2008 American Control Conference

Westin Seattle Hotel, Seattle, Washington, USA

June 11-13, 2008

ThC10.5

Input Shaping Design Using Sequential Linear
Programming (SLP) for Non-Linear Systems

978-1-4244-2079-7/08/$25.00 ©2008 AACC.

Puneet Singla
Assistant Professor
psingla@buffalo.edu

Tarunraj Singh
Professor
tsingh @buffalo.edu

S.G.Manyam
Graduate Student
sgmanyam @buffalo.edu

Department of Mechanical & Aerospace Engineering
University at Buffalo, Buffalo, NY-14260.

Abstract— This paper presents a sequential optimization
technique for the design of optimal controllers. Linearizing
the system model about nominal trajectories results in a
linear programming problem which is used to select a
perturbation to the nominal control to satisfy the boundary
conditions and the state and control constraints. Sequen-
tial solution of linear programming problem where the
linearized system and control influence matrices are time
varying results in the optimal control. Two approaches
wherein the perturbation control is constant and linearly
varying within a sampling interval are tested on benchmark
problems and the results are compared to illustrate the
performance of the proposed technique.

I. INTRODUCTION

Shooting method and gradient based iterative approaches
have traditionally been used to design optimal con-
trollers. The simplest Input Shapers for linear systems
have been derived in closed form [1], however, nonlinear
programming is necessary for solving the multi-hump
input shaper and switching controllers which minimize
maneuver time, fuel consumed etc. [2]-[4]. Recently,
Driessen [5] proposed a technique which used linear
programming to design Fuel constrained time-optimal
control profiles for linear systems, which are close to
the globally optimal solution. The discretization of time
precludes guaranteeing that a globally optimal solution
results. Kim and Singh [6] designed robust controllers
for rest-to-rest motion of a vibratory system subject to
friction using linear programming. Conord and Singh [7]
solved the minimax input shaper for linear systems using
LMI which ensures that the globally optimal solution is
achieved. Design of Input Shapers for nonlinear systems
have required nonlinear programming [8], [9] which are
sensitive to initial guesses. There is clearly a need for
a technique which can be used to design input shapers
for nonlinear systems without assuming any structure for
the control profile.

In this paper an iterative approach using linear pro-
gramming for solving the optimal control profiles is

discussed. The nonlinear dynamic system is linearized
over time with a finite number of time intervals. The
final states of the system are expressed as a function
of control values and states at each discretized point of
time. This is posed as a linear programming problem
with perturbations to the control values at each interval
of time as the unknowns to be solved for. The problem
is solved iteratively till the terminal constraints are
satisfied. An outer loop which optimizes for the cost
which corresponds to a terminal state or maneuver time
is selected using a bisection algorithm. Time-optimal
control problem is a special case of this where the
cost would be final time. Integral cost function can
be converted to terminal state cost by augmenting the
state space model. Solving for the optimal final value
of that particular state gives the control profile for the
optimal nonlinear integral cost. In the next section the
algorithm for solving optimal control profile is discussed.
This involved linearizing the nonlinear system about
a nominal trajectory and subsequently solving a linear
programming problem in which the perturbation to the
nominal control is assumed to be constant over a sam-
pling interval. A technique to convert free final time
problem to a fixed final time problem is also described
which has shown to result in faster convergence. This
entails introducing an additional variables into the state
space which needs to be optimized for. An extension
to the aforementioned technique where the control is
assumed to vary linearly over a sampling interval is also
presented. The proposed technique is illustrated on two
benchmark nonlinear control problems.

II. OPTIMAL CONTROL PROBLEM

A general optimal control problem can be stated as:
given a model of system dynamics and the constraints
on state and control variables, compute the appropriate
control vector that will drive the system to the desired
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state trajectory while minimizing a performance index
tr
J /

x = f(%,u), X(0) =%, F(X(t7)) =0 (2)
Nx(t) < Ng, y <u<u,, Vi 3)

min

))dt, t fi 1
min (1)) g isfree (1)

subject to

where, x € R" in the state vector and u € R" is
the control vector. The aforementioned optimal control
problem can be converted to a Mayer problem by defin-

t

{59 fg(i(t%u(t))dt}
0

and our new objective is to minimize the final value

of x,,41(ty) = J. Hence, the modified optimal control
problem can be stated as

. A
Ing a new state vector X =

uI(Itl)iﬁflf X"+1(tf)7 ty is free
subject to
- f(x,u) )
T { g(x(t),u(t)) } fx,u), F(x(t;))=0

X1 (O) Xn (0) 0

Nx(t) < Ng, y <u<u,, Vt
Further, by defining the normalizing time, 7 £ ti and
including ¢y as one of the parameter to be optimized,

we can rewrite the optimal control control problem as:

i, xen ) @
subject to
d
= tff(x u) = h(X, u, tf)’ ()I = E )
()—XOa F(x(1)) =0 (6)
Nx(1) < No, wy <u<u,, V7 (7)

The main advantage of formulating the optimal control
problem as Mayer’s problem is that performance index
for Mayer’s problem is linear in nature and thus, one
can make use of SLP algorithms to solve the problem
as discussed in our earlier work for time optimal con-
trol [10].

