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Abstract— This paper introduces a complex dynamical net-
work with time-varying coupling delays and investigates its
locally and globally synchronization. Based on the Lyapunov-
Krasovskii functional method, some decentralized adaptive
synchronization criteria are derived. The coupling terms are
bounded by high-order polynomials, which are applicable to a
large class of complex dynamical networks. The effectiveness
of the proposed synchronization scheme are illustrated by a
numerical example.

I. INTRODUCTION

Complex networks are currently being studied across

many fields of science and engineering, and the following

reasons naturally stimulate the present researches. There are

many inherent complexity issues that lead to tremendous

difficulties in understanding various aspects of such com-

plex networks, including the structural complexity, network

evolution, connection diversity, dynamical complexity, node

diversity, meta-complication, etc. The topology of a network

often affects its function, thus we should consider not only

the dynamics of each individual node in the network, but

also the topological connectivity of a network in order

to better investigate the dynamical behaviors of various

complex networks.

Traditionally, a network of complex topology is described

by a completely random graph, which was introduced by Paul

Erdös and Alfréd Rényi [1]. Recently, Watts and Strogatz

introduced the small-world networks [2], which demonstrates

the transition from a regular network to a random network.

Another significant recent discovery is the observation that a

number of complex networks are essentially scale-free [3]-

[4], which exhibit power-law distribution. Among all kinds

of complex networks, Small-world networks and scale-free

networks are most noticeable. Synchronization is a kind of

typical collective behaviors and basic motions in nature.

Synchronization of coupled oscillators can well explain

many natural phenomena. Hereafter, synchronization of all

dynamical nodes in complex dynamical networks have been

This work is supported by the National Natural Science Foundation of
China under Grant 60574013, by Dogus University Fund for Science, and
by the Australian Research Council.

Wei-Song Zhong and Jun Zhao are with Key Laboratory Integrated
Automation of Process Industry, Ministry of Education, Northeastern Uni-
versity, Shenyang, 110004, China (e-mail: zwssir@sohu.com)

Jun Zhao is with Department of Information Engineering, The Aus-
tralian National University, Canberra ACT-0200, Australia (e-mail: zhao-
jun@ise.neu.edu.cn)

Georgi M. Dimirovski is with the Department of Computer Engineer-
ing, Dogus University, Acibadem, Kadikoy, TR-34722, Istanbul, Rep. of
Turkey, and with SS Cyril and Methodius University, Faculty of Electrical
Eng. Info. Technologies, MK-1000 Skopje, Rep. of Macedonia (e-mail:
gdimirovski@dogus.edu.tr)

the subject of considerable recent interest within science and

technology communities. Most of the existing works have

been focused on randomly coupled networks or completely

regular networks, such as the continuous-time cellular neural

network (CNN) and the discrete-time coupled map lattice

(CML), and so on [5]-[7]. However, many real complex net-

works are neither completely regular or completely random.

More recently, a general scale-free dynamical network model

with constant, symmetric and irreducible coupling configu-

ration was addressed in [8], synchronization criteria can be

easily given in terms of checking simultaneous stability of

several low-dimensional dynamic systems. Inspired by this

model and proposed technique, a number of synchronization

criteria have been put forward [9]-[16]. Furthermore, this

technology has also been generalized to deal with networks

with time delays [18]-[21].

Inspired by papers [12], [13], [22], [24], [25]. The main

objective of the present paper is to derive synchroniza-

tion criteria for a complex dynamical network which has

time-varying delay coupling and the coupling terms are

bounded by high-order polynomials. Based on the Lyapunov-

Krasovskii functional method, we will derive some local

and global adaptive synchronization criteria for the delayed

dynamical network.

The rest of this paper is organized as follows. Section

2 gives the problem statement and preliminaries. The local

and global adaptive synchronization criteria are presented

in section 3. A numerical example is given in section 4,

followed by conclusions in section 5.

II. MODEL DESCRIPTION AND PRELIMINARIES

In this section, we will introduce a complex dynamical

network model with a time-varying coupling delay and give

some preliminaries.

A. A Complex Delayed Dynamical Network Model

Consider an uncertain complex dynamical network with

time-varying delay consisting of N identical nonlinear oscil-

lators with uncertain nonlinear diffusive couplings, which is

described by

ẋi(t) = f (xi, t)+gi(x1,x2, · · · ,xN ,x1(t −d(t)),

x2(t −d(t)), · · · ,xN(t −d(t)))+ui,
(1)

where xi = (xi1,xi2, · · · ,xin)
T ∈ Rn is the state vector of the

ith node, f : Ω×R+ → Rn is a smooth nonlinear vector field,

Ω ⊆ Rn, gi : Ω × . . .× Ω → Rn are smooth but unknown

nonlinear coupling functions, which indicate the nonlinear

interconnections among the current states and the delayed
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states of the ith node and jth node, and ui ∈ Rm are the

control inputs, the unknown scalar function d(t)(1≤ i, j ≤N)
denotes any nonnegative, continuous, and bounded time-

varying delay satisfying

0 ≤ d(t) ≤ d < ∞, ḋ(t) ≤ d∗
< 1,1 ≤ i, j ≤ N, (2)

where d and d∗ are positive scalars.

