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Abstract— Multiscale approaches to accelerate the conver-
gence of decentralized consensus problems are introduced.
Consecutive consensus iterations are executed on several scales
to achieve fast convergence for networks with poor connec-
tivity. As an example the proposed algorithm is applied to
the decentralized Kalman filtering problem for estimation of
contaminants in building systems. Two conventional observers
are designed and convergence is compared with respect to
the number of communications necessary, which is an effec-
tive measure of system complexity. It is demonstrated that
the proposed multiscale scheme substantially accelerates the
decentralized consensus. Future extensions and directions are
briefly summarized.

I. INTRODUCTION

Decentralized estimation and control techniques have been

extensively studied as a robust and scalable solution for

large scale systems with uncertainty. The classical work was

initiated in the 1970s [1] and there has been much recent

interest due to the development of the cooperative concept

for networked robotic agent systems [2]–[3].

The decentralized Kalman filtering problem is among

the results of those efforts [3]. It can be interpreted as a

combination of individual Kalman filters with a consensus

scheme: an iterative scheme to have every node compute

the average value of specific quantities. During the consen-

sus iteration, every node communicates specific data with

connected nodes to update their data. As this consensus

limits to the exact average, the decentralized Kalman filter of

every node converges to the centralized Kalman filter. Such

consensus problems also occur in the area of multi-agent

coordination. e.g., formation, alignment, decision making,

synchronization, data fusion, and so on [4].

However, existing consensus schemes require a great deal

of communication or unrealistically dense network topolo-

gies to ensure acceptable convergence in practice when

applied to large scale networks. Ironically, this prevents the

practical implementation of decentralized estimation tech-

niques for large scale real world problems with limited

bandwidth, even though they were originally aimed at exactly

such large systems. There have been a variety of efforts to

produce fast convergence of decentralized consensus [5]–[7].
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On the other hand, the multigrid computational method,

which was originally developed for efficiently solving elliptic

boundary value problems, is an example of a scalable linear

iterative solvers and is a well-established technique for

solving large-scale problems. The method builds a hierarchy

in the state domain and separates solving the various wave-

number components on different layers, thus quickly decay-

ing various scales of different wave-number components of

the residual. This results in the accelerated convergence when

applied with conventional iterative relaxation schemes (e.g.,

Jacobi or Gauss-Seidel) [8]–[9].

This research reported here was initiated by observing that

the slow convergence of decentralized consensus methods

is similar to what is encountered in conventional relaxation

schemes; high wave-number components diminish quickly

in several iterations, but after that the nodes do not update

very much since they have local information only, causing

a deceleration. Therefore a multiscale scheme can accelerate

the slow convergence of decentralized consensus. The basic

idea of this is to construct a virtual multilevel hierarchy,

across which the local information is passed to distant nodes.

We demonstrate this simple concept in a basic consensus

problem with poor network connectivity, and it is shown

that the proposed scheme substantially accelerates the con-

vergence of the decentralized estimation of contaminants in

building systems. Some advantages and disadvantages are

discussed and future research directions are described.

II. BUILDING SYSTEM PROBLEM

Real-time knowledge of dynamic indoor environment pa-

rameters, such as occupant distribution as well as thermal and

airflow state, is critical to the management and optimization

of building energy, occupant comfort and safety (such as

from fire related threats or malicious attacks).

The state-of-the-art in modeling indoor thermal, airflow

and other gaseous flow phenomena is the use of compu-

tational fluid dynamics simulations which are not suitable

for real-time applications. Methods to estimate and con-

trol the multiscale, spatially distributed, dynamic indoor

airflow, smoke flow and contaminant transport phenomena

in real-time are lacking. Reduced-order representations of

such multiscale dynamic phenomena (such as with Galerkin

models extracted from lower dimensional projections of the

governing equations) can be used for this but suffer from a

lack of accuracy. On the other hand, the pervasive use of

sensors enables access to information which can be used for

real-time monitoring purposes in concert with the reduced-

order models. Furthermore, advent of wireless sensor tech-
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Fig. 1. Building geometry model with 128 nodes.

nologies enables distributed computations to support real-

time building environment monitoring applications.

Techniques for computationally efficient real-time mon-

itoring and distributed estimation are needed, and are the

focus of this paper.

A. Dynamic model

The proposed algorithm is applied to a decentralized

contaminant estimation problem in a building system. The

building of interest is modeled by 128 nodes representing

lumped elements, in which the flow and contamination prop-

erties are uniform. A constant inward flow of air is introduced

at a corner on second floor, and the outflow openings exist

wherever the windows are open to the outside. With these

boundary conditions and the trace contaminant assumption

(the contaminant concentration does not affect the flow field),

the contaminant transport model reduces to a simple linear

time-invariant system. For more detailed description on the

dynamic model, see [10]. The model is

ρiVi

dCi

dt
=

∑

j

FjiCj −
∑

j

FijCi + Gi − RiCi

ρ : Density

V : Volume

C : Contaminant concentration

Fji : Mass flow rate from node j to i

G : Contaminant generation rate

R : Mass removal rate

where Fji is nonzero only when the node i and j are

adjoining nodes.

