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Abstract– In this paper, tracking control of a three degree-
of-freedom marine vessel is examined. The primary motiva-
tion for this work is the compensation needed for the added
mass common to surface vessels, resulting in an asymmetric
inertia matrix. Two control schemes are considered: a full-
state feedback controller and an output feedback controller.
Numerical simulation results are shown to demonstrate the
validity of these proposed controllers.

I. Introduction

Research into the control of marine surface vessels
could be loosely categorized as maneuvering [1,2], dy-
namic positioning [3,4], tracking (including path fol-
lowing or way-point tracking) [6,8], and more recently
formation control [5]. From a control perspective, the
properties of the dynamic model of the surface vessel
are of great importance. Specifically, the symmetry and
the positive definiteness of the inertia matrix are an
important assumption often used in control development.
The inertia matrix of a vessel is commonly defined to
be equal to the sum of the rigid-body inertia matrix
and the added mass. The rigid-body inertia matrix is
strictly a symmetric matrix. The added mass terms result
from hydrodynamic forces and moments due to motion
of the vessel body and from the interaction with the
fluids and waves. In surface vessel control, the added
mass matrix can easily become asymmetric, especially
for higher relative velocity. This asymmetry in the added
mass terms will result in an asymmetric inertia matrix
in the ship model, which may cause system instability
or a failure in meeting the control objectives if ignored.
As the foundation of this work, previous closely related

work is described. In [2], Skjetne et al. considered
maneuvering control of three degree-of-freedom (3 DOF)
marine vessel and presented experiment results for the
Cybership II. In [6], Do and Pan presented a global
tracking controller of an underactuated vessel where
the system matrices are positive definite but nonzero
o�-diagonal terms and Do in [7] proposed robust and
adaptive output feedback controllers for positioning of a
surface vessel assumed the system matrices to be positive
definite at low speed. In [8], Behal et al. utilized a
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high-gain observer in the design to control underactu-
ated surface vessels with nonintegrable dynamic models
where the inertia matrix was diagonal. However, a few
researchers have addressed the asymmetry of the inertia
matrix. For example, Skjetne et al. in [2] developed the
Coriolis-centripetal and damping model of the ship for
the asymmetric added mass matrix, but the mass-related
parameters were used in the symmetric form at the
experiment, which may be violated at higher operating
speeds.
In this paper, we focus on tracking control of a 3 DOF

surface vessel. The dynamic model of the ship is assumed
to be uncertain and the added mass terms are considered
to be asymmetric which results in an asymmetric inertia
matrix. To address this problem, the dynamic model of
the ship is modified to have a symmetric and positive-
definite inertia matrix. The novelty of this modification
is the multiplication of the system dynamic model in
[2] with an upper triangular matrix which results in
a model with a symmetric inertia matrix. After this
modification, the resulting dynamic model becomes a
special case of the multi-input multi-output system that
was considered in [10] (see equation 12 in [10]1). Next, the
robust full-state feedback (FSFB) and output feedback
(OFB) control strategies in [10], which were designed
for general class of multi-input multi-output nonlinear
systems, are tailored to fit this dynamic surface vessel
model.
The paper is organized as follows: Section II presents

a dynamic and a kinematic model of the 3 DOF surface
vessel. The error system development and the control
strategies are provided in Section III. The numerical
simulation results are shown in Section IV followed by
conclusions in Section V.

II. System Model

In this section, the system model and relevant prop-
erties are discussed. The dynamic and kinematic models
of a 3 DOF surface vessel expressed in the body-fixed
frame, B, are given as [1, 2]

M "̇ + C" +D" = + (1)

ẋ = R" (2)

where the vector ẋ(t) ; R3 represents the position and
orientation rate in which x = [xp, yp,�]