A. SLP for Optimal Control of Nonlinear Systems

Let us consider the optimal control problem of Egs.
(4)-(7). Like any nonlinear optimal control method, we
desire to compute the optimal control iteratively by
assuming an initial control profile uy(¢) and determining
the corresponding evolution of the states. To determine
the update to the control profile, we need a mechanism

which exploits the error in terminal conditions to per-
turb the current control profile. We make use of the
SLP framework, introduced for the time optimal control
problem in Ref. [10], to find the feasible perturbations
to an initial control problem.

Approximating the nonlinear system as a series of linear
systems obtained by linearizing the nonlinear model at
discrete time intervals ¢y, k = 1,2,--- | N, the system
dynamics can be written as

) ) oh
X(t) + A% = h(x(tk), w, t7) + 5 |x() AX

Oh oh
— A —A <t <ty
+au\u(tk) u+8tf by, tp <t <tri1 (8)
which can be simplified to
. Oh oh oh
Ax = 87X|x(tk) Ax + 87u|u(t’“) Au + an Aty (9)
~~

Ay B Cy

The closed form solution of the system can be written
as:
t

Ax(t) = exp (Ar(t — tr)) x(t) + /exp (Ap(t—1))
+ [BkAu(T) + CkAtf] dr, ti < : < tp41

An analytical expression for Ax(¢) can be obtained by
appending the perturbed state vector Ax with perturbed
final time, Aty, perturbed control vector Au and its
higher derivatives depending upon the assumed time pro-
file for Au. For example, if we approximate perturbed
control profile Au(t) as a piecewise constant function,
then the augmented system can be represented as:

Ax Ax
Au =A< Au 3, tp <t<tr (11
Aty Aty
where,
Ay By Cy
A =
O(m+i)xn Omsyxm  O@mt1)x1
whose solution is given by
Ax(t) Ax(ty)
Au(t) p =exp (At —tx)) { Au(ty) (12)
Aty D — Aty

@ (t,tx)

and the state transition matrix ®(¢, t;) can be partitioned
as:

G, H, L
q)(t7tk) = Omxn Imxm, Om><1 (13)
O1><n OlX’ITL 1
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Thus, the state response for the piecewise constant
control input Au(k) can be written as:

Ax(k +1) = GrAx(k) + HyAu(k) + Ly Aty (14)

which can further be simplified to

x(k +1) <HG>AX ) + HyAu(k)
+i HG]-

i=1 \j=it+1

where Ax(1) represents the initial perturbation state of
the system and is zero, since the initial condition are
prescribed. To solve the control problem with specified
initial and final states, in addition to the final time (¢y),
the final state constraint can be represented as

AX(N + 1) = HNAU(N) + LNAtf

N—1 N
+> | I G

i=1 \j=i+1

[H;Au(i) + L;At;]  (16a)

Similarly, to determine the response of the perturbed
system of Eq. (9) to a piecewise linear input with a
slope of ““Lt: in time interval [ty, try1], we can
augment the perturbed dynamical system with following
equations:

Al =0, Aty =0 (17)
resulting in the following augmented system:
Ax Ax
Au Au
Al (= Ay Ag (0 BStSte (18)
A{:f Atf
where,
Ak Bk On><m Ck
-Ak' — 0m><n Om><m Im><m 0m><1
’ Om><n Omxm Omxm 0m><1
Oixn  Oixm Oixm O1x1

Once again, the state transition matrix, ®(¢,ty) =
exp (A(t —tx)) can be partitioned as:

Gg Ty Wy Ly
Omxn Im><m TIme 0m><1
Dt 1)) =
( k) Om><n Om><m Im><m Om>< 1
O1><n Ol><m lem 1

where T is the sampling time. Now, the solution of the
perturbed linear system of Eq. (18) can be written as:

Ax(k +1) = GrAx(k) + EpAu(k)

