representing the rotation and translation

of the camera frame combined together to form [R, X ] ∈
R

4×3. In (1), A ∈ R
3×3 is the intrinsic camera calibration

1The term “mechanical system” represents robot manipulators, unmanned
airborne or underwater vehicles, mobile robots or any similar systems

matrix such that

A =




fku fku cotφ u0

0 fkv

sin φ
v0

0 0 1



 (2)

where u0 ∈ R and v0 ∈ R represent the pixel coordinates

of the principal point, ku ∈ R and kv ∈ R represent the

number of pixels per unit distance along the image axes u

and v respectively. The focal length is denoted by f ∈ R

and φ ∈ R represents the angle between the image axes u

and v.

B. Geometric Model

Fig. 2. Geometric relationships between the mechanical system, camera
and fixed object.

In order to obtain accurate position information of the

moving camera, it is mounted on a mechanical system,

represented by B, whose fixed base frame is denoted by WF .

Let RB(t) ∈ SO(3) and XB(t) ∈ R
3 denote the known

rotation matrix and translation vector, respectively from B

to WF , expressed in WF which can be computed from the

system kinematics. Let the frame C represent the camera

mounted onto the mechanical system, while RC ∈ SO(3)
and XC ∈ R

3 represent the constant unknown rotation

matrix and translation vector respectively, from C to B and

are expressed in B.

The feature points of the fixed object are denoted by

Fi ∀i = 1, . . . , n and the coordinates of the ith feature point

are denoted by the constant Xfi ∈ R
3 relative to the base

frame WF , and by the variable mi(t) ∈ R
3 relative to the

moving camera frame C, which is defined as follows

mi =
[

xi yi zi

]T
(3)

where xi(t), yi(t) and zi(t) ∈ R represent the coordinates

of the ith feature point relative to C. For the model develop-

ment, it is assumed that the object is always in the cameras

field-of-view, hence the distances of the feature points from

the origin of C are always positive. Let Pi(t) ∈ R
3 represent

the pixel coordinates of the ith feature point projected on the

two-dimensional image in the C frame such that

Pi =
[

ui vi 1
]T

(4)

with ui and vi ∈ R being the projected pixel coordinates

for the ith feature point. These coordinates are related to
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the normalized Euclidean coordinates by the pinhole camera

model such that

Pi =
1

zi

A mi (5)

where, from (1), A ∈ R
3×3 is the unknown intrinsic camera

calibration matrix which we assume has the form

A =




a11 a12 a13

0 a22 a23

0 0 1



 . (6)

III. ESTIMATOR DEVELOPMENT

A. Prediction Error Formulation

From Figure 2, the relationship between the various coor-

dinate frames can be represented as

RT
B (Xfi − XB) = RCmi + XC . (7)

Using the unitary property of rotation matrices as seen in

[21], where RT = R−1, (7) can be reorganized into

mi = RT
C RT

B (Xfi − XB) − RT
CXC . (8)

Thus, by substituting (8) in (5), the pixel coordinates, Pi(t)
can be expressed in terms of the robot kinematics, RB(t)
and XB(t), the unknown extrinsic calibration parameters,

RC and XC , and the coordinates of the object in the world

frame, Xfi, as

Pi =
1

zi

A
(
RT

CRT
B (Xfi − XB) − RT

CXC

)
. (9)

Equation (9) can be further simplified to take the general

form including a combined matrix similar (1), such that

Pi =
1

zi

A
[

R, T
]
Xi (10)

where,

T , −RT
CXC ∈ R

3 (11)

Xi ,

[ (
RT

B (Xfi − XB)
)T

1
]T

∈ R
4 (12)

R , RT
C ∈ S0(3). (13)

Equations (6), (11), and (13) represent the unknown camera

calibration parameters that have to be determined. It can be

seen that (9) contains the known variables RB(t), XB(t)
and the Euclidean coordinates Xfi along with the unknown

calibration parameters A, RC and XC . Thus Pi(t) can be

rewritten in its parameterized form as

Pi =
1

Wziθz

Wxiθx (14)

where Wxi(t) ∈ R
3×12 and Wzi(t) ∈ R

1×4 are the known

regression matrices for the ith feature point containing

various combinations of elements of the known variables

RB(t) and XB(t), with Xfi known a priori. The parameters

θx ∈ R
12 and θz ∈ R

4 are the unknown constant vectors

containing combinations of elements from A, RC and XC ,

which have to be estimated, such that

Wxiθx = A
[

R, T
]
Xi, (15)

Wziθz =
{[

R, T
]
Xi

}
3
. (16)

Let P̂i(t) ∈ R
3 be the estimate of Pi(t), with θ̂x(t) and θ̂z(t)

representing unknown estimates of the constant parameter

vectors θx and θx such that

P̂i =
1

Wziθ̂z

Wxiθ̂x. (17)

By reordering (14) and (17), it can be seen that

PiWziθz = Wxiθx (18)

P̂iWziθ̂z = Wxiθ̂z . (19)

While subtracting (19) from (18) yields

PiWziθz − P̂iWziθ̂z = Wxiθx − Wxiθ̂x (20)

which can be rewritten as [22]

P̃i =
1

Wziθz

(
Wxiθ̃x − P̂iWziθ̃z

)
(21)

where P̃i(t) ∈ R
3, θ̃x(t) ∈ R

12 and θ̃z(t) ∈ R
4 can be

defined as the estimation errors as follows

P̃i , Pi − P̂i; θ̃x , θx − θ̂x; θ̃z , θz − θ̂z.

