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Abstract— A novel disturbance rejection solution for a bench-
mark mass-spring-damper (MSD) system is presented. The pro-
posed design, adaptive mixing control (AMC,) is a deterministic
multiple model adaptive control (MMAC) approach that mixes
candidate controllers by monitoring real-time estimates of an
unknown parameter. Monte Carlo simulations are conducted to
compare the performance of the AMC scheme with a stochastic
robust MMAC (RMMAC) scheme, as well as a nonadaptive
mixed-mu compensator.

I. INTRODUCTION

All real systems are subjected to uncertainty due to

unmodeled dynamics, unknown system parameters, distur-

bances, and process changes. A practical control design,

therefore, must be able to maintain performance and sta-

bility robustly in the presence of these uncertainties. Two

well-known design approaches have been developed for the

control of uncertain systems: robust control [1], [2] and

robust adaptive control [3]. Although robust control and

robust adaptive control are effective for many systems, both

techniques are somewhat limited in what can be achieved in

terms of performance or robustness. For example, a robust

controller, say a mixed-µ compensator, provides quantifiable

robust performance guarantees but may fail to meet stringent

control requirements in the presence of large parametric

uncertainty [4]. Traditional robust adaptive control, on the

other hand, avoids sacrificing achievable performance due

to increased real uncertainty but performance guarantees

have mainly focused on qualitative signal convergence and

boundedness properties.

The multiple model adaptive control (MMAC) architecture

provides an attractive framework for combining tools from

adaptive control with robust non-adaptive schemes. The

MMAC architecture comprises two levels of control: (1) a

low-level system called the candidate controller set generates

finely-tuned (to a subset of the uncertainty space) controls

(2) a high-level system called the supervisor composes the

control u from the candidate control signals by processing

plant input/output data.

One promising MMAC approach is the so-called Robust

MMAC (RMMAC) methodology that provides guidelines for

designing both the candidate controller set and the supervisor

[5]–[7]. The candidate controller set is designed by using

state-of-the-art robust mixed-µ synthesis software [8], [9]

in order to account simultaneously for robust-stability and
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Fig. 1. The adaptive mixing control architecture

-performance. The supervisor is based on a dynamic hypoth-

esis testing scheme that identifies the “nearest probabilistic

neighbor.” The results of [5], [6] demonstrate that, in the

context of a benchmark example, the RMMAC scheme out-

performs the best achievable non-adaptive scheme. However,

since the supervisor utilizes Kalman filters to drive the

hypothesis testing, the RMMAC scheme can suffer from poor

performance due to either large initial state estimate error

or inaccurate knowledge of the disturbance/noise statistics.

Additionally, the complexity of the supervisor may hinder

its application because every candidate controller requires a

Kalman filter and a post posterior evaluation.

Since the RMMAC methodology separates control from

identification, any suitably designed supervisor may be used.

In this paper we present a novel supervisor scheme that is

used in conjunction with the RMMAC candidate controller

set with the aim of mitigating the above issues of RMMAC.

The overall design is called adaptive mixing control (AMC)

and is shown in Fig. 1. The AMC configuration chosen

for this paper uses multiple robust parameter estimators to

mix adaptively the candidate control laws. The RMMAC

candidate controller set can be used in conjunction with

other supervisory schemes, such as the ones from supervisory

switching MMAC [10], [11], adaptive control with multiple

models [12]–[14], and unfalsified control [15], [16]. A mix-

ing approach was chosen to avoid poor transient performance

after a controller switch. The performances of the AMC

and RMMAC schemes (as well as a non-adaptive mixed-

µ compensator) are compared on the two-cart benchmark

problem. Due to space limitations, we assume the reader is

familiar with the RMMAC methodology.
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is the disturbance transfer function. The nominal plant model

G0(s) can be written as

G0(s) =
N0(s)

D0(s)

=
NK

0 (s)+ k1NU
0 (s)

DK
0 (s)+ k1DU

0 (s)

to decompose the numerator and denominator into the known

and unknown parts

NK
0 (s) = b1s, NU

0 (s) = 1 (21)

DK
0 (s) = m1m2s4 +(bm1 +b1m2)s

3 (22)

+(m1k2 +b1b2)s
2 +b1k2s (23)

DU
0 (s) = ms2 +b2s+ k2. (24)

A linear parametric model (LPM) for k1 is obtained by

multiplying both sides of (18) by D0(s) and then collecting

terms of k1

z(t) = k1φ(t)+η(t) (25)

where

z(t) = DK
0 (s)F(s)y(t)−NK

0 (s)F(s)u(t) (26)

φ(t) = NU
0 (s)F(s)u(t)−DU

0 (s)F(s)y(t) (27)

η(t) = ∆(s)N0(s)F(s)u(t)+
Nξ (s)

