
On Active Set Algorithms for Solving Bound-Constrained Least

Squares Control Allocation Problems

Brad Schofield

Abstract— Control allocation problems, in which optimal ac-
tuator values are assigned based on desired control actions and
actuator constraints, are typically formulated as constrained
optimization problems. Initially, only approximate solutions to
the problems were deemed tractable for real-time applications.
Recently however, active set algorithms have been identified
as a means for solving control allocation problems in real-
time applications. In this paper a modified active set algorithm
for the solution of bound-constrained least-squares problems
is presented, which has numerous advantages particularly for
time-varying control allocation problems. A vehicle dynamics

control system for rollover mitigation is used as an example.

I. INTRODUCTION

In recent years considerable research has been done in

the area of control allocation, primarily in the context of

aerospace and marine applications [1], [2], [3], but also for

road vehicles [4], [5], [6], [7]. Control allocation refers to

the process of mapping a given control action to individual

allocator inputs, typically in the case of overactuated systems

where there are more actuators than desired control actions.

A widely used approach is to set up an optimization problem

which is then solved at each sample time. Previously, solving

such optimization problems in the presence of constraints

was not regarded as being tractable for real-time applications,

and a number of approximate methods were developed

[8]. More recently, exact solution of the control allocation

problem through the use of active set methods has been

investigated [9]. These methods apply to bound-constrained

quadratic programming problems (BCQP) of the form:

min q(u)

subject to u ≤ u ≤ u
(1)

where u and u are the lower and upper bounds on the

control input u respectively, and q(u) is a convex quadratic

cost function. A large number of control allocation problems

involving actuator constraints may be written on this form.

As an alternative to calculating the solution to such

problems online, methods exist in which an offline solution is

obtained. An example of such a method is multi-parametric

quadratic programming (MPQP) [5]. MPQP is computation-

ally efficient, but requires a considerable amount of memory

to store the solution. A drawback of all methods which

compute a solution offline is that it is difficult to handle

changes in the control allocation problem. The application

used in this paper is an example of a problem in which the

control allocation problem is parameter-varying.

Brad Schofield is with the Department of Automatic Control, Fac-
ulty of Engineering, Lund University, SE-221 00 Lund, Sweden.
brad.schofield@control.lth.se

Classical active set algorithms typically only make one

change to the working set each iteration, which can result

in a large number of iterations if there are many variables,

or if the initial working set was very different from the

optimal active set [10]. For large scale problems this is a

major issue and research has been done to find algorithms

that are capable of identifying the optimal active set more

quickly. This is often done using gradient projection methods

[11]. For small scale systems, this problem has received less

attention. The use of these algorithms for the solution of

control allocation problems in real-time does however raise

the issue of computation time even for small scale systems.

The performance of classical active set algorithms in real-

time settings such as model predictive control and control

allocation is greatly improved by ability to re-use the optimal

solution and active set obtained in the previous sampling

instant as starting points. This is known as ‘hotstarting’.

However, when the allocation problem is time-varying, the

use of hotstarting can cause problems, as discussed in [7].

This is particularly true when time-varying constraints (such

as rate constraints) are present. The algorithm proposed in

this paper is more efficient at finding the optimal active set,

and performs well even without hotstarting.

II. CONTROL ALLOCATION

For model-based control design, it is often easier to

work with models describing the response of the system to

external forces and moments, rather than actuator positions.

An example of this is vehicle dynamics control, in which

the dynamic model of the vehicle uses resultant forces and

moments as inputs, rather than the actual actuator inputs.

This is not only more intuitive from the point of view

of modeling and control, but it is also generally true that

there are more actuators than there are resultant forces and

moments. Similar examples can be found in aerospace and

marine vehicle control. In control allocation, the control

design task is effectively split into two steps. In the first

step, standard control design methods are used to obtain

‘virtual’ control signals. The second step consists of trans-

forming these virtual control signals into ‘actual’ control

signals which are applied to the process. This is illustrated

in Figure 1, in which the controller generates the virtual

controls v, which are transformed by the control allocator

into actual controls u.

Generally, the relationship between virtual and actual

controls is v(t) = g(u(t)) where v(t) ∈ R
k are the virtual

controls, u(t) ∈ R
m are the actual controls and g : R

m →
R

k is the mapping from actual to virtual controls, where

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

ThB04.4

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 2597

Controller
Control

Allocator
Actuator Dynamics

Controller Plant

r uv y

Fig. 1. Control system structure with control allocation.

m > k. The majority of the literature deals with the linear

case, where the actual and virtual controls are related by a

control effectiveness matrix B:

v(t) = Bu(t) (2)

A common approach to control allocation is to formu-

late an optimization problem in which the allocation error

||Bu(t)−v(t)||2 is minimized, subject to actuator constraints.