> denotes the

1The robust control development in [9] is similar to [10] with
a minor modification in the matrix decomposition (see Lemma 1
in both [9] and [10]). In that sense, throughout this paper we will
refer to [9], however, the reader is also referred to [10].
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linear position (xp, yp) along the X- and the Y -axes
and the yaw angle (�). The vectors vr(t), "(t) = [u, v,
�̇]>, and "̇(t) ; R3 denote the relative velocity between
the fluids and vessel and the velocity and acceleration
of the rigid-body ship, respectively. M(�), C(", "r),
D(", "r) ; R

3x3 represent the inertia matrix, centripetal
and Coriolis force, and hydrodynamic damping terms,
respectively. In the subsequent control development,
M(·), C(·), and D(·) are assumed to be uncertain
and continuously di�erentiable up to their second time
derivatives. In (1), +(t) ; R3 represents the control input
vector which has the following form

+ = [+1, +2, +3]
> (3)

where +1(t) and +2(t) ; R
1 are the translational forces

in the X- and Y -directions, respectively and +3(t) ; R
1

is the moment about the Z-axis. The matrix, R(�) ;
SO(3), denotes the rotation matrix, containing the yaw
angle, about the Z-axis. The coordinate frame of the
surface vessel is presented in Figure 1, where B is the
body-fixed reference frame of the vessel and a fixed
inertial frame, approximated by the earth-fixed frame
(North-East-Down convention), is denoted by I. The

Fig. 1. Diagram of a Surface Vessel

states are measured from the center point (CP) of the
ship frame expressed in B and xg denotes the distance
between the center point and the center of gravity (CG)
of the ship.
The inertia matrix, M(·), of the ship is defined as [2]

M ,MRB +MA (4)

whereMRB(·) ; R
3x3 represents the rigid-body symmet-

ric inertia andMA(·) ; R
3x3 accounts for the asymmetric

added mass. Since MA(·) is asymmetric the inertia
matrix of the surface vessel, M(·), is also an asymmetric
matrix.

To facilitate the subsequent control development, the
dynamic model in (1) will now be modified to obtain a
symmetric inertia matrix. There will exist an upper di-
agonal matrix, T (·) ; R3x3, such that the multiplication
of T (·) andM(·) results in a symmetric, positive definite
matrix, denoted by Ms(·) ; R

3x3. After multiplying (1)
with T (·), the following expression is obtained

Ms"̇ = �T (C +D)" + T + . (5)

To further modify the dynamic model, the time deriva-
tive of (2) is obtained in the following form

"̇ = R>ẍ�R>ṘR>ẋ (6)

where the property of the rotation matrix that R-1(�) =
R>(�) was utilized. Substituting (6) into (5) yields

MsR
>ẍ =

h
MsS3(�̇)� T (C +D)

i
R>ẋ+ T + (7)

where the time derivative of the orientation matrix,
denoted by Ṙ(�), and a skew-symmetric matrix S3(�̇) ;
R
3x3 can be calculated as follows

Ṙ(�) = RS(�̇), S3(�̇) =

m

t
0 ��̇ 0

�̇ 0 0
0 0 0

u

{ . (8)

After premultiplying (7) with R(�), the following model
is obtained

M̄(�)ẍ = C̄(x, ẋ, ", "r)ẋ+RT + (9)

where M̄(�) and C̄(x, ẋ, ", "r) ; R
3x3 are defined as

M̄ , RMsR
> (10)

C̄ = R
h
MsS3(�̇)� T (C +D)

i
R>. (11)

It should be noted that the form of (9) was motivated
by the dynamic model in [9], [10] and hence, solving the
same control problem.

Property 1:The matrix M̄(�) is positive definite, symmet-
ric, and satisfies the following inequalities

	1 k�k
2
� �T M̄� � 	2 k�k

2 ,�� ; R3 (12)

where 	1, 	2 ; R
1 are positive bounding

constants.