After separating the known and unknown parameters, the

expression in (21) can be rewritten as follows

P̃i =
1

Wziθz

[
Wxi −P̂iWzi

] [
θ̃x

θ̃z

]
(22)

and can be further simplified as

P̃i =
1

Wziθz

W iθ̃ (23)

where θ̃(t) =
[

θ̃
T

x θ̃
T

z

]T

∈ R
16 and W i(t) =

[
Wxi −P̂iWzi

]
∈ R

3×16. Generalizing and rewriting

(23) for n feature points gives

P̃ = LWθ̃, (24)

where P̃ (t) ∈ R
3n, represents the pixel prediction error

vector and is given as

P̃ =
[
P̃T

1 , P̃T
2 , · · · , P̃T

n

]T

∈ R
3n. (25)

In (24), the matrix L(t) ∈ R
3n×3n is defined as

L = diag
{

γ1, γ1, γ1, · · · , γn, γn, γn

}
(26)

where γ1 = 1

Wz1θz

and γn = 1

Wznθz

. Also, W (t) ∈ R
3n×16

is defined as

W ,
[

W 1 W 2 · · · Wn

]T
(27)

while θ̃(t) ∈ R
16 is the parameter estimation error vector.
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B. Estimator Design

Based on the stability analysis, the estimation law
˙̂
θ(t) is

defined as
˙̂
θ , Proj

{
αΓW

T
P̃

}
(28)

where Proj {·} is defined in [22], and α(t) is a positive

definite scalar constant defined as

α , 1 + σ (29)

where σ ∈ R
+ is a constant. The projection is employed to

avoid singularities that might arise due to the presence of zi

in the denominator of (5). In (28), Γ(t) ∈ R
p×p is the least

squares estimation gain defined as

d

dt

{
Γ−1 (t)

}
, 2W

T
W (30)

where Γ(t0) is positive definite and symmetric, ensuring

Γ (t) is also positive definite and symmetric. Rearranging

(10) yields M ∈ R
3×4, which is of the form

M = A
[

R, T
]

(31)

and contains all the unknown camera calibration parameters.

From (14), it can be seen that the unknown constant vector

θx contains all the elements of M , thus θ̂x(t) will provide

an estimate of M . From [23], by redefining M as follows

M =
[

B, b
]

=
[

AR, AT
]

(32)

it can be seen that

B = AR b = AT (33)

where B ∈ R
3×3 and b ∈ R

3. From the definition of B ∈
R

3×3 in (33), as seen in [23], the following property can be

noted

K = BBT = AR (AR)T = AAT (34)

which gives

K = AAT =




a2
11 + a2

12 + a2
13 a12a22 + a13a23 a13

a22a12 + a13a23 a2
22 + a2

23 a23

a13 a23 1


 .

(35)

Note that θ̂x(t) may be estimated upto a scale factor. In this

case, M is normalized such that K33 = 1 (i.e divide M by√
K33 where Kij represents the element in the ith row and

jth column of the K matrix). Solving for all the individual

elements in the K matrix, we get

a13 = K31 a23 = K32

a22 =
∣∣∣
√

K22 − a2
23

∣∣∣ a12 = K21−a13a23

a22

a11 =
∣∣∣
√

K11 − a2
12 − a2

13

∣∣∣ .
(36)

The equations in (36) allow for the entire intrinsic camera

calibration matrix to be determined. From (33) we can see

R = A−1B T = A−1b (37)

Thus, substituting R computed in (37) into (13), the extrinsic

rotation matrix can be estimated, and subsequently from (11)

and the expression for T in (37), the extrinsic translational

vector can also be estimated.

C. Stability Analysis

Theorem 1: The update law defined in (28) ensures that∣∣∣
∣∣∣θ̃ (t)

∣∣∣
∣∣∣ → 0 as t → ∞ provided the following persistent

excitation conditions as seen in [24] hold,

γi1
Inq ≤

∫ t0+T

t0

W
T

(τ)W (τ ) dτ ≤ γi2
Inq (38)

where γi ∈ R∀i = 1, . . . , n are positive constant and Inq ∈
R

nq×nq is the identity matrix.

Proof: See [22] which has a similar result.