Among the 128 nodes, four nodes are assumed to have

high initial contaminant concentration Cmax. A typical im-

pulse response to this initial condition is plotted in Fig. 2.

For the estimation problem, we assume that the measure-

ment units (sensors with a small CPU and communication

unit inside) are located at the odd numbered nodes, with the
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Fig. 2. Impulse response of the building system. Different lines show the
contaminant concentrations in the various nodes of the building.

sensor communication link established along a single line

(i.e., 1 ↔ 3 ↔ 5 ↔ · · · · · · ↔ 125 ↔ 127).

III. DECENTRALIZED KALMAN FILTER

The decentralized Kalman filter can be interpreted as three

consecutive steps: prediction, consensus, and measurement

update. Two of them (prediction and measurement update)

are identical to those of the conventional centralized Kalman

filter. During the consensus step the system dynamics is

assumed to be in steady state. A variety of distributed

Kalman filters using consensus algorithms can be found in

[3], though the simplest form is applied in this paper.

The inverse covariance form of the Kalman filter is

frequently used for decentralized applications, since the

measurement information is easily decoupled and distributed.

Additionally it is numerically more stable and does not

require an accurate estimate of the unknown initial state [11].

A. Prediction

The information matrices and vectors are propagated in-

dividually by every node. For node i,

Yi(t|t − 1) =
(

FY −1
i (t − 1|t − 1)FT + Q

)−1

yi(t|t − 1) = Yi(t|t − 1)FY −1
i (t − 1|t − 1)yi(t − 1|t − 1)

where Yi = P−1
i and yi = Yix̂i are called the information

matrix and the information state of node i, respectively. Pi

and x̂i represent the covariance and the state estimate of

node i. F denotes the system transition matrix and Q is the

process covariance matrix. The state estimate of node i is

given by x̂i = Y −1
i yi.

B. Consensus

Consensus is an iterative process to let every node in a

networked group of n nodes on a graph G = (V, E) asymp-

totically compute the average value of specific information

using only local communication. Whenever a node takes

a new measurement zi(t), where i ∈ V denotes the node

number, it initializes the information contribution Si(t, 0)
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and si(t, 0), then updates them based on the available local

knowledge. A variation of the space-time diffusion scheme

[12] is employed here for the consensus algorithm. Note that

we have two different time indices; t is for time, and k is

for the consensus sweeps.

Initialize:

Si(t, 0) = HT
i R−1

i Hi

si(t, 0) = HT
i R−1

i zi(t)

Consensus:

Si(t, k + 1) = Si(t, k)

+
∑

(i,j)∈E(k)dj(t, k)wij(t, k) (Sj(t, k) − Si(t, k))

si(t, k + 1) = si(t, k)

+
∑

(i,j)∈E(k)dj(t, k)wij(t, k) (sj(t, k) − si(t, k))

where Hi denotes the measurement matrix and Ri is the

noise covariance matrix.

The weights wij are generally chosen to yield fast consen-

sus. Although numerical techniques to compute the optimal

weights (for the fastest mixing) were suggested recently [5],

a simple heuristic choice, the Metropolis weight, is still

a strong candidate for decentralized consensus in that it

requires only knowledge of the local topology.

We call di(t, k) the sweep degree, which represents the

total number of consensus sweeps that node i has taken to

time t and k sweeps. By introduction of the sweep degree,

the information from the nodes with different sweep degrees

is weighted unequally. i.e., we believe that the information

from a “more experienced” node is more reliable. In the

conventional synchronous consensus, di(t, k) is same for all

i since di(t, k) increases equally for every node, therefore

the composite weights di(t, k)wij(t, k) are time invariant.

Space-sweep degree:

dSS
i (t, k) = di(t, k) +

∑

(i,j)∈E(k)

dj(t, k)

Metropolis weights:

wij =
1

max
{

dSS
i (t, k), dSS

j (t, k)
} if (i, j) ∈ E(k)

As the consensus reaches the average, the information

contribution of each node converges to the following, where

n represents the total number of sensor nodes.

lim
k→∞

Si(t, k) =
1

n

n
∑

i=1

HT
i R−1

i Hi =
1

n
HT R−1H

lim
k→∞

si(t, k) =
1

n

n
∑

i=1

HT
i R−1

i zi(t) =
1

n
HT R−1z(t)

The right-hand-side terms are the information contribu-

tions of all the measurements, which may be computed as

for the centralized Kalman filter. Therefore, every node is

now able to reconstruct the information contribution for the

centralized Kalman filter. i.e., as the consensus converges

asymptotically, all individual filters converge to the optimal

centralized estimator.