In the presence of bound-type actuator constraints, a linearly-

constrained quadratic programming problem may be formu-

lated. Such problems can take the form:

u = argmin
u∈Ω

||Wu(u − ud)||2

Ω = arg min
u≤u≤u

||Wv(Bu− v)||2
(3)

where Wu and Wv are diagonal weighting matrices, ud

is some desired actual control value, and u and u are

constraints on the actual controls. This type of problem is

known as Sequential Least-Squares (SLS), since the solution

is computed in two steps. First, the weighted allocation

error ||Wv(Bu− v)|| is minimized. If feasible solutions are

found, then the ‘best’ solution is obtained by minimizing

||Wu(u − ud)||. A faster algorithm can be obtained by

approximating the SLS formulation as a Weighted Least-

Squares (WLS) problem:

u = arg min
u≤u≤u

(
||Wu(u− ud)||

2
2 + γ||Wv(Bu − v)||22

)

(4)

The parameter γ is typically chosen to be very large in order

to emphasize the importance of minimizing the allocation

error. The cost function may be rewritten as:

||Wu(u− ud)||
2
2 + γ||Wv(Bu− v)‖2

2

=

∥
∥
∥
∥

(

γ
1

2WvB
Wu

)

︸ ︷︷ ︸

A

u−

(

γ
1

2Wvv
Wuud

)

︸ ︷︷ ︸

b

∥
∥
∥
∥

2

2

(5)

which allows the minimization problem to be written as:

min ||Au− b||22

subject to u ≤ u ≤ u
(6)

This is exactly the form in (1), with q(u) = ||Au − b||22.

III. ACTIVE SET ALGORITHMS

In Section II it was shown how a typical control alloca-

tion formulation can take the form of a bound-constrained

least squares problem. In this section, the solution of such

problems using active set methods will be examined. First,

a general description of active set methods is given. A

more specific algorithm, summarized in [10] and used in

the context of control allocation in [9], is then examined.

A. Classical Primal Active Set Algorithm

In this section a general description of active set algo-

rithms is given, following the presentation in [11]. More

details can be found in [10] and [12]. This type of algorithm

is sometimes referred to as the classical primal active set

algorithm (CPASA).

The principal of operation of all active set methods is

that at each iteration, the active inequality constraints are

regarded as equality constraints, and the remaining con-

straints are disregarded. In the case of bound-constrained

problems, an active constraint corresponds to a variable

holding a constant value, which simplifies the solution since

variables corresponding to the active constraints are simply

removed from the resulting optimization problem. Once

a minimum to this problem is found, the Karush-Kuhn-

Tucker (KKT) optimality conditions are checked. If they

are fulfilled, then the algorithm stops, otherwise, one of the

active constraints breaking the KKT conditions is removed.

For bound-constrained least squares problems, the KKT

conditions are equivalent to:

∂q(uj)

∂uj

=0, uj < uj < uj

∂q(uj)

∂uj

≥0, uj = uj

∂q(uj)

∂uj

≤0, uj = uj

(7)

Several definitions may be made. The working set Wk at

iteration k is a subset of the active set A(uk):

A(uk) = {i : ui = ui or ui = ui}

Variables in Wk are known as bound variables. Variables not

in Wk are known as free variables. It is also useful to define

the binding set B(u) as:

B(u) = {i : ui = ui and ∂iq(u) ≥ 0 or ui = ui

and ∂iq(u) ≤ 0}
(8)

The starting point u0 of the algorithm is assumed to be

feasible (such a starting point is trivial to find in the case

of bound-constrained problems) and W0 ⊂ A(u0). The next

iterate uk+1 may be found by solving:

min
p

q(uk + p)

subject to pi = 0, i ∈ Wk

(9)

This corresponds to an unconstrained minimization problem

in the free variables. Given the optimal perturbation p the

next iterate uk+1 may be found. The standard method is to

calculate an α:

α = max{α ∈ [0, 1] : u ≤ uk + αp ≤ u} (10)

from which the next iterate is found:

uk+1 = uk + αp

If α = 1, the optimality conditions are checked. Otherwise,

the new active constraint is added to the working set.