(s+a)
F(s)ξ +D0(s)F(s)θ

(28)

F(s) =
65

(s+6)5
Fη(s) (29)

where Fη(s) is an elliptical bandpass filter whose state-space

realization (AE ,BE ,CE ,DE) was generated by the Matlabr

commands

Wp = [.3 5]; Ws = [.1 10];

Rp =0.25 ; Rs = 80;

[N, Wn] = ellipord(Wp,Ws,Rp,Rs,’s’);

[AE,BE,CE,DE] = ellip(N,Rp,Rs,Wn,’s’);

The function of Fη is to attenuate the effects of η on

estimation. The LPM (25) can be used to design a wide-

class of robust adaptive laws [3]. In this study, an adaptive

law using the gradient method based on integral cost will be

used. The robust adaptive laws are implemented as

˙̂
ki

1 = Pr
Ω̃i

(−5
(

rk̂i
1 +q

)

) i = 1,2,3,4 (30)

ṙ = −0.1r +
φ 2

m2
, r(0) = 0 (31)

q̇ = −0.1q−
zφ

m2
, q(0) = 0 (32)

where PrΩ̃i
is the projection operator (cf. [17, section 4.4])

which restricts k̂i
1(t) to the projection set Ω̃i given by

Ω̃1
△
= [0.92,1.75] , Ω̃2

△
= [0.58,1.12] ,

Ω̃3
△
= [0.36,0.70] , Ω̃4

△
= [0.25,0.44] .

(33)

and m2(t) is the dynamic normalization signal

m2 = 1+nd (34)

ṅd = −0.04nd +u2
f + y2

f , nd(0) = 0 (35)

u f = Fη(s)u, y f = Fη(s)y. (36)

The role of m(t) is to guarantee that φ/m,η/m ∈L∞ and to

slow down adaptation when η becomes large.

C. Adaptive Control Mixer Design

Fig. 1 shows the internal structure of the adaptive control

mixer block driven by the four parallel on-line parameter

estimates. For simplicity, each estimator differs only by

its initialization k̂i
1(0) and the projected set Ω̃i. In this

configuration, the estimate k̂i
1 is evaluated by the membership

function Ii : Ω→ [0,1], to generate the pre-normalized weight

β̃i
△
= Ii(k̂

i
1). The control weighting signal is then generated

as

β =
β̃

∑
4
i=1 β̃i

. (37)

There are many choices for the shapes of the membership

function Ii. For this study, trapezoidal functions are chosen

because of their low computation cost. The trapezoidal

function is defined as

T (x;a,b,c,d) =















0, x < a, or x > d
x−a
b−a

, a ≤ x ≤ b

1, b < x < c
d−x
d−c

, c ≤ x ≤ d

(38)

and the membership functions are, in turn, defined as

I1(x)
△
= T (x;0.92,1.12,1.75,2), (39)

I2(x)
△
= T (x;0.58,0.70,0.92,1.12), (40)

I3(x)
△
= T (x;0.36,0.44,0.58,0.70), (41)

I4(x)
△
= T (x;0,0.25,0.36,0.44). (42)

Remark 1: Achievable RMS performance levels can be

predicted by using H2 tools. Fig. 3 shows the expected RMS

performances for AMC and RMMAC when τ = 0. Note that

near model boundaries, AMCs control mixing reduces the

peaks of the achievable RMS performance.

Remark 2: A multiple estimator design was chosen for

this benchmark example to reduce transients due to rapid,

large parameter changes. Since each estimate remains in a

neighborhood of its model, AMC can respond rapidly to

sudden changes in the unknown parameter.

Remark 3: The estimators can share the states r, q, and

nd ; therefore, if an additional candidate controller CN+1 is

added, the AMC supervisor requires only one extra state

(k̂N+1
1 .) Contrast this with dynamic hypothesis testing, which

requires n (the dimension of the plant) additional states

for the Kalman filter and one for the posterior probability

evaluator.

5170



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.008

0.01

0.012

0.014

0.016

0.018

Unknown spring constant k
1

E
x

p
ec

te
d

 o
u

tp
u

t 
rm

s

Ω
1

Ω
3

Ω
2

Ω
4

Fig. 3. Expected rms values for AMC (solid) and RMMAC (dash-dot)
assuming perfect identification

Remark 4: Extending the above design to systems with

multiple unknown parameters can be accomplished by ex-

tending the robust estimators to the vector case [17]. Lim-

itations in conventional adaptive control – linear-in-the-

parameters model and convexity of Ω requirements – apply

to AMC as well. These limitation do not hold for the

RMMAC methodology and supervisory control.

