
  

  

Abstract— This paper presents the use of Artificial Neural 

Networks to diagnose degraded behaviours in Wire Electrical 

Discharge Machining (WEDM). The detection in advance of the 

degradation of the cutting process is crucial since this can lead 

to the breakage of the cutting tool (the wire), reducing the 

process productivity and the required accuracy. Concerning 

this, previous investigations have identified different types of 

degraded behaviors in two commonly used workpiece 

thicknesses (50 and 100 mm). This goal was achieved by 

monitoring different functions of the characteristic variables of 

the discharges. However, the thresholds achieved by these 

functions depended on the workpiece thickness. Consequently, 

the main objective of this work is to detect the process 

degradation in different workpiece thicknesses using one unique 

empirical model. Since Neural network techniques are 

appropriate for stochastic and nonlinear nature processes, its 

use is investigated here to cope with different workpiece 

thicknesses. The results of this work show a satisfactory 

performance of the presented approach. 

I. INTRODUCTION 

IRE Electro-discharge Machining (WEDM) is one of 

the most extended non-conventional machining 

processes. WEDM is widely used to machine dies aimed at 

producing components for many industries. Among them, 

automobile and aeronautic industries stand out. WEDM is 

based on material removing through a series of electrical 

discharges applied between the electrodes (the tool -wire- 

and the workpiece). The only requirement for discharging is 

that both the tool and the workpiece are electrically 

conductive. During the cutting process, dielectric fluid is 

injected into the gap, which is the space between the 

electrodes. In order to provoke a discharge, the machine 

power supply applies a voltage between the electrodes. Then, 

the discharge is produced after the dielectric ionization 

achieving a peak value Ip and with duration of te. The period 

of time during the ionization happens is known as ignition 

delay time (td). Between two consecutive discharges, the 

dielectric cools the gap and removes the erosion debris 

during an adjustable period of time known as off-time (toff). 
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The discharge rate is about few microseconds. Fig. 1 shows 

the shape of the theoretical discharges of the WEDM 

process. 

 

Fig. 1 Theoretical discharges of the WEDM process. 

The main advantage of WEDM is its capability for the 

production of complex geometries with a high degree of 

accuracy, independently of the mechanical properties of the 

material, such as hardness, brittleness and resistance.  

One of the main research fields in WEDM is related to the 

improvement of the process productivity by avoiding wire 

breakage that derives from degraded cutting regimes [1]. 

However, the difficulty in the study and optimization of 

WEDM is due to the stochastic and non-linear nature of the 

process as well as the multiple machining parameters that 

condition the process performance. Given the nature of the 

process, the application of intelligent control techniques 

becomes appropriated to deal with the early diagnostic of 

degraded cutting regimes in WEDM. Among these 

techniques both, heuristic and neural network techniques, 

stand out in WEDM and in other non-conventional 

machining processes (such as Sinking Electrical Discharge 

Machining SEDM and Electro Chemical Machining ECM). 

The former has been traditionally applied to wire breakage 

diagnosing [2]-[5]. However, developing ad-hoc rules is an 

arduous work when generic rules that cover a wide variety of 

degradation behaviors are established. Moreover, these 

works are focused on one unique workpiece thickness, often 

around 50 mm. 

Neural network techniques have been also applied to 

WEDM and other non-conventional machining processes 

with different aims. In particular, three main application 

areas have been identified: establishment of optimum 
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machining parameters [6]-[8]; fault diagnosis for machine 

maintenance and control of non-conventional machining 

processes [9]-[12] and pulse classification [13]-[14]. It is 

remarkable that in all these works static neural network 

architectures (especially Multilayer Perceptron MLP) have 

been employed. However, neural network techniques have 

not been previously employed for wire breakage forecasting. 

The layout of the paper is as follows. Section II presents 

the main results of previous works of authors in which a 

heuristic approach was adopted. In Section III, the strategy 

for the detection of instability trends in different workpiece 

thicknesses is presented. In Section IV some industrial 

examples are shown. Finally, in Section V the conclusions 

are drawn. 

II.  PREVIOUS WORK: HEURISTIC APPROACH FOR THE 

DETECTION OF DEGRADED CUTTING REGIMES 

The main objective of a previous work was related to the 

classification of different types of degraded behaviors in 50 

and 100 mm steel workpiece thicknesses in the WEDM 

process [5]. To achieve this, firstly, a battery of experiments 

that reproduce common process disturbances were defined 

and performed in [5]. Secondly, different functions 

designated as virtual measurements VM were obtained by 

processing the current and voltage signals of the discharges. 

