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Abstract— Motivated by the fact that the application of the
disturbance observer (DOB) approach has been limited to
minimum phase systems, we propose a new DOB configuration
for non-minimum phase systems. The proposed configuration
introduces a new filter, which corresponds to the Q-filter of the
classical linear DOB, in a different place of the inner-loop. This
new configuration enables an application of DOB idea to the
non-minimum phase systems. After analyzing robust internal
stability of the proposed configuration, we present a synthesis
methodology of the filter based on the H∞ synthesis technique.

I. INTRODUCTION

Disturbance observer (DOB) approach [1], [4], [7–10] as a

tool for disturbance attenuation has been widely employed in

the industry. Versatility of DOB comes from, without doubt,

its simplicity and powerful ability to attenuate disturbances

and compensate plant uncertainties. An interesting feature

of DOB is that it can be used as an inner-loop controller so

that the real uncertain plant in the presence of disturbances

is forced to behave like the nominal plant in disturbance-free

environment. As a result, DOB can be combined with any

(pre-existing) outer-loop controller that is designed without

considering plant uncertainties and disturbances. However,

applications of the DOB approach have been limited to

the minimum phase systems or systems having no zero

dynamics. (It is proved in [11] that the minimum phaseness

of the plant is one of the necessary conditions for internal

stability in case of the classical DOB approach.)

The goal of the paper is to propose a new DOB config-

uration that can be applied to non-minimum phase linear

systems. Although there exist some research works on DOB

for non-minimum phase systems [2], [3], [13], [15], [16],

they seem to have difficulties in handling general cases. In

fact, the application of [13] is limited to those disturbances

that come from a known external system (i.e., exosystem),

and [2] and [16] deal with non-minimum phase systems

simply by inverting only the invertible (stable minimum

phase) part. A disturbance observer proposed in [3] is limited

to the estimation of disturbances without considering the

stability of the closed-loop system, and the approach of

[15] is limited to the case where the plant model does not

have uncertainty. In contrast to those previous works, we

present a new DOB configuration that can be applied to fairly
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general non-minimum phase systems. A systematic design

methodology, specialized to the proposed DOB structure, is

also given with the help of the H∞ synthesis technique.

The paper is organized as follows. In Section II, a new

DOB configuration is presented and robust stability and

performance recovery criterion are given in terms of a new

filter Θ(s). Section III provides a design procedure for Θ(s)
based on the H∞ synthesis technique. A motivation of the

proposed DOB configuration is presented in Section IV and

a conclusion is given in Section V.

II. A NEW DOB CONFIGURATION FOR NON-MINIMUM

PHASE SYSTEMS

Fig. 1 is the proposed new DOB configuration. In the

figure, P (s) is the single-input single-output linear time-

invariant plant of our interest. We assume that P (s) is

unknown but is an element of the set P that is a collection

of strictly proper rational transfer functions. Pn(s) represents

a nominal model of the real plant P (s), and Pn(s) is also

contained in P . An outer-loop controller C(s) is assumed to

be designed a priori for the nominal model Pn(s). This im-

plies that the nominal closed-loop system (i.e.,
Pn(s)C(s)

1+Pn(s)C(s) )

is stable and has satisfactory performances for a certain

control goal. However, due to the uncertainty of the real

plant and the external disturbance d, the actual closed-loop

performance could be degraded or, even worse, the stability

could be lost. The role of the inner-loop controller (i.e.,

systems represented by PnΘ
1+PnΘ and Θ

1+PnΘ , with a certain

filter Θ(s), in Fig. 1) is to maintain the stability of the actual

closed-loop system and preserve the nominal performance

even in the presence of the plant uncertainty and disturbance
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Fig. 1. The proposed DOB configuration (the shaded block) with an
outer-loop controller C(s). The signals r, d, and n represent the reference
command, the unknown external disturbance, and the measurement noise,
respectively. y is the output of the closed-loop system while u is the
feedback control to the plant.
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From Fig. 1, the plant output y is expressed as

y(s) =
(PnΘ + 1)PC

1 + PC + (1 + PnC)PΘ
r(s)