2598

B. Active Set Algorithm for Bound Constrained Least

Squares

In [9] an active set algorithm for the solution of bound-

constrained least squares control allocation problems was

presented, based on a more general algorithm in [10]. This

algorithm will be used as a benchmark for comparison with

the modified algorithm, and is briefly outlined in this section.

Consider the least squares problem:

min
u

||Au− b||2 (11a)

subject to Bu = v (11b)
(
I
−I

)

︸ ︷︷ ︸

C

u ≥

(
u
−u

)

︸ ︷︷ ︸

U

(11c)

The details of the active set algorithm used to solve the

problem are given in Algorithm 1.

Algorithm 1: Classical primal active set algorithm

Let u0 be a feasible starting point, satisfying (11c) ;

for i = 0, 1, 2, . . . do

Given suboptimal iterate ui, find the optimal

perturbation p, considering the inequality constraints

in W as equality constraints and ignoring the

remainder. This is done by solving:

min
p

||A(ui + p) − b||2

Bp = 0

pi = 0, i ∈ W

if ui + p feasible then

Set ui+1 = ui + p ;

Compute Lagrange multipliers as:

AT (Au − b) =
(
BT CT

0

)
(
µ
λ

)

where C0 consists of the rows of C
corresponding to the constraints in the active set;

if λ ≥ 0 then

ui+1 is optimal solution;

Return u = ui+1

else
Remove constraint corresponding to most

negative λ from the working set W ;
else

Find α = max{α ∈ [0, 1] : u ≤ ui + αp ≤ u}
and set ui+1 = ui + αp. Add bounding

constraint to working set.
end

IV. MODIFICATIONS

The method of finding the next iterate described in (10) has

several attractive features. Using this method guarantees that

the cost function decreases at each iteration. Additionally,

this method also works when equality constraints are present.

Since equality constraints do not appear in the control

allocation formulation however, there exists more freedom

in the choice of the next iterate.

The modified algorithms for large-scale problems outlined

in [11] are concerned with identifying the optimal active set

quickly. In order to obtain a similar effect in the case of small

scale problems, an alternative to (10) is proposed here.

The method in (10) can be interpreted as moving along a

line between the current iterate and the unconstrained min-

imum until the boundary of the feasible set is encountered.

This point becomes the next iterate, and the active constraint

at this boundary is added to the working set. It is not obvious

that this is the ‘best’ course of action in any sense. An

alternative choice would be to saturate all free variables

whose values at the unconstrained maximum lie outside the

feasible set. This can be expressed as finding a matrix Γ:

Γ =

α1 0 . . . 0
0 α2 . . . 0
...

...
. . .

...

0 0 . . . αn

(12)

such that:

αi = max{αi ∈ [0, 1] : u ≤ u+ αip ≤ u} (13)

The update is then:

uk+1 = uk + Γp (14)

An alternative interpretation is that this method picks the

point in the feasible set which is the closest in the Euclidean

sense to the unconstrained minimum. Let P f denote the

unconstrained minimum of the problem in the free variables.

Solve, for uf = {ui : i /∈ Wi}:

min ||uf − P f ||2

subject to u ≤ uf ≤ u
(15)

Denote the solution to this problem u∗. If P f is feasible,

then clearly u∗ = P f . Otherwise, one or more constraints

will be active at u∗. The next iterate is obtained by setting

uk+1
i = u∗i for i /∈ Wi. The working set is then expanded by

adding those active constraints for which the KKT conditions

(7) are satisfied. This method of updating the iterate may be

directly substituted in the standard CPASA algorithm. The

problem to be solved is:

min
u

||Au− b||2 (16a)

subject to

(
I
−I

)

︸ ︷︷ ︸

C

u ≥

(
u
−u

)

︸ ︷︷ ︸

U

(16b)

This modified algorithm is outlined in Algorithm 2.

A. Convergence Properties

It will now be shown that this method of updating the

iterate has attractive properties, including convergence to the

optimum in a maximum of 2n− 1 steps, when starting with

an empty working set. To prove this, the following lemma

is needed.