C. Measurement Update

Each node reconstructs the information contribution from

its own averaged value. Thus the measurement update is

simply

Yi(t|t) = Yi(t|t − 1) + HT R−1H = Yi(t|t − 1) + nSi(t, k)

yi(t|t) = yi(t|t − 1) + HT R−1z(t) = yi(t|t − 1) + nsi(t, k)

All the nodes are guaranteed to have the same state

estimates as that of the centralized Kalman filter if ideal

consensus is provided. Hence, the decentralized Kalman

filtering problem is reduced to the consensus problem in the

quasi steady-state sense with this formulation.

IV. MULTISCALE CONSENSUS

A. Introductory Example

In this introductory problem, we have 64 sensors con-

nected in a single line (tridiagonal graph Laplacian). The

sensors have randomly distributed initial measurements, and

we will test the consensus algorithm to track how the

estimates converge to the average of initial measurements.

The consensus history by a conventional scheme is shown

in Fig. 3. It is observed that the high wave-number com-

ponents diminish rapidly in several consensus sweeps, re-

sulting in a smooth profile and slow convergence there-

after. This premature stagnation occurs because the low

wave-number components correspond to the slowly decay-

ing modes (eigenvalues close to 1) of the weight matrix,

whereas the high wave-number components are associated

with rapidly decaying small eigenvalues. Unfortunately, this

is inevitable for conventional consensus schemes which are

based on local diffusion mechanisms.

B. Multiscale consensus

In this simple example we observed that the low wave-

number components diminish slowly since the nodes have

local information only. Once the spatial profile smooths, the

nodes start to reduce the update amount. This is because

each node, to its (local) knowledge, believes it has achieved a

satisfactory approximation of the true average, even though it

still has a large deviation from a global-scale view. This sort

of problem is frequently encountered in iterative methods for

solving systems of linear equations.

In order to resolve this problem, we propose a multiscale

consensus scheme which transfers the information between

distant nodes, so that the nodes can obtain the global in-

formation on multiple scales. In principle, the basic concept

of this approach is analogous to the fundamental multigrid

computation idea.

A virtual hierarchy of nodes is constructed, in each level of

which the consensus scheme is executed on a different scale.

We call a series of consensus sweeps along the different

levels a cycle, a term from the multigrid computation field.

Determining the structure of the hierarchy and the cycle

(the number of layers, the number of consensus sweeps

in each layer, and the sequence of levels in which the

consecutive consensus sweeps occur) is not trivial and could
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Fig. 3. Consensus history by a conventional scheme, 2 consensus sweeps
(2 WU) between each curve.

be formulated as an optimization problem. However, here we

present one of the simplest choices for such a scheme.

Basic multiscale consensus scheme:

1) For the finest level (L1),

a) Execute νf consensus sweeps for all nodes

(Increase the sweep degree of the nodes)

2) For the next coarsest level (L2)

a) Pick the nodes numbered 2k + 1
(The rest sleep and just pass the information)

b) Execute νf consensus sweeps for all nodes

(Increase the sweep degree of the selected nodes)
...

3) For the l-th level (Ll)

a) Pick the nodes numbered 2l−1k + 1
(The rest sleep and just pass the information)

b) ν = νf if l ≤ 1
2 log2 n, otherwise ν = νc

c) Execute ν consensus sweeps for all nodes

(Increase the sweep degree of the selected nodes)
...

4) Finishing the coarsest level, go back to 1)

Note that most of nodes undergo periodical wake-sleep

transitions, which is governed by the cycle structure. When

a node is sleeping, it does not use the incoming message

but passes it to the other side; this results in the accelerated

convergence. We assume that the cost of message passing by

sleeping nodes is negligible, so instantaneous message pass-

ing occurs between distant nodes through sleeping nodes. i.e.,

we presume that the cycle is equivalent to a periodic change

of graph topology. This may not be a reasonable assumption

for some applications, a point that will be addressed in future

work.

The consensus history of the proposed multiscale scheme

is plotted in Fig. 4. It is obvious that the proposed scheme

substantially accelerates the convergence rate, eliminating

low wave-number components efficiently.
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Fig. 4. Consensus history by a multiscale scheme, 1 cycle of 5 layers with
ν = [νf νc] = [1 2] (about 2 WU) between each curve.
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Fig. 5. Basic concept of multiscale consensus (Note that the graph reduces
by half at each higher level).

Fig. 6 and Fig. 7 display the convergence history of several

multiscale schemes and the conventional scheme. Various

schemes with different sweep numbers are shown in Fig. 6,

while the number of layers varies in Fig. 7. Different cycles

lead to slight changes in performance, though any selection

obviously accelerates the convergence greatly. Convergence

rates are compared with respect to the total number of com-

munications, a practically reasonable measure of the system

complexity and the power consumption. The appropriate

metric is defined in the following section.