Remark: By using time-varying trigonometric functions

with multiple frequencies to represent the position of the

mechanical system, it can be shown from the techniques

described in [20] that the persistent excitation condition is

satisfied.

D. Scale Factor Estimation

Since θ̂x(t) is estimated upto a scale factor λ, M is also

estimated upto a scale factor. Thus we can write (31) as

M = λA
[

R, T
]

(39)

From (32) we can see that,

B = λAR. (40)

Using the expression in (40) for B, (34) can be rewritten as,

K = BBT = λ2AR(AR)T = λ2AAT (41)

However, we know that K33 must be 1, so the scale factor

can be determined to be

λ2 = K33, (42)

which results in

λ =
√

K33. (43)

Note that K33 will always be positive since K = BBT .

IV. SIMULATION RESULTS

In order to evaluate the effectiveness of the proposed

estimation algorithm, a numerical simulation was performed.

Twelve static feature points with known Euclidean coordi-

nates with respect to the world frame WF were selected

as

Xf1 =
[

0 1 1
]T

Xf7 =
[

0.5 1 1
]T

Xf2 =
[

0 0.5 1
]T

Xf8 =
[

0.5 0.5 1
]T

Xf3 =
[

0 0 1
]T

Xf9 =
[

0.5 0 1
]T

Xf4 =
[

1 1 1
]T

Xf10 =
[

0.75 1 1.5
]T

Xf5 =
[

1 0.5 1
]T

Xf11 =
[

0.75 0.5 1.5
]T

Xf6 =
[

1 0 1
]T

Xf12 =
[

0.75 0 1.5
]T

.

The equations that described the position of the mechanical

system were

qb =
[
−0.1 cos(t) 0.1 sin(t) 0.2 cos(0.5t)

]T
m

θb =
[
−0.05 cos(0.2t) 0.1 sin(0.1t) 0

]T
rad (44)
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where qb(t) ∈ R
3 and θb(t) ∈ R

3 represent the robot

end-effectors linear and angular positions respectively. These

functions governing position were found to satisfy the per-

sistent excitation condition described in (38). Additionally,

the camera’s target intrinsic calibration matrix and external

calibration parameters were taken to be

A =




800 1 300
0 800 200
0 0 1


 Rc =




1 0 0
0 1 0
0 0 1




Xc =
[

1 0 0
]T

. (45)

Two simulation cases were considered, the first without and

the second with additive pixel coordinate noise. In case 2, a

Gaussian distributed random number generator was used to

simulate the noise signal.

A. Simulation without pixel noise

In this case, the gains which gave the fastest convergence

were α = 50, while the initial value for Γ was Γ(t0) =
3I16, where I16 represents a 16 × 16 identity matrix. The

scale factor was determined as λ = 0.0186576. As seen in

Figures 3, 4 and 5, the estimation errors converge close to

zero resulting in the following estimates for the intrinsic and

extrinsic camera calibration parameters

Â =




795.2 2.386 297.9

0 795.2 193.9
0 0 1





R̂c =




0.9987 0 0
0 0.9996 0
0 0 1




X̂c =
[

0.9927 −0.0184 −0.0103
]T

. (46)

It is noted that the estimates are all within a percentage error

range of 1% except for A23 which falls at 3%.

Fig. 3. Pixel coordinate estimation error.

B. Simulation with additive pixel noise

In this case, a variance of 0.2 was used that resulted in a

noise signal of upto 2 pixels being added to the actual pixel

position estimation.it can be seen from Figures 6, 7 and 8

Fig. 4. θx parameter estimation error.

Fig. 5. θz parameter estimation error.

that the algorithm takes longer to converge but the noise does

not have a significant effect on the estimator which continues

to be adequately accurate. The gains which resulted in the

fastest convergence times in this case were the same as the

case without pixel noise. The scale factor was found to be

λ = 0.053239. Here, the estimated intrinsic and extrinsic

camera calibration parameters are

Â =




812.5 −4.945 305.2

0 812 201.2
0 0 1





R̂c =




1 0 0
0 0.9998 0
0 0 0.9997




X̂c =
[

0.9961 −0.032 −0.013
]T

. (47)

In this case the estimated values fall within 3% of the target

values. This demonstrates the robustness of our proposed

algorithm.

It should be noted that the final estimated values provided

here for both simulations are the average of the last 10

seconds of the simulation to allow for any slight changes

that occur as the pixel coordinate estimates vary.
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Fig. 6. Pixel coordinate estimation error with additive noise.

Fig. 7. θx parameter estimation error with pixel noise.

V. CONCLUSION

In this paper, a position-based self-calibration technique

was developed. To account for the structure of the param-

eterized pixel coordinate equation, a novel prediction error

methodology was outlined along with a least squares-based

estimation law. To avoid issues with singularities that could

appear due to the depth parameters appearing in the denom-

inator of the pixel equation, a parameter projection formula

was employed. A Lyapunov-based stability analysis was

utilized to ensure all estimation objectives were achieved.
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