+ OrAu(k+1)+ LAty (19a)

where

1]

k=T — —

Further, simplification leads to

x(k +1) <HG>AX + ErAu(k)
+i HG]-

i=1 \j=i+1
+ OrAu(k +1) + LAty

[EiAu(z) + ©;Au(i + 1) + L;Aty]

(21a)

Ax(1) is the initial perturbation state of the system, and
it is equal to zero since we know the initial states of the
system. The final state of the system can be represented
as:

Ax(N +1) <HG>AX + EnAu(k)+

N-1

> H G, | [EiAu(i) + ©;Au(i + 1) + L;Aty]
i=1 \j=i+1

+OnAu(N +1) + LyAty (22a)

In summary, if we approximate perturbed control profile
Au(t) as a piecewise polynomial function, then, the
response to the perturbed system of Eq. (9) can be
written as a linear function of perturbed control Au(t)
and perturbed time Aty:

AX(]C+1) = TkAulk—‘erAtf, k=1,2,---,N (23)

where,

Auy, = {Auy, Auy, -, Auk}T

Thus, the constraints on state vector x(t) can be written
as:

Aulk

ANk:No—NXkZNAXk:N[Tk Hk]{ Atf

| —

Qp,
Similarly, the terminal state constraints can be written
as:

oF
AFN =0- F(XN) == 87X|XNAXN
. oF AulN
= &|XN [ TN HN ] { Atf } (253)

QN

AN}, and AFy are the difference between the desired
state constraints and the state constraints resulting from
the nominal control u(t). Since the final value of the
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state corresponding to performance index .J, the deter-
mination of the optimal control profile requires that the
initial estimate of the performance index J should be
used to determine the feasibility of satisfying all the
constraints. Now, we propose an algorithm which ap-
proximate the solution to the original nonlinear optimal
control problem posed by Egs. (4)-(7) by solving the
following linear programming problem recursively.

. T
sl o (B ST 00
subject to
Auiny }
AN, AFN| = |Qr Q (27)
(AN, AFy] = [0 N]{ o

X,(1)=Jf, y—u<Aujy <u, —u (28)

We get a feasible solution for linearized system dy-
namics by solving the aforementioned LP problem at
each iteration which differs from the true nonlinear
state constraints. We anticipate that at each iteration the
linearization error decreases and finally, we will obtain
the solution to the original optimal control problem. For
a generic optimal control problem, the main steps of such
an algorithm are enumerated as:

1) Guess the bounds for performance index, J fL and

JY.
f
o Jf+JY .. L

2) Initialize J; = ~.5~ and divide the time interval
[0 — t/] into pre-specified N intervals and guess
the value for control variable u(i), ¢ € [1,N]
compatible with actuator constraints.

3) Integrate the nonlinear system dynamics Eq. (5),
to compute x(1) and if intermediate time and ter-
minal state constraints are satisfied then decrease
the value of upper bound on the performance index
to the current guess for the performance index and
Go to Step 2.

4) FElse linearize the nonlinear dynamics system and
find a feasible solution by solving the LP problem
posed by Eqgs. (26)-(28).

5) If the solution to the LP problem (Egs. (26)-(28))
exists, then modify the initial guess for control
Upew (1) = Upa(i) + @Auin (i), 0 < a <1 and
Go To Step 3.

6) Else, increase the value of lower bound on the
performance index to the current guess for the
performance index and Go To Step 2.

Finally, it should be noticed that with the proposed
algorithm one can always impose system dynamics con-
straints using continuous differential equations without
any approximation, while other nonlinear programming
algorithms [11] require the discretization of the system

dynamics and constraints to be written as algebraic equa-
tions. Hence, one needs to approximate the continuous
time differential equations with discrete time difference
equations and as a consequence of this, the optimal
solution is always accurate up to the errors introduced
by the discretization process.

III. NUMERICAL EXAMPLES

To illustrate the proposed technique, we consider the
following two benchmark problems.

A. Goddard Rocket

This problem was first posed by R. H. Goddard in 1919
when he was building a rocket to be fired vertically to
reach high altitudes. Later this was studied extensively
by various people [12]-[14]. The problem is to find the
thrust history to maximize the final altitude of a vertically
launched rocket.