+
P

1 + PC + (1 + PnC)PΘ
d(s)

−
PC + (1 + PnC)PΘ

1 + PC + (1 + PnC)PΘ
n(s). (1)

For the time being, let us assume that all the transfer

functions above are stable. In addition, it is natural to assume

that there exists a frequency ωL such that the measurement

noise n(jω) is significant in the frequency range (ωL,∞)
while the disturbance d(jω) and the reference r(jω) are

significant on (0, ωL). Moreover, suppose that the filter Θ(s)
is designed so that |P (jω)Θ(jω)| has very large magnitude

in the low frequency range (0, ωL), that is,

|P (jω)Θ(jω)| > W1, ∀ω ∈ (0, ωL),

for a sufficiently large W1 > 0. Then, we obtain from (1)

that

y(jω) ≈
PnC(jω)

1 + PnC(jω)
r(jω), ∀ω ∈ (0, ωL). (2)

This implies that, even when there exist plant uncertainty

and input disturbance, the steady-state performance of the

actual closed-loop system is recovered to the nominal one

in the absence of disturbance. (More rigorous justification

of performance recovery for the conventional DOB can be

found in [11].) This property will be called as performance

recovery throughout the paper. In order to enjoy this perfor-

mance recovery, the filter Θ(s) should be designed such that

the robust internal stability of the closed-loop system (Fig.

1) is ensured while |P (jω)Θ(jω)| is sufficiently large in the

low frequency range.

To inspect the internal stability, nine transfer functions

from [r, d, n]T to [ē, ū, ȳ]T in Fig. 1 are computed by

1

Δcl(s)

⎡
⎣

1 + PΘ, −P, −1
(PnΘ + 1)C, 1, −(1 + PnC)Θ − C

(PnΘ + 1)PC, P, 1

⎤
⎦

where Δcl(s) = (1 + PC) + (1 + PnC)PΘ. If the above

nine transfer functions are stable for all P (s) ∈ P , then the

closed-loop system is said to be robustly internally stable.

Now let us write P , Pn, C, and Θ as ratios of co-

prime polynomials, that is, P (s) = N(s)/D(s), Pn(s) =
Nn(s)/Dn(s), C(s) = Nc(s)/Dc(s), and Θ(s) =
Nθ(s)/Dθ(s). Then, it can be shown in a similar way to [5,

p. 37, Theorem 1] that the closed-loop system is internally

stable if and only if the characteristic polynomial

δ(s) := Dθ(DnDcD +DnNcN)+Nθ(DnDcN +NnNcN)
(3)

is Hurwitz. We summarize the discussions so far in the

following.

Theorem 1: Let P be a set of strictly proper rational

transfer functions. The closed-loop system in Fig. 1 is

robustly internally stable if and only if δ(s) is Hurwitz for

all P (s) ∈ P . ♦

Unfortunately Theorem 1 is not convenient to design Θ(s)
for robust internal stability. To overcome this difficulty, a

more viable but sufficient condition is given as follows.

Theorem 2: The closed-loop system in Fig. 1 is robustly

internally stable if the following conditions hold.

(H1) PnC/(1 + PnC) is stable,

(H2) PΘ/(1 + PΘ) is stable for all P (s) ∈ P ,

(H3)

∥∥∥ C(P−Pn)
(1+PnC)(1+PΘ)

∥∥∥
∞

< 1 for all P (s) ∈ P . ♦

Proof: By manipulating the equation (3), we obtain

δ(s) = (DnDc + NnNc)(DθD + NθN)

+ DθNc(NDn − NnD)

= (DnDc + NnNc)(DθD + NθN) (1 + Φ(s))

(4)

where Φ(s) := DθNc(NDn−NnD)
(DnDc+NnNc)(DθD+NθN) . Note that, from

assumptions (H1) and (H2), (DnDc + NnNc) and (DθD +
NθN) are Hurwitz, which implies that Φ(s) is stable. More-

over, assumption (H3) implies that
∥∥∥∥∥∥

Nc

Dc

(
N

D
− Nn

Dn

)
(
1 + Nn

Dn

Nc

Dc

)(
1 + N

D

Nθ

Dθ

)
∥∥∥∥∥∥
∞

= ‖Φ‖∞ < 1.