Each virtual measurement refers to a succession of 

percentages of discharges whose basic variables (for 

example, the energy) exceed (or are lower than) some pre-

defined reference values. In particular, a preliminary analysis 

revealed that the functions that better discriminate the 

degraded behaviours were related to energy (VM-E), peak 

current (VM-I) and ignition delay time (VM-TDH). More 

detailed information about the nature of the virtual 

measurements can be found in [15]. 

By the analysis of the behavior of the virtual 

measurements three types of degraded behavior that alert to 

wire breakage were identified: a sudden increase in the 

energy (Degraded Behavior of Energy, DB-E); an oscillating 

behavior in the energy (Degraded Behavior of Energy 

Oscillation, DB-EO); and a sudden increase in the peak 

current combined with high values of ignition delay time 

(Degraded Behavior of Current plus Time Delay High, DB-

C+TDH). These behaviors indicate that the tool (the wire) 

will probably brake imminently. The results were successful 

showing an average system efficiency higher than 80%. 

However, the thresholds achieved by the virtual 

measurements depended on the workpiece thickness. Thus, 

following the heuristic approach would involve the analysis 

and the definition of a set of rules per workpiece thickness in 

the worst case. 

III. STRATEGY FOR THE DETECTION OF INSTABILITY TRENDS 

IN DIFFERENT WORKPIECE THICKNESSES  

Taking into account the results of the previous work, the 

next challenge is to analyze the viability of using Artificial 

Neural Networks to detect the degraded behaviours in a 

range of workpiece thicknesses commonly used at the 

WEDM industry (between 50 and 100 mm). Specifically, the 

proposed strategy consists of obtaining a neural network 

structure by performing a training process that takes 

advantage of the knowledge gathered about the degradation 

of the WEDM process from the previous works of the 

authors [5], [15]. Since these latter are considered during the 

training process, supervised learning is applied, and the 

inputs of the neural structure are inferred. 

The proposed configuration of the neural structure 

consists of three Elman neural networks in parallel (see Fig. 

2): Elman Network for Energy (EN-E), Elman Network for 

Current (EN-I) and Elman Network for high values of 

ignition delay time TDH (EN-TDH). The reason why the 

Elman architecture has been chosen is its memorization 

capability and its dynamic character [16]. As the latter is 

concerned, it allows to introduce into the network one after 

one the values of the sequential patterns of the inputs. In 

other words, unlike the static neural architectures, in the case 

of the Elman network the values of the required historical 

data of one specific input are not introduced concurrently. 

This reduces drastically the neural network size.  

Referring to the inputs, each network input is one of the 

virtual measurements, and the corresponding workpiece 

thickness.  

As the outputs are concerned, on one hand, three levels of 

alarm are triggered in a postprocessing phase depending on 

the values achieved by the outputs: A1 (low), A2 (medium) 

and A3 (high). These alarms are used to alert to the 

increasing risk of wire breakage. It is remarkable that in the 

particular case of the network EN-E, it has as outputs both 

types of degraded cutting regime (DB-E and DB-EO).  

On the other hand, in the post-processing phase the grade 

of influence in the degradation of the cutting process of each 

type of behaviour is also estimated. 

 

 

Fig. 2 Scheme of the recurrent neural network approach. 

The advantages of the presented approach are the 

following:  

1) Unique neural structure in order to avoid having a 

battery of heuristic rules per workpiece thickness. This 

objective involves as well having common post-
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processing rules for a range of thicknesses. To achieve 

this, the proposed approach is to train the networks with 

examples of 50 and 100 mm to give outputs of the same 

high level independently of the workpiece thickness. 

Fig. 3 illustrates the proposed strategy. In Fig. 3, NA 

represents the same high level alarm. 

2) Learning capacity to interpolate the detection of 

degraded behaviours in intermediate workpiece 

thicknesses (between 50 and 100 mm). To achieve this, 

experiments of workpiece thickness between 50 and 100 

mm are used. These cases constitute the test examples, 

which are not used during the training phase. In this 

manner, training the neural networks with examples of 

degradation in each workpiece thickness could be 

avoided. 

A. Training process 

In order to perform the training and simulation process 

Matlab
TM
 7.1 has been employed. As the generalization 

method is concerned, the early stopping alternative has been 

chosen. To make this decision has been considered that the 

algorithm for Bayesian Regularization available in Matlab
TM
 

7.1 is not recommended for Elman networks since it updates 

the weight and bias values according to Levenberg-

Marquardt optimization [17].  