III. Control Development

A. Full-State Feedback Control

The subsequent development is based on the assump-
tion that all the states of the vessel are measurable.
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1) Error System Development
: The tracking error for position and orientation, denoted
by e1(t) ; R

3, is defined as

e1 , xd � x (13)

where xd(t) ; R
3 is the desired trajectory. For the

subsequent stability analysis, the desired trajectory and
its first and second time derivatives are assumed to
be bounded (i.e., xd(t), ẋd(t), and ẍd(t) ; L ). To
facilitate the subsequent error system development, a
filtered error, denoted by e2(t) ; R

3, is defined as

e2 , ė1 + e1. (14)

In order to simplify the error system and to facilitate the
stability analysis, a filtered tracking error is introduced
as

r , e1 + e2. (15)

The dynamics of r(t) can be obtained as follows

ṙ = ẍd � ẍ+ 2ė1 (16)

where the second time derivatives of (13) and (14) were
utilized. After premultiplying (16) with M̄(�), we can
obtain the following expression

M̄ṙ = M̄ẍd � C̄ẋ�RT + + 2M̄ ė1 (17)

where (9) was utilized. The expression in (17) can be

rearranged after adding and subtracting the terms 1
2

.

M̄r
(t), e2(t), and R+(t) to the right-hand side as

M̄ṙ = N �R+ � 1

2

.

M̄r �e2 �R(T � I3)+ (18)

where the auxiliary signal N(·) ; R3 is defined by

N , M̄ẍd � C̄ẋ+ 2M̄ ė1 +
1

2

.

M̄r +e2. (19)

To facilitate the control development, the open-loop error
dynamics can be obtained from (18) as

M̄ṙ = Ñ+Nd�
1

2

.

M̄r �e2�

}
�

0

¸
�

}
	d

0

¸
�R+ (20)

where the signals �(t), 	d(t) ; R
2 are defined as

}
�+ 	d
0

¸
, R(T � I3)+ , (21)

where the third component of (T�I3) is zero (an example
of T (·) is shown in the simulation section) and Nd(·),
Ñ(·) ; R3 are defined as follows

Nd , N |x=xd, ẋ=ẋd, ẍ=ẍd , Ñ , N �Nd (22)

where the desired trajectory and its first two time
derivatives are assumed to be bounded and hence Nd(·)
and Ṅd(·) are bounded signals.
Remark 1: The term Ñ(·) in (22) is upper bounded

as °°°Ñ
°°° � 'N (kzk) kzk (23)

where 'N (·) is a globally invertible, non-decreasing func-
tion and the auxiliary error vector z(t) ; R9 is defined
as

z(t) = [e>
1
, e>
2
, r>]>.

2) Control Input
: Based on the open-loop error dynamics in (20) and the
result in [9], the control input + (t) is designed as

+ , R> (K + I3) r +R
>f̂ (24)

where K ; R3x3 is a constant positive definite diagonal
gain matrix and f̂ (t) ; R3 is a feedforward component
that is introduced to compensate for Nd (t) and 	d (t).
After substituting (24) into (20), the following closed-
loop error system can be obtained

M̄ṙ = �+�d �
1

2

.

M̄r �e2 � (K + I3) r (25)

where � (t) and �d (t) ; R
3 are auxiliary functions

defined as follows

� , Ñ �

}
�

0

¸
, �d , Nd �

}
	d

0

¸
� f̂ . (26)

Note that since f̂(·) is used to compensate for functions
of the desired trajectory it is known that f̂(·) ; L 
apriori.
Remark 2: The controller proposed in (24) is an

application of the previous theoretical development in
[9] where the proposed control yields a semi-global,
uniformly, and ultimately bounded (sGUUB) tracking
result. Thus, the reader is referred to [9] for a detailed
stability analysis.
Remark 3: The term f̂(·) in (24) and (35) is not

directly specified here but in practice it can be imple-
mented in other ways including a neural network.

B. Output Feedback Control

The following development is based on the assumption
that the position and the orientation of the ship, x(t),
is the only state that is measurable.
1) Observer Design

: To facilitate the subsequent control development, the
auxiliary error vector, denoted by z(t) ; R6, is redefined
as

z(t) = [e>
1
, r>]> (27)

where e1(t) and r(t) are error signals defined in (13)
and (15), respectively. The following expression can be
obtained for the dynamics of z(t)

ż = [(r � 2e1)
>, ṙ>]> (28)

where (13) and (14) were utilized.
An estimate of the unmeasurable, z(t) in (27), is

introduced as follows

ẑ ,
£
ê>
1
, r̂>

¤>
(29)

where ê1(t), r̂(t) ; R
3 are high-gain observers that are

introduced to estimate the error signals e1(t) and r(t),
respectively [11]. The time derivative of (29) can be
obtained as

.