IV. SIMULATION RESULTS

The effectiveness of AMC is demonstrated by Monte

Carlo simulations. In [5], [6] the RMMAC scheme demon-

strated superior performance over a fixed mixed-µ con-

troller designed for the entire parameter space Ω, called

the global non-adaptive robust controller (GNARC,) which

represents the best non-adaptive control design. Those results

demonstrated the power of combining adaptive and robust

control techniques. The focus of this paper is the proposal

of an alternative supervisor scheme, one based on robust

parameter estimation opposed to dynamic hypothesis testing.

The motivation for this approach is to provide an alternative

approach that may achieve improved performance in certain

applications, specifically applications with uncertain or non-

stationary disturbance models.

To compare approaches, the AMC, RMMAC, and GNARC

schemes are simulated side-by-side. Both AMC and RM-

MAC schemes use the same candidate controller set {Ci(s)}.

Refer to [5], [6] for details on the RMMAC and GNARC

designs and the construction of the candidate controller set.

In all simulations, the plant’s initial conditions are given as

x0 =
[

x1(0) x2(0) ẋ1(0) ẋ2(0) d(0)
]T

∼
[

U [−0.1,0.1] U [−0.1,0.1]

U [−1,1] U [−1,1] U [−0.1,0.1]
]T

where U [a,b] is a uniform distribution on the interval [a,b].
The choice of the intervals were motivated by observations

of the approximate range of the plant state when the GNARC

is used to control the plant. The control channel time-delay

for all simulations was chosen as τ = 0.01.

TABLE I

ASSUMPTIONS SATISFIED

k1 Transient RMS Long-term RMS
(%D) (%D)

AMC 0.066 0.010
RMMAC 1.385 0.100 (44%) 0.010 (0%)
GNARC 0.040 (−39%) 0.032 (233%)
AMC 0.029 0.010
RMMAC 1.020 0.088 (204%) 0.018 (70%)
GNARC 0.038 (32%) 0.032 (213%)
AMC 0.025 0.011
RMMAC 0.830 0.133 (444%) 0.011 (0%)
GNARC 0.034 (38%) 0.030 (180%)
AMC 0.027 0.014
RMMAC 0.640 0.077 (182%) 0.016 (17%)
GNARC 0.041 (50%) 0.027 (99%)
AMC 0.025 0.012
RMMAC 0.520 0.079 (215%) 0.011 (−4%)
GNARC 0.038 (50%) 0.026 (119%)
AMC 0.023 0.0145
RMMAC 0.400 0.046 (98%) 0.0155 (7%)
GNARC 0.041 (76%) 0.033 (128%)
AMC 0.039 0.014
RMMAC 0.325 0.064 (65%) 0.012 (−13%)
GNARC 0.059 (53%) 0.044 (226%)

TABLE II

ASSUMPTIONS VIOLATED

Violation Transient RMS Long-term RMS
(%D) (%D)

AMC Dist. Bandwidth 0.175 0.180
RMMAC a = 3 rad/s 0.384 (120%) 0.376 (109%)
GNARC 0.214 (23%) 0.233 (30%)
AMC Dist. Power 0.102 0.095
RMMAC Ξ = 100 0.247 (142%) 0.215 (125%)
GNARC 0.280 (173%) 0.288 (202%)
AMC Time Varying k1 0.016 0.012
RMMAC Slow sin 0.081 (394%) 0.014 (12%)
GNARC 0.038 (134%) 0.039 (226%)
AMC Time Varying k1 0.269 0.043
RMMAC Fast sin 0.221 (−18%) 0.149 (248%)
GNARC 0.066 (−76%) 0.053 (23%)
AMC Time Varying k1 0.020 0.014
RMMAC Step 0.031 (55%) 0.013 (−3%)
GNARC 0.037 (82%) 0.036 (165%)

For each experiment, we run five Monte-Carlo simulations,

and the averaged results are given in Tables I and II. Two

RMS values are given: (1) transient and (2) long-term. Tran-

sient RMS is calculated for the first half of the simulation

time and is used to judge learning performance. Long-term

RMS is calculated over the final half of the simulation time

and is used to predict asymptotic performance. Also, the

metric “% decrease from AMC” is given and is defined as

%D
△
=

RMS−RMSAMC

RMSAMC

100% (43)

which quantifies AMC’s improvement over the other designs.

Above, “RMS” is either RMMAC’s or GNARC’s RMS,

depending on the context.
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Fig. 4. Experiment 3: Results for difficult identification, k1 = 0.64. PEMMAC (solid), RMMAC (dash-dot), and GNARC (dot-dot)

A. Experiment Set 1: Satisfied Nominal Assumptions

These experiments test the AMC, RMMAC, and GNARC

schemes when the plant matches the model (1)-(13). Note

that the model still contains the control delay, uncertainty in

k1, process disturbance d(t), and measurement noise θ(t).
Table I shows the results. Both adaptive designs possess

superior disturbance rejection performance relative to the

GNARC design. The AMC and RMMAC schemes have

comparable long-term performance. In general, we see that

Fig. 3 does an acceptable job predicting long-term RMS

output. Observe the improved long-term performance for

the cases when persistent control mixing occurs (i.e., k1 ∈
{1.020, 0.640 0.400}.)