To be more specific, the backpropagation with adaptive 

learning rate and momentum has been applied. The 

activation function of the hidden and outputs neurons is the 

logistic sigmoidal function. Taking into account the 

dependence of the error on the initial values of the weights, 

each neural network configuration has been trained ten 

times. A preliminary analysis revealed that asymmetric 

ranges of the inputs/outputs yielded lower validation errors. 

Thus, three ranges have been considered due to the 

asymptotic character of the sigmoid activation function: 

[0.05-0.95], [0.1-0.9] and [0.15-0.85]. In the training phase, 

a total of 456 sequences of 250 points each are distributed in 

the three networks (70% for training and 30% for 

validation). In order to define the dimension of the evaluated 

configurations, the specifications of different works have 

been considered. Related to this, in [18] is maintained that 

twice as many training cases as weights may be more than 

enough to avoid overfitting for a noise free quantitative 

target variable. Other works such as [19] and [20] conclude 

that is essential to use lots of hidden units to avoid bad local 

optima when using early stopping. Considering both 

indications, hidden layers from 5 to 60 neurons have been 

evaluated, which are taken around ten by ten. 

B. Analysis of the results 

In order to analyze the results, two main types of analysis 

are performed sequentially:  

1) Quantitative analysis: in this phase the configurations 

that provide the lowest validation error per range are 

pre-selected. The validation error, which refers to the 

error corresponding to the validation examples, is 

quantified by the Mean Square Error MSE. 

2) Qualitative analysis: in order to compare the behavior of 

the pre-selected configurations, their operation is 

simulated during this phase. In order to select the most 

appropriated, the validation ratio and the test ratio have 

been defined. The validation ratio is applied to the 

validation cases, which basically are used during the 

training phase to decide when this phase concludes. The 

test ratio is computed over the test cases, which are not 

used during the training phase. 

The validation ratio represents a hit ratio. Depending on 

the quality of the output of a validation case in tracking 

the output target, it is computed as correct or not. 
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Fig. 3 Strategy for obtaining the unique neural structure 

1066



  

 

The concept of quality involves aspects such as the 

output achieves a minimum threshold that allows to 

discriminate a high level alarm, and the correct 

estimation of the type of degraded behavior.  

The test cases correspond to degradation examples 

occurred in workpieces 80 mm height. The behavior of 

the case is considered correct when the pre-established 

threshold, which is common for the workpiece 

thicknesses between 50 and 100 mm, is achieved. 

Provided the difference in the value of both ratios is 

insignificant for different neural configurations, the 

configuration that yields the smallest value is selected. 

With the aim of illustrating the application of the 

quantitative and qualitative analysis, the process of selection 

of the Elman network for energy is presented. In Fig. 4 the 

lowest validation errors of the neural networks 

configurations per evaluated range is shown. The quantity of 

hidden neurons is specified by the numbers upon each bar of 

the graph. Also, in the graph can be appreciated that the 

validation errors are quite similar for the evaluated ranges. In 

order to select the most appropriated configuration, a 

qualitative analysis is performed. Through the qualitative 

analysis, the behaviors of the configurations during their 

operation are compared and the validation ratio is computed 

(see the results in Fig. 5). The results show that the 

configuration in the range [0.1-0.9] yields the highest 

validation ratio. 

The better performance of the selected configuration can 

be appreciated in some examples shown in Fig. 6, Fig. 7 and 

Fig. 8. Each example shows the inputs, outputs and targets of 

the evaluated network. The inputs of this network are the 

energy and peak current virtual measurements (VM-E and 

VM-I) and the thickness.  

The outputs correspond to the types of degraded behaviors 

associated to the energy virtual measurement: E-E 

corresponds to a sudden increase in the energy DB-E, and E-

EO corresponds to an oscillating behavior in the energy DB-

EO.  

 

Fig. 4. Lowest validation errors in EN-E. 

 

Fig. 5 Validation ratio in EN-E. 

In order to define the targets, a set of algorithms explained 

in [21] have been defined.  

In the examples, the responses of three configurations 

when processing a particular validation example are 

depicted. The difference between the three neural network 

configurations are the range of the inputs/outputs, and the 

number of the hidden neurons. As the validation example is 

concerned, it corresponds to the degraded behavior 

characterized by successive peaks of high energy DB-EO. 