2599

Algorithm 2: Modified active set algorithm

Let u0 be a feasible starting point, satisfying (16b) ;

for i = 0, 1, 2, . . . do

Given suboptimal iterate ui, find the optimal

perturbation p, considering the inequality constraints

in W as equality constraints and ignoring the

remainder. This is done by solving:

min
p

||A(ui + p) − b||2

pi = 0, i ∈ W

if ui + p feasible then

Set ui+1 = ui + p ;

Compute Lagrange multipliers as:

AT (Au − b) = CT
0 λ

where C0 consists of the rows of C
corresponding to the constraints in the active set;

if λ ≥ 0 then

ui+1 is optimal solution;

Return u = ui+1

else
Remove constraint corresponding to most

negative λ from the working set W ;
else

Find αi = max{αi ∈ [0, 1] : u ≤ u+ αip ≤ u}
and set uk+1 = uk + Γp;

Compute Lagrange multipliers for the active

constraints;

Add constraints satisfying KKT conditions to

working set.
end

Lemma 1: Let u∗ denote the solution to (15) for a given

set of free variables uf associated with a problem of the

form (6). Then, at least one of the constraints active at u∗

will be also be active at the solution of (6).

Proof: Assume without loss of generality that P f
a �

ua for some set of indices a. This implies that u∗a = ua.

Assume now that no constraints active at u∗ are active at

the solution to (6), denoted uopt. This implies uopt
a ≻ ua.

Since uopt must lie on the boundary of the feasible set, there

must exist a separating hyperplane, passing through uopt,

which separates the feasible set from a level set C, containing

uopt, of the original objective function in (6). Since P f lies

within C, the line P f −uopt must also lie in C, by convexity.

But since P f
a � ua ≻ uopt

a there must exist a δ such that

uopt
a + δ(P f

a −uopt
a) lies in both C and the feasible set. Thus

no separating hyperplane exists at uopt. If one or more of

the constraints active at u∗ were active at uopt, then it is no

longer generally true that uopt
a +δ(P f

a −uopt
a) lies within the

feasible set, and a separating hyperplane may then exist.

This lemma formalizes the idea that the proposed updating

method acts to find the optimal active set quickly. It can be

thought of as identifying the constraints which are ‘closest’

to the unconstrained minimum of the original problem.

Proposition 1: The active set algorithm with updating as

in (15) and with the initial working set empty, converges in

a maximum of 2n − 1 iterations where n is the number of

optimization variables.

Proof: Lemma 1 shows that in each iteration, at least

one of the constraints that become active will be active at

the optimum of the original problem. Only those constraints

which satisfy the KKT conditions (7) at u∗ are added to the

working set. The constraints satisfying the KKT conditions at

u∗ may not necessarily be optimal at uopt however. Consider

the case where n constraints are active, of which only one

which remains active at uopt. The worst case occurs when the

n− 1 constraints which will not be active at uopt fulfill the

KKT conditions at u∗ and are added to the working set, while

the remaining constraint does not. In this case n− 1 future

iterations will be required to remove these constraints from

the working set, since only one constraint may be removed

at each iteration. An additional n− 1 iterations are required

to locate the optimum, giving a total of 2n− 1 iterations in

the worst case.

B. Properties relevant to Real-Time Applications

As previously mentioned, standard active set algorithms

used in real-time settings benefit significantly from the use

of hotstarting, where the results from the previous sampling

instant are used as a starting point for the next sampling

instant. Complications arise, however, when the constraints

vary with time. Time varying constraints can arise when

rate constraints are present [9], [7], or when the constraints

depend on time varying parameters. When constraints vary

from sample to sample, using the solution from the previous

sample is not straightforward. For instance, the solution may

no longer be feasible with respect to the new constraints,

or certain constraints active at the previous solution may

no longer be active. Such situations can violate the starting

point assumptions of the active set algorithm and lead to

incorrect behaviour. While logical checks could be carried

out within the algorithm to ensure that starting conditions

are met, this would influence the behaviour of the resulting

algorithm. The proposed algorithm avoids this problem by

removing the need for hotstarting. In terms of computational

complexity, the modified algorithm adds only an addition

check of the KKT conditions.

V. EXAMPLES

A. Two Dimensional Example

In order to visualize the operation of the proposed modi-

fication it is useful to examine a two-dimensional example.

Consider the problem defined by:

A =

(
1 3
5 7

)

, b =

(
50
50

)

u =

(
−10
−10

)

, u =

(
10
10

)

ud =

(
0
0

)

, γ = 1000

(17)

2600

20

200
554

1000

2000

2000

10000

1000040000

40000

−30 −25 −20 −15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

20

25

30

Fig. 2. The two-dimensional example (17), solved using the standard
algorithm.