V. DECENTRALIZED KALMAN FILTER WITH

MULTISCALE CONSENSUS

The advantage by the multiscale scheme was demonstrated

in the previous example. Now the proposed algorithm is

applied to the decentralized Kalman filtering problem.

A. Centralized Estimation

As a reference, the estimation by the centralized Kalman

filter is shown in Fig. 8. The process noise covariance

is given by Q = (0.002Cmax)
2I128 and the measurement
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noise covariance is R = (0.1Cmax)
2I64. The initial guess

starts from zero with variance P0 = (0.5Cmax)
2I128. The

same noise and initial properties are used for the following

decentralized estimation problems. For easy visual interpre-

tation, only the estimate of the 82nd variable (contaminant

concentration in node 82) is plotted.

B. Decentralized Estimation

The estimation by the decentralized Kalman filter with

conventional consensus is shown in Fig. 9 (20 times con-

sensus rate) and Fig. 10 (400 times consensus rate). The

estimates of all 64 sensor units are plotted together; i.e., if

the consensus reached the correct average and the decentral-

ized estimation converged, all 64 plots should overlap the

centralized estimation curve (Fig. 8). The phrase “400 times

consensus rate” implies that every sensor unit communicates

with neighboring units 400 times between the measurements

within a single iteration of the Kalman filter. Notice the

unsatisfactory convergence despite the high consensus rate

and the resulting high communication requirements.

C. Decentralized Estimation with Multiscale Consensus

Before applying the proposed algorithm, we define a

measure of computation and communication complexity, the

WU (work unit). A WU is defined as the total number

of communications required for one conventional consensus

sweep. For the sensor arrangement of this particular problem,

1 WU corresponds to 126 communications.

The proposed algorithm is applied to the decentralized

Kalman filter and the result is shown in Fig. 11 (10 cycles).

Among the presented cycles, N = 5 with ν = [νf νc] = [1 2]
is used for this application. The communication complexity

of this cycle corresponds to about 2 WU (i.e., 258 commu-

nications).

The simulation results show that the convergence is re-

markably accelerated by using the multiscale consensus

scheme. The estimation consensus with 10 cycles (about

20 WU) is comparable to or better than that with 400 times
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Fig. 7. Convergence with various numbers of layers (sweep number ν =
[νf νc] = [1 2] fixed).

conventional consensus sweeps (400 WU), which requires

20 times as many communications.

VI. CONCLUSION AND FURTHER RESEARCH

As an example of multiscale estimation techniques, a

multiscale consensus scheme is presented. The proposed

algorithm is applied to example decentralized estimation

problems and is demonstrated to accelerate the convergence

of the estimation consensus significantly. The proposed

scheme leads to an order-of-magnitude reduction of the

communication cost and a more tractable design of the

observer system, while still maintaining the merits of the

decentralized scheme.

The proposed algorithm is effective for problems with a

large number of sensor measurements with poor network

connectivity. In addition, if there are far fewer state variables

than measurements, it is even more effective (e.g., a set of

sonobuoys deployed for tracking a submarine).

However, for problems in which the state dimension is

comparable to the number of measurements or increases

with network size (e.g., this building problem), additional

improvements can be made by decomposing the state tran-

sition matrix as well.

The principal problem is that the dimensions of the infor-

mation matrix and vector to be communicated between nodes

are still large (i.e., equal to the state dimension). Moreover,

the nodes must store and invert large matrices. We claim

that this can be improved by another multiscale approach:

multiscale representation of the state. In this approach, every

node maintains and estimates the fine-scale knowledge about

the adjacent nodes, and coarse-scale information about the

distant nodes. For instance, a node on the first floor of the

building has detailed knowledge of what is evolving in the

first floor, while maintaining only simplified knowledge of

the 4th floor and even coarser knowledge of the 20th floor.

Another acceleration is possible using multiple time-scale

separation. Different update rates for neighboring nodes and

remote nodes will help to reduce not only the computational
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Fig. 8. Centralized estimation with the standard Kalman filter (82nd node).
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Fig. 9. Decentralized estimation with conventional consensus at 20 times
consensus rate (20 WU). The system cannot maintain a coherent estimate
at this rate.

load but also the communication cost. That is, a node on

the first floor may not require frequent updates for what is

happening on the 20th floor. Additionally, one may compute

the different time-scale modes in the system. For example,

eigenmodes with different time-scales that can be estimated

on different time-scales are observed in Fig. 2.

Other topics of interest include: 1) eliminating the hier-

archical structures and the instantaneous message passing

assumption of the proposed scheme [13], and 2) applying the

proposed scheme to more sophisticated distributed estimation

algorithms, e.g., Kalman-Consensus filter [3].
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