Thus, it follows from the Nyquist criterion or the small-gain

theorem [14] that (1 + Φ(s))−1 is stable. This implies that

the denominator of (1 + Φ(s))−1 is Hurwitz, and thus, δ(s)
is Hurwitz for all P (s) ∈ P .

Assumption (H1) is nothing but the stability requirement

of the nominal closed-loop system with an outer-loop con-

troller C(s). Therefore, with such a C(s) designed, the

remaining task is to design Θ(s) such that the assumptions

(H2) and (H3), which play the role of robust stability crite-

rion, are satisfied with the following performance recovery

criterion:

(H4) |P (jω)Θ(jω)| > W1, ∀ω ∈ (0, ωL), ∀P (s) ∈ P ,

where W1 is a sufficiently large positive constant. However,

the conditions (H2), (H3), and (H4) should be satisfied for

all P (s) ∈ P , which may make it still difficult to obtain

Θ(s).
In the next section, by restricting our interest to a mul-

tiplicative perturbation model of the plant, we present a

systematic way to design Θ(s) by virtue of the H∞ synthesis

tool.

Remark 1: If the plant uncertainty is very small, then

it is enough to have PnΘ/(1 + PnΘ) be stable and

|Pn(jω)Θ(jω)| > W1 on (0, ωL) because the assumptions

(H2), (H3), and (H4) still hold with P (s) sufficiently close

to Pn(s). ♦

III. CONSTRUCTION OF Θ(s) FOR THE PLANT HAVING

MULTIPLICATIVE UNCERTAINTY

Throughout this section, we assume that the uncertain

plant transfer function belongs to a set P := {P = (1 +
ΔW2)Pn : ‖Δ(s)‖∞ ≤ 1,Δ(s) is stable and rational},

where Pn(s) is a strictly proper rational transfer function,

and W2(s) is a fixed stable (possibly improper) transfer
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function such that every P (s) in P is strictly proper and

|W2(jω)| < 1 on (0, ωL)1.

Theorem 3: Let W̃1(s) be a stable transfer function such

that

|W̃1(jω)| ≥
W1

1 − |W2(jω)|
+ 1, ∀ω ∈ (0, ωL). (5)

Then, the conditions (H2), (H3), and (H4) hold if Θ(s)
stabilizes2 Pn and satisfies∥∥∥∥W̃1

1

1 + PnΘ

∥∥∥∥
∞

< 1, (6)

∥∥∥∥
∣∣∣∣W2

PnC

1 + PnC

1

1 + PnΘ

∣∣∣∣ +

∣∣∣∣W2
PnΘ

1 + PnΘ

∣∣∣∣
∥∥∥∥
∞

< 1. (7)

♦

Although the conditions (6) and (7) may look more

complicated than (H2), (H3), and (H4), these conditions do

not include the statement ‘for all P (s) ∈ P’. Moreover,

they are in the standard form frequently used in the H∞

synthesis solver (e.g., MATLAB Robust Control Toolbox).

For convenience, define

L = PnΘ, S =
1

1 + PnΘ
,

T =
PnΘ

1 + PnΘ
and W̃2 =

PnC

1 + PnC
W2.

Then, (6) and (7) are rewritten as

‖W̃1S‖∞ < 1, (8)

‖|W̃2S| + |W2T |‖∞ < 1, (9)

respectively. It will be shown in the proof that (8) implies

(H4) while (9) implies (H2) and (H3). Thus, (8) and (9) are

called ‘performance recovery condition’ and ‘robust stability

condition’, respectively.