ẑ,

" .

ê1
.

r̂

#

=

}
r̂ � 2ê1 +


1

�
(e1 � ê1)


2

�2
(e1 � ê1)

¸
. (30)
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To facilitate the subsequent analysis, the following ob-
server errors, denoted by �1(t) and �2(t) ; R

3, are
introduced

�
1
= 1

�
(e1 � ê1), �2 = r � r̂. (31)

The dynamics for the observer errors can be obtained as
follows

�̇
1
= 1

�
(�
1�1 + �2 � 2��1) , �̇2 = �


2

�
�
1
+ ṙ (32)

where (30) and (31) were utilized. After combining (32),
the following simplified expression can be obtained

�
.
�̄= Ao�̄ + �g (33)

where �̄ (t) , [�>
1
, �>
2
]> ; R6 and the signals g (t) ; R6

and Ao ; R
6x6 are defined as follows

Ao =

}
�
1I3 I3
�
2I3 O3

¸
, g =

}
�2�1
ṙ

¸
. (34)

2) Control Input
: Similar to (24) and the result in [9], the output feedback
controller for ṙ(t) in (34) is designed as follows

+ , R>sat {(K + I3) r̂}+R
>f̂ (35)

where sat{·} ; R
3 represents the vector saturation

function and f̂(t) ; R
3 is the feedforward term (see

Remark 3). Substituting this control input into (20)
yields the following closed-loop error system

M̄ṙ = �+�d �
1

2

.

M̄r �e2 � sat {(K + I3) r̂} (36)

where �(·) and �d(·) were introduced in (26).
Remark 4: Since the output feedback controller de-

signed in (35) is a special case of the development in
[9], a semi-global, uniformly, and ultimately bounded
(sGUUB) tracking result can be inferred.

IV. Numerical Simulation Results

Two numerical simulations were performed to show
the validity of the proposed controllers. The rigid-body
inertia matrix including the added mass terms are of the
following form [2]

M =

m

t
m+Xu̇ 0 0
0 na nd
0 nc nb

u

{ (37)

where na, nb, nc, and nd are auxiliary terms that are
defined as follows

na = m� Yv̇, nb = Iz �Nṙ

nc = mxg �Nv̇, nd = mxg � Yṙ.

From (37), it can be seen that the added mass matrix, de-
noted by MA(·), has nonzero o�-diagonal hydrodynamic
damping terms (usually refered to as hydrodynamic
derivatives). In [2], Yṙ and Nv̇ were set equal to zero
which resulted in a symmetric inertia matrix. It is clear
that if the values of Yṙ and Nv̇ are di�erent, then the

resulting matrix is asymmetric. For the simulation, the
following values were chosen for these parameters

Yṙ = 0.0, Nv̇ = �1.0, (38)

which produce an asymmetric inertia matrix. Based on
the inertia matrix in (37), the following T (·) matrix is
defined to modify the system dynamic model

T =

m

t
1 0 0

0 �nanb
d

+
n2c
d

nand
d
+ �nanc

d

0 0 ncnd
d
+ �nanb

d

u

{ (39)

where d is a non-zero auxiliary term defined as

d = �mIz +mNṙ + Yv̇Iz � Yv̇Nṙ + (mxg)
2

�mxgNv̇ �mxgYṙ + YṙNv̇.