The problem was solved using Algorithm 1, implemented

in Matlab code in the Quadratic Control Allocation Toolbox

(QCAT) [13], as well as with Algorithm 2.

The operation of the standard algorithm is illustrated in

Figure 2. From an initial starting point, the next iterate is

found by following the line connecting the starting point

and the unconstrained minimum until the boundary of the

feasible set is encountered. At this point a new constraint,

u1 = u1 = −10 is added to the working set. In the next

iteration, u2 is the only free variable, and the minimum of the

unconstrained cost function in this subproblem is also outside

the feasible set, so the constraint u2 = u2 = 10 is added to

the working set. In the following iteration, there are no free

variables, so the constraint with the most negative Lagrange

multiplier (u1 = u1) is removed from the working set. In the

final iteration, the unconstrained minimizer is feasible. The

KKT conditions are checked and found to be fulfilled, and

the algorithm terminates.

Figure 3 illustrates the operation of the modified algo-

rithm, starting from the same initial point. In the first itera-

tion, the point in the feasible set closest to the unconstrained

minimum is found. Although two constraints are active at

this point (u1 = u1 and u2 = u2), only the constraint on

u2 fulfills the KKT conditions, and is added to the active

set. In the following iteration the minimum is found to be

feasible, and the KKT conditions are satisfied. This simple

example illustrates the advantages of the modified algorithm

over the standard algorithm, principally that fewer iterations

are required.

B. Vehicle Dynamics Control

A more advanced example involving control allocation is

a vehicle dynamics controller [7], [6]. Such control systems

seek to stabilize roll and/or yaw dynamics using individual

wheel braking. The control design may be carried out re-

garding the total forces and moments FxT , FyT and MT

as virtual controls. A control allocator is then used to map

20

200

554

1000

2000

2000

10000

10000
40000

40000

−30 −25 −20 −15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

20

25

30

Fig. 3. The two-dimensional example (17), solved using the modified
algorithm.

these signals onto braking commands for each wheel. The

constraints are determined by the available friction, which

in turn depends on the instantaneous normal force acting on

each wheel. Rate constraints related to the hydraulic braking

system may also be present. By considering Figure 4, the

F fl
x

F fl
y

F fr
x

F fr
y

F rl
x

F rl
y

F rr
x

F rr
y

l

ab

x

y

δ

δ

ψ̇

Fig. 4. Planar chassis model, showing the horizontal components of the
tire forces.

following expressions relating the individual tire forces to

the generalized forces are obtained:

FxT =F rl
x + F rr

x + (F fl
x + F fr

x) cos δ − (F fl
y + F fr

y) sin δ
(18a)

FyT =F rl
y + F rr

y + (F fl
y + F fr

y) cos δ + (F fl
x + F fr

x) sin δ
(18b)

MT =(F fl
y + F fr

y)a cos δ + (F fl
x + F fr

x)a sin δ (18c)

− (F rl
y + F rr

y)b+ (F rr
x + F fr

x cos δ + F fl
y sin δ

− F rl
x − F fl

x cos δ − F fr
y sin δ)l

where δ is the steering angle (measured at the wheels). The

actual control variables are the longitudinal tire forces:

u =
(
F fl

x F fr
x F rl

x F rr
x

)T

2601

The lateral forces FyT are non-linearly related to the longi-

tudinal forces, but a linear approximation can be used [7].

This gives a linear relationship between virtual and actual

controls, v = Bu. The constraints are given by:

−|σµFzi| ≤ ui ≤ 0 (19)

where σ is a parameter of the tire characteristic approx-

imation. This control allocation formulation was used in

conjunction with a rollover mitigation controller described in

[7]. A standard test maneuver used for investigating vehicle

rollover was simulated using DaimlerChrysler’s proprietary

CASCaDE simulation software to test the controller. Both

the standard active set algorithm and the modified version

were used to solve the control allocation problem. Using

hotstarting in this application leads to problems due to the

time-varying constraints. This may be rectified by performing

checks of feasibility and adjusting the starting point accord-

ingly. However, there are many permutations of how this may

be done, which will not be discussed further here. Figure 5

illustrates the distribution of the number of iterations required

by the respective algorithms, with and without hotstarting.

The modified algorithm most often requires fewer iterations

than the standard algorithm, and never required more than six

iterations, one less than the theoretical worst case of seven.

The average number of iterations required by the standard

algorithm without hotstarting was 4.9, while the average

for the modified algorithm was 3.4. With hotstarting, and

the additional logical checks described above, the average

number of iterations required were 2.9 for the standard

algorithm and 2.4 for the proposed algorithm.