In this paper the following assumptions were made to
simplify the problem as listed in Refs. [15]. The rocket
is regarded as a point variable mass, flying over a flat
stationary Earth with Newtonian central gravitational
field. Let h is the altitude of the rocket, v be its velocity
and m is the varying mass of the rocket. Then, the
equations of motion for the rocket are given as:

h=wv, mo =T — D(h,v) —mg(h), m = —%

where

D(h,v) = Dav?ep (hc <hh(g§o))>

g(h) = go (h;())f

go is the gravitational force at the earth’s surface.The
final mass is constrained to be a fraction of initial mass,
m.m(0). The constraints on the states and control are:

m(ty) < m(t) <m(0), h(t)> h(0)
U(t) > O, 0< T < Tmaz
where,
1 1 1
Tmam = 3590m(0)a Dc = 7Ucm(0) yC= 3 (goh(o))E
2 go 2

h(0) = m(0) = go = 1, he = 500, m. = 0.6, v, = 620

Fig. 1 shows a three dimensional plot illustrating the
feasibility of the problem against time for different
heights. The SLP algorithm is used to solve this problem
as discussed in the previous section while approximating
optimal control profile as both piecewise constant and
linear function. Fig. 2(a), shows the time profile of the
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feasitility plot

Feasibility

1015
02 ] 1.01
1.005

Final Time Final Haight

Fig. 1. Feasibility against time for different heights of the rocket
TABLE I
RESULTS COMPARISON FOR GODDARD ROCKET PROBLEM
Algorithm Maximum Altitude (hy) | Constr Violation
SNOPT 1.01282 0.011
Proposed Algorithm 1.0128369 le—4

rocket altitude. The solid line corresponds to piecewise
constant assumption for optimal control profile while
dotted line corresponds to piecewise linear approxima-
tion for optimal control profile. Fig. 2(b) shows the
plots for computed and analytical thrust profile as a
function of normalized time. Further, Fig. 2(c) shows
the maximum rocket altitude, for both with piecewise
constant and linear approximation on optimal control
profile, as a function of number of discretization steps.
From these plots, it is clear that the optimal solution
converges well with reasonable number of discretization
steps (N = 400) and as expected, the piecewise linear
approximation solution is more accurate than the solution
based upon the piecewise constant assumption. Finally,
Table I shows the comparison of the proposed algorithm
with SNOPT [15]. It should be mentioned that with the
proposed algorithm one can impose system dynamics
constraints in a continuous manner using continuous
differential equations, while SNOPT requires the con-
straints to be written as algebraic equations. Hence, one
needs to approximate the continuous time differential
equations with discrete time difference equations and as
a consequence of this, the optimal solution is always
accurate up to the errors introduced by the discretization
process. The optimal control profile from SNOPT is
integrated with the state equations to determine the
constraint violation which is presented in the last column

1015
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1.005
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Fig. 2. Simulation Results for the Goddard Problem

of the table. It is clear that the proposed algorithm con-
verges to a better solution in terms of the optimal cost,
constraint violations and the number of optimization
variables.

B. Thrusted Skate Problem

Thrusted Skate is a class of problem where one actuator
provides the thrust and the other one controls the steering
angle. The dynamics of the system is [16]:

& =wvcos(0), y=wvsin(f), v = usin(d) (30a)

The goal is to find the optimal profiles for v and 6 which
minimizes a performance index J = fol u(t)?dt while
moving the skate from one point to another point. To
find the optimum cost, the performance index .J is added

as one of the states
j=u* j(0)=0; 31)

The final value of j is minimized using the SLP al-
gorithm as discussed in the paper. The initial and final
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values of the state variables are given as:

2(0) = y(0) = v(0) = j(0) =0
x(1) = cos(m/12), y(1) = sin(xw/12), v(1) =0

The SLP algorithm is used to solve this problem as
discussed in the previous section while approximating
the optimal control profile as both piecewise constant
and linear function. Figs. 3(a) and 3(b) show the time
profile for skate thrust u and steering angle 6, respec-
tively. Further, Fig. 3(c) shows the optimal value for
the performance index J as a function of number of
discretization steps for the piecewise constant and linear
approximation of the optimal control profile. From these
plots, it is clear that the optimal solution converges well
with reasonable number of discretization steps (N =
400) and as expected, the piecewise linear approximation
solution is more accurate than the solution based upon
the piecewise constant assumption.

Thrust(u)

Steering Angle(o)

2
o

0 0.2 04 06
time

(b) Steering Angle(0)

22.78

IV. CONCLUSIONS

This paper proposed a SLP approach for the determina-
tion of time-optimal controllers for systems with non-
linear dynamics. Evaluating its performance on bench-
mark problems, it is clear that it outperforms standard
nonlinear programming solvers as delineated by Dolan
et al. (COPS). The obvious benefit of this approach is
that no prior knowledge of the structure of the control
profile is necessary to initiate the algorithm. Finally, the
preliminary results presented here provide compelling
evidence for the merits of the proposed approach. The
authors are currently extending this technique to have
higher order hold approximations for control variable
between two time steps.
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