For illustrative purposes Fig. 4 shows the averaged output

and control weight time histories for k1 = 0.64. Fig. 4(a)

and 4(b) show the results when the initial conditions are

chosen to be nonzero as described. Fig. 4(c) and 4(d) show

the same simulations when the plant initial conditions are

chosen to be zero. These plots show that initial conditions

can have a large effect on RMMACs transient performance.

This is not a surprising result because the RMMAC scheme

uses Kalman filters to drive the dynamic hypothesis testing

scheme, and one would expect that if the Kalman filters

initial state estimation error is large then model identification

may not be reliable until the state estimation error converges

to zero. If the Kalman filters were initialized with true plant

states then model identification will converge rapidly to the

correct model. In this case, RMMACs transient performance

is comparable to (and sometimes better than) AMCs tran-

sient performance. These observations motivate techniques

to precondition the RMMACs Kalman filters if the initial

state estimation error cannot be guaranteed to be small.

B. Experiment Set 2: Violated Model Assumptions

These simulations concern unknown violations of the

model assumptions, namely perturbations in the disturbance

model and a time-varying parameter. Uncertainty in the dis-

turbance model is a real engineering issue because in many

applications the disturbance model is poorly known or time-

varying. In [5], [6], the RMMAC/XI design was proposed to

mitigate the ill effects of unexpected increased disturbance

power, and, as reported in [18] but not implemented here, the

modification regained the performance of the known case.

The cost of XI modification is increased complexity because

twice the number of Kalman filters are required. Since the XI

modification adds significant complexity that may limit its

application, Experiment 2 is intended to investigate if AMC

may be a suitable design approach when the disturbance

model is uncertain.

There are two test cases concerning the disturbance model:

first a 300% increase in disturbance bandwidth; and then a

100% increase in disturbance power. In both cases, k1 is

chosen to be 0.83, which is the center of model #2. The

first two rows of Table II show the results. Comparatively,
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AMC demonstrates excellent transient and long-term RMS

performance.

Next, the constant parameter assumption is violated as

k1 is allowed to vary. The issue of parameter variations is

important to consider because it is one of the motivations for

adaptive control.

The first five Monte Carlo simulations use the slow sinu-

soid waveform k1 = 1− 0.75sin(0.01t). These experiments

are simulated for 1,000 seconds and the results are shown in

Table II. Both AMC and RMMAC schemes maintain long-

term performance levels similar to the constant k1 case.

Then the adaptive schemes are stressed by rapidly varying

k1. The next set of Monte Carlo simulations uses the fast

sinusoid waveform k1 = 1−0.75sin(0.5t). These simulations

run for 200 seconds. The final five Monte Carlo simulations

use the step waveform

k1(t) =















0.325, t ∈ [0,100)
⋃

[600,700]
0.520, t ∈ [100,200)

⋃

[500,600)
0.830, t ∈ [200,300)

⋃

[400,500)
1.385, t ∈ [300,400)

(44)

These simulations run for 700 seconds.

Table II shows the results for the two fast parameter wave-

forms. Both adaptive schemes perform poorly with the fast

sinusoid parameter changes. Although AMC demonstrates

poor transient performance, its long-term RMS is lower than

GNARCs because, for the most part, AMC keeps C1 and C2

in the loop, and k1 spends most of its time in Ω1 and Ω2.

The RMMAC scheme, on the other hand, rapidly “switches”

among all controllers. For the step waveform, both AMC

and RMMAC schemes perform well by achieving long-term

RMS values near nominal model levels.

V. CONCLUSIONS

A solution to a benchmark example has been developed

by using the AMC approach with multiple estimators. The

AMC approach mixes candidate controllers by monitoring

real-time estimates of the unknown parameter. The moti-

vation for this design was to develop a MMAC scheme

that is capable of maintaining satisfactory performance de-

spite uncertainty in the disturbance model while avoiding

discontinuous switching among the candidate controller set.

Monte Carlo simulations were conducted to compare the

AMC scheme with the stochastic MMAC approach RMMAC

and a non-adaptive mixed-µ compensator. The simulation

results demonstrated that the AMC scheme achieved satis-

factory performance despite perturbations in the disturbance

model, non-zero plant initial conditions, and certain classes

of parameter time variations. The first step in formalizing

and analyzing the AMC approach with one estimator is the

topic of [19].
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