1 2 3 4 5 6 7 8 9
0

50

100

150
Standard Algorithm, no hotstarting

iterations

1 2 3 4 5 6 7 8 9
0

50

100

150

iterations

Modified Algorithm, no hotstarting

1 2 3 4 5 6 7 8 9
0

50

100

150

200

iterations

Standard Algorithm, with hotstarting

1 2 3 4 5 6 7 8 9
0

100

200

300

iterations

Modified Algorithm, with hotstarting

Fig. 5. Histogram showing the number of iterations required by the standard
and modified algorithms during the VDC simulation.

C. Discussion

The results clearly indicate the improved performance

of the proposed algorithm. Good performance is achieved

without the need for hotstarting, which is important in

this application where user checks are required to prevent

problems with hotstarting. It can be seen that the particular

hotstarting method used here improved performance, but in

general it is desirable to avoid hotstarting in such applica-

tions.

VI. CONCLUSIONS

An active set algorithm for solving bound-constrained

least squares problems has been presented. Unlike existing

algorithms, the proposed algorithm does not require hot-

starting to obtain good performance. This is particularly

important in time-varying allocation problems, where the use

of hotstarting can cause problems. The key feature in the

proposed algorithm is the method for updating the iterates,

which allows the addition of multiple constraints to the active

set at each iteration. The algorithm has been tested on a real-

world example, involving a time-varying control allocation

problem in which other allocation methods, such as multi-

parametric quadratic programming, encounter problems.

VII. ACKNOWLEDGMENTS

The work was carried out in the context of the Complex

Embedded Automotive Control Systems (CEmACS) project,

FP6-IST-004175. The author would also like to thank the

reviewers for their valuable comments.

REFERENCES

[1] J. B. Davidson, F. J. Lallman, and W. T. Bundick, “Real-time adaptive
control allocation applied to a high performance aircraft,” in Proceed-

ings of the 5th SIAM Conference on Control & Its Applications, 2001.
[2] J. Tjønnås and T. A. Johansen, “Optimizing nonlinear adaptive control

allocation,” in IFAC World Congress, Prague, Czech Republic, 2005.
[3] O. Härkegård, “Efficient active set algorithms for solving constrained

least squares problems in aircraft control allocation,” in Proceedings

of the 41st IEEE Conference on Decision and Control, Las Vegas,
Nevada USA, December 2002.

[4] J. H. Plumlee, D. M. Bevley, and A. S. Hodel, “Control of a
ground vehicle using quadratic programming based control allocation
techniques,” in Proceedings of the American Control Conference,
Boston, Massachusetts, USA, 2004.

[5] P. Tøndel and T. A. Johansen, “Control allocation for yaw stabilization
in automotive vehicles using multiparametric nonlinear programming,”
in Proceedings of the American Control Conference, Portland, Oregon,
USA, 2005.

[6] B. Schofield, T. Hägglund, and A. Rantzer, “Vehicle dynamics control
and controller allocation for rollover prevention,” in Proceedings of

the IEEE International Conference on Control Applications, Munich,
Germany, Oct. 2006.

[7] B. Schofield, “Vehicle dynamics control for rollover prevention,” De-
partment of Automatic Control, Lund University, Sweden, Licentiate
Thesis ISRN LUTFD2/TFRT--3241--SE, Dec. 2006.

[8] K. A. Bordignon, “Constrained control allocation for systems with
redundant control effectors,” Ph.D. dissertation, Virginia Polytechnic
Institute and State University, 1996.

[9] O. Härkegård, “Backstepping and control allocation with applications
to flight control,” Ph.D. dissertation, Department of Electrical En-
gineering, Linkping University, SE–581 83 Linkping, Sweden, May
2003.

[10] Å. Björck, Numerical methods for least squares problems. SIAM,
1996.

[11] J. J. Moré and G. Toraldo, “Algorithms for bound constrained quadratic
programming problems,” Numeriche Mathematik, vol. 55, pp. 377–
400, 1989.

[12] W. W. Hager, C. Shih, and E. O. Lundin, “Active set strategies and the
lp dual active set algorithm,” Department of Mathematics, University
of Florida, Gainesville, FL, August 1996.

[13] O. Härkegård. (2004) Quadratic programming con-
trol allocation toolbox (qcat). [Online]. Available:
http://www.mathworks.com/matlabcentral/fileexchange/

2602