Proof of Theorem 3: (H4) follows from

‖W̃1S‖∞ < 1 ⇔

∣∣∣∣∣
W̃1

1 + L

∣∣∣∣∣ < 1, ∀ω

⇔ |W̃1| < |1 + L| ≤ 1 + |L|, ∀ω

⇒
W1

|1 + ΔW2|
≤ |W̃1| − 1 < |L|, on (0, ωL)

⇔ W1 < |1 + ΔW2| |PnΘ| = |PΘ|, on (0, ωL).

On the other hand, (7) implies that ‖W2T‖∞ < 1 and∥∥∥∥∥
W̃2S

1 − |W2T |

∥∥∥∥∥
∞

< 1. (10)

Since Θ stabilizes Pn and ‖W2T‖∞ < 1, it follows from [5,

p. 53, Theorem 1] that Θ stabilizes every plant in P , which

implies the assumption (H2). Now, from (10), it follows that∥∥∥∥∥
W̃2S

1 + ΔW2T

∥∥∥∥∥
∞

< 1.

1This is quite a standard and reasonable assumption since plant uncer-
tainty W2(jω) is relatively small at low frequencies.

2Θ(s) is said to stabilize Pn(s) if the unity feedback system composed

of Pn(s) and Θ(s) is stable, i.e., the transfer function PnΘ

1+PnΘ
is stable.

Thus, we have

∥∥∥∥∥
W̃2

1
1+PnΘ

1 + ΔW2
PnΘ

1+PnΘ

∥∥∥∥∥
∞

< 1

⇔

∥∥∥∥W̃2
1

1 + PnΘ + ΔW2PnΘ

∥∥∥∥
∞

< 1

⇔

∥∥∥∥
PnC

1 + PnC

W2

1 + Pn(1 + ΔW2)Θ

∥∥∥∥
∞

< 1

⇔

∥∥∥∥
C

1 + PnC

PnW2

1 + PΘ

∥∥∥∥
∞

< 1.

Since ‖Δ‖∞ ≤ 1, we obtain

∥∥∥∥
C

1 + PnC

PnΔW2

1 + PΘ

∥∥∥∥
∞

< 1.

Thus, since Δ is arbitrary, this implies assumption (H3). ♦

Remark 2: A remark on the feasibility of (8) and (9) is

in order. Firstly, since the property (5) is needed only on

(0, ωL), the transfer function W̃1(jω) is usually chosen so

that it is small at high frequencies. Otherwise, (8) is not

likely to hold since S(jω) ≈ 1 at high frequencies. Secondly,

W2(s) should be chosen such that Pn(s)C(s)W2(s) is either

strictly proper or biproper and less than unity at high frequen-

cies. To see this, observer that, since Pn(s) is strictly proper,

S(jω) ≈ 1 and W̃2(jω) ≈ PnCW2(jω) at high frequencies.

This, together with (9), implies that |PnCW2(jω)| < 1 at

high frequencies. Finally, |W2(jω)| should be less than unity

at low frequencies because T (jω) ≈ 1 there and (9) should

be satisfied. (This is a reasonable assumption because the

plant model is relatively accurate at low frequencies.) ♦

With W̃1 and W2 as in Remark 2, the standard H∞ solver

can be used for finding a suitable Θ(s) that stabilizes the

nominal plant Pn and meets (8) and (9). Once such a Θ(s)
is found, then, under the condition (H1), the closed-loop

system in Fig. 1 is robustly internally stable and performance

recovery criterion (H4) is met .

IV. BEHIND-THE-SCENES OF INTRODUCING Θ(s)

The new configuration of Fig. 1 was inspired by an idea

that the zero dynamics of the plant can be changed by a

parallel connection of a certain filter, and this preliminary

idea is refined to yield the proposed configuration of Fig. 1.

In this section, some intuition for the new DOB configuration

is discussed with the comparison to the classical DOB

configuration.