The Coriolis-centripetal term C(·) in (1) is defined by
combining the rigid-body matrix CRB(") ; R

3x3 and
corresponding added mass CA(", "r) ; R

3x3 as

C(", "r) =

m

t
0 0 c2
0 0 �c1
�c2 c1 0

u

{ (40)

where c1("r) = mu+(�Xu̇ur) and c2(", "r) = �m(xg�̇+
v) + (Yv̇vr + .5(Yṙ + Nv̇)�̇). The damping matrix D(·)
in (1) is defined by combining the linear matrix term
DL(") ; R

3x3 and nonlinear matrix DNL(", "r) ; R
3x3

as

D(", "r) =

m

t
d11 0 0
0 d22 d23
0 d32 d33

u

{ (41)

where d11("r) = �Xu + (�X|u|u |ur| � Xuuuu
2
r),

d22(", "r) = �Yv + (�Y|v|v |ur| � Yrv

¯̄
¯�̇
¯̄
¯), d33(", "r) =

�Nr + (�Y|v|v |ur| � Y|r|v

¯̄
¯�̇
¯̄
¯), d23(", "r) = �Yr +

(�Y|v|r |ur| � Y|r|v

¯̄
¯�̇
¯̄
¯), and d32(", "r) = �Nv +

(�N|v|v |vr| � Nrv

¯̄
¯�̇
¯̄
¯). The saturator which limts the

signals to upper and lower was used by ±100 for the
control input both FSFB and OFB controllers. The other
system parameters were obtained from the experimental
results in [2]. The desired position and yaw trajectory
are specified as below

xd(t) =

}
10 sin(0.1t)
10 cos(0.1t)

¸
(m), �d(t) = �0.1t (rad),

and the vessel was considered to be initially at rest in
the following configuration x(0) = [0.1, 1, -$

8
]>. The

surface vessel was specified to have the relative velocity,
vr = [3, 0, 0]

> where the relative velocity is assumed to
have the constant surge speed, 3 [m/s], about the X-axis.

A. Full-State Feedback (FSFB) Control

For the FSFB controller simulation, the con-
stant control parameter was chosen as K =
diag

©
500 500 100

ª
. In Figure 2, tracking the de-

sired trajectory of the surface vessel in XY -plane is
demonstrated. In Figure 3, the position and yaw angle

547



−10 −5 0 5 10

−10

−5

0

5

10

X [m]

Y
 [

m
]

Desired

Actual

Fig. 2. Tracking demonstration in the XY-Plane (FSFB)

of the ship are presented along with their corresponding
desired trajectories. The error signal e1 (t) is presented
in Figure 4. From Figure 4, it is clear that the surface
vessel tracked the desired trajectory. The control input
+ (t) is shown in Figure 5.
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10

20
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]
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0 10 20 30 40 50 60 70 80
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]
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−5

0
Orientation Tracking along yaw−direction

[r
a

d
]

Time [sec]

Fig. 3. Tracking demonstration (FSFB)

B. Output Feedback (OFB) Control

For the OFB controller, the constant control pa-
rameter was chosen as K =diag

©
400 400 100

ª

and the following control parameters were used

1 = 100, 
2 = 100, and � = 0.1. In Figure 6, the
position and the desired trajectory of the surface vessel in
XY -plane is demonstrated. Figure 7 shows the position
and yaw angle of the ship along with their corresponding
desired trajectories. Figure 8 displays the small, bounded
tracking error signals. In Figure 9, the control input + (t)
is presented.

0 10 20 30 40 50 60 70 80
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0

1
Position x Error in Body−fixed Frame

[m
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0 10 20 30 40 50 60 70 80
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]

0 10 20 30 40 50 60 70 80
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Yaw (ψ) Angle Error 

[r
a

d
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Fig. 4. Tracking Errors in Position (xp, yp) and Yaw Angle (�)
(FSFB)
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Rotational Torque Input u3
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Fig. 5. Forces and Torque Input (FSFB)

V. Conclusion

The control problem of surface vessels with asymmet-
ric inertia matrices was addressed. The significance of
this work was the modification of the inertia matrix
by pre-multiplying with an upper triangular matrix to
obtain a symmetric form. Then, a full-state feedback and
an output feedback controller were designed. Numerical
simulation results were shown to demonstrate the pro-
posed control strategies.
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