Thus, it makes sense that the corresponding target and output 

E-EO show an increasing behavior, while both the target and 

output of E-E remain low. As it can be observed, the output 

responses have different characteristics that are remarked by 

the circle areas in the figures Fig. 6, Fig. 7 and Fig. 8. While 

the network whose behavior is depicted in Fig. 7 is correct 

(since successive peaks of high energy are accumulated), the 

Fig. 6 and Fig. 8 show that the behavior of the corresponding 

networks do not follow the desired behavior. Thus, the 

network that operates in the range [0.1-0.9] is chosen.  

Table 1 presents the characteristics of the performance of 

the selected Elman neural networks.  

TABLE 1 CHARACTERISTICS OF THE SELECTED NEURAL 

NETWORKS EN-E, EN-I AND EN-TDH 

Network Energy (EN-E) Peak Current 

(EN-I)  

High ignition 

delay time 

(EN-TDH) 

Hidden neurons 30 10 10  

Range [0.1-0.9] [0.05-0.95] [0.1-0.9] 

Validation 

error (MSE) 
0.0026 0.0063 0.0065 

Validation ratio 85.7% 85.7% 100% 

Test ratio 75% 91% 100% 
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Fig. 6 Inputs, outputs and targets of EN-E generated during a 

DB-EO degraded cutting regime: range [0.15-0.85]. 
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Fig. 7 Inputs, outputs and targets of EN-E generated during a 

DB-EO degraded cutting regime: range [0.1-0.9]. 
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Fig. 8 Inputs, outputs and targets of EN-E generated during a 

DB-EO degraded cutting regime: range [0.05-0.95]. 

IV. EXAMPLES OF DETECTION OF INSTABILITY TRENDS IN 

DIFFERENT WORKPIECE THICKNESSES 

This section show some examples that correspond to the 

Elman network for energy aimed at illustrating the operation 

of the proposed neural structure. In particular, the examples 

are related to the degraded cutting regime characterized by a 

sudden increase in the energy virtual measurement DB-E.  

During the post-processing phase, some simple IF-THEN 

rules are processed so as the decision of triggering the 

different levels of alarm can be performed, and the type of 

degraded behavior can be also estimated. The rules applied 

in the case of the degraded cutting regime DB-E are 

summarized in Table 2. 

E-E represents the outputs of the network. HTE, MTE and 

LTE represent the high, medium and low level of alarm, 

respectively. PDB-E divided by the sum of the contributions of 

all the types of degraded behaviors (PDB-E + PDB-EO + PDB-

I+TDH) are used to compute the most probable cause of 

process degradation. 

 

TABLE 2 POST-PROCESSING RULES APPLIED TO THE 

OUTPUTS OF EN-E WHEN DB-E 

Post-processing E-E output 

IF E-E> HTE, 

 THEN A3=TRUE; 

IF NOT, IF E-E> MTE,  

 THEN A2=TRUE; 

IF NOT, IF E-E> LTE,  

 THEN A1=TRUE; 

PDB-E= E-E; 

 

Fig. 9, Fig. 10 and Fig. 11 represent the neural network 

behavior when the degraded cutting regime DB-E is the 

predominant one. The three circles in each figure illustrate 

the subsequent triggering of the low, medium and high level 

alarms, respectively. In these cases, when the high level 

alarm triggers, the output E-EO maintains at low level, while 

the corresponding output E-E reaches the high level alarm. 

In the post-processing phase, the high level alarm has been 

triggered approximately between 20 and 250 milliseconds 

before the wire breakage. 

 

 
Fig. 9 Inputs and outputs of EN-E during DB-E in 50 mm 

 
Fig. 10 Inputs and outputs of EN-E during DB-E in 80 mm 
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Fig. 11 Inputs and outputs of EN-E during DB-E in 100 mm 

V. CONCLUSIONS 

This paper demonstrates the viability of the application of 

Recurrent Artificial Neural Networks to detect the 

degradation of the Wire Electrical Discharge Machining 

process in a range of steel workpiece thicknesses. The goal is 

to define a neural structure capable of performing the early 

detection of degraded behaviours in a range of workpiece 

thicknesses (50-100 mm). The final purpose is to avoid the 

tool breakage (the wire) by applying the proper control 

actuation, depending on the most probable cause of 

degradation. 

The presented approach is based on three Elman neural 

networks that process three virtual measurements which are 

the inputs of the networks. In particular, the success of the 

presented approach has been quantified through both the 

validation ratio and the test ratio. Both ratios have been 

computed for each parallel Elman network. In particular, the 

validation ratio ranges between 85 and 100%, and the test 

ratio between 75 and 100%.  
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