The classical DOB configuration is illustrated in Fig. 2(a),

which has been actively studied in, e.g., [4], [7–12]. It

features the existence of the so-called ‘Q-filter’ Q(s), which

is a stable low-pass filter. From Fig. 2(a), the plant output y
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Fig. 2. (a) The classical DOB configuration. (b) Inspiration for the proposed
DOB configuration of Fig. 1.

is obtained as

y(s) =
PnPC

Pn(1 + PC) + Q(P − Pn)
r(s)

+
PnP (1 − Q)

Pn(1 + PC) + Q(P − Pn)
d(s)

−
P (Q + PnC)

Pn(1 + PC) + Q(P − Pn)
n(s).

Since the low-pass filter Q(jω) ≈ 1 and the measurement

noise n(jω) ≈ 0 in the low frequency range (0, ωL) with a

certain constant ωL > 0, the above equation becomes

y(jω) ≈
PnC

1 + PnC
(jω)r(jω), ∀ω ∈ (0, ωL).

This implies that, assuming that all the transfer functions are

stable, the closed-loop system with the DOB behaves as if

it were the disturbance-free nominal one in the frequency

range (0, ωL).
Here, the role of the Q(s) is to make the transfer function

Q(s)P−1
n (s) proper so that it is implementable and to avoid

the algebraic loop � in Fig. 2(a). In addition, the cutoff

frequency of the low-pass filter Q(s) should be chosen larger

than ωL.

Regarding the robust internal stability of Fig. 2(a), it has

been pointed out in [11] that one of the necessary conditions

for the internal stability is that the polynomial

ps(s) := N(s) (DcDn(s) + NcNn(s)) (11)

is Hurwitz (with the same notation used in Section II). This

in turn implies that the (uncertain) plant must be of minimum
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Fig. 3. Intermediate diagrams towards Fig. 1.

phase because N(s) is the numerator of P (s).
In order to overcome the restriction of the minimum

phaseness, a new configuration is devised as in Fig. 2(b). In

the figure, we imagine that the plant is P (s) + V (s) rather

than P (s), with a certain filter V (s), which is motivated by

the fact that the zero dynamics of P (s) is easily affected by

adding V (s). Therefore, under the assumption that P (s) +
V (s) is of minimum phase, we then construct the classical

DOB like in Fig. 2(b) as if the plant were P (s) + V (s).
In fact, this approach makes sense when the signal d enters

V (s) as well (see the dotted line in Fig. 2(b)), which is not

the case. Although d cannot be injected into V (s) in practice

because d is unknown, we can approximately assume that

there exists the dotted line in Fig. 2(b), if |V (jω)| is small

in the low frequency range where d is significant. Assuming

this, we consider the configuration in Fig. 3(a) instead of

that in Fig. 2(b), both of which are approximately equivalent.

Then, Fig. 3(b) is obtained from Fig. 3(a). Finally, by letting

V (s) = 1/Θ(s) and by eliminating the Q-filter Q(s) in

Fig. 3(b), we obtain the proposed configuration of Fig. 1.

Therefore, Θ(s) should be designed to be a proper transfer

function such that |Θ(jω)| is large at low frequencies. Here

we could remove Q(s) because the function Θ(s) in Fig. 1

plays the same role as Q(s), that is, Θ(s) makes the transfer

function 1/(1+Pn(s)Θ(s)) proper and avoids the algebraic

loop.

The benefit of the newly proposed configuration is ob-

viously seen in (4), where one can find the polynomial

(DθD + NθN). This polynomial, in fact, plays the role of
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N(s) in ps(s) of (11), but now there is some freedom of

designing Dθ(s) and Nθ(s) (i.e., designing Θ(s)) so that it

becomes Hurwitz although N(s) is not Hurwitz.

V. CONCLUSIONS

We have proposed a new DOB configuration that can deal

with the non-minimum phase linear systems. The proposed

method can also be applied to minimum phase systems, but

the classical DOB approach is simpler for such cases. We

also presented a design methodology of the key component

Θ(s) using the H∞ synthesis technique.
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