It is noticed that the diffusive coupling configuration

ensures that the coupling control terms will vanish on

the synchronization manifold: x1(t,φ1) = x2(t,φ2) = . . . =
xN(t,φN), namely, when the network achieves synchroniza-

tion, hi(s(t),s(t), · · · ,s(t),s(t − d(t)),s(t − d(t)), · · · ,s(t −
d(t))) + ui = 0, where s(t) is a synchronous solution of

the node system ẋ = f (x, t), φi(i = 1,2, . . . ,N) are initial

conditions and will be described later. Obviously, S(t) =
(sT (t),sT (t), . . . ,sT (t))T is a synchronous solution of the dy-

namical network (1) since it is a diffusive coupling network.

Here, s(t) can be either an equilibrium point, or a nontrivial

periodic orbit, or an orbit of a chaotic attractor.

The objective here is to design controller ui to guide the

complex delayed dynamical network (1) to synchronize.

B. Mathematical Preliminaries

In this subsection, we will recall the concepts of network

synchronization and network synchronization manifold.

Definition 1([11], [13]): Let xi(t,ϕ)(i = 1,2, . . . ,N) be

a solution of the delayed dynamical network (1) and C =
C([−τ,0],Rn) be the Banach space of continuous func-

tions mapping the interval [−τ,0] into Rn with the norm

‖φ‖= sup−τ≤θ≤0|φ(θ)|, where ϕ = (ϕT
1 ,ϕT

2 , . . . ,ϕT
N )T , ϕi =

ϕi(Γ) ∈ C([−d,0],Rn) are initial conditions. If there is a

nonempty subset E ⊆ Ω, with ϕi ∈ E(i = 1,2, . . . ,N), such

that xi(t,ϕ) ∈ Ω for all t ≥ t0, i = 1,2, . . . ,N, and

lim
t→∞

‖xi(t,ϕ)− s(t,s0)‖2 = 0, i = 1,2, . . . ,N, (3)

where ‖.‖ is the Euclidean norm, s(t,s0) is an asymptotically

stable solution of the system ṡ = f (s(t)) with s0 ∈ Ω, then

the dynamical networks (1) is said to realize synchronization

and E × . . .×E is called the region of synchrony for the

dynamical networks (1).

Definition 2([20]): The hyperplane S = {(xT
1 (t),xT

2 (t),
. . . ,xT

N(t))T ∈Rn×N : xi(t) = x j(t)} for i, j = 1,2, . . . ,N is said

to be the synchronization manifold of the delayed dynamical

network (1), where xi(t) = (xi1(t),xi2(t), . . . ,xin(t))
T for i =

1,2, . . . ,N is the state of node i.

III. SYNCHRONIZATION OF DYNAMICAL NETWORKS

WITH TIME-VARYING DELAY

This section discusses the local synchronization and global

synchronization of the uncertain delayed complex dynamical

network (1). Several network synchronization criteria are

given.

A. Local Synchronization

In order to investigate the stability of the synchronization

manifold S, let ei(t) = xi(t)− s(t), i = 1,2, . . . ,N, then we

have

ėi(t) = f̃ (xi,s, t)+ g̃i(x,x(t −d(t)),s,s(t −d(t)))+ui,

i = 1,2, . . . ,N,
(4)

where f̃ (xi,s, t) = f (s(t) + ei(t)) − f (s(t)) and g̃i(x,x(t−
d(t)),s,s(t − d(t))) = gi(x1,x2, . . . ,xN ,x1(t − d(t)),x2(t −
d(t)), . . . ,xN(t − d(t))) − gi(s,s, . . . ,s,s(t − d(t)),s(t −
d(t)), . . . ,s(t −d(t))).

It follows from the differentiability of the function f that

ėi(t) = J(t)ei(t)+ g̃i(x,x(t −d(t)),s,s(t −d(t)))+ui,

i = 1,2, . . . ,N,
(5)

where J(t) = D f (s(t), t) ∈ Rn×n is the Jacobian matrix of f

evaluated at s(t).

Assumption 1: Suppose that there exist known posi-

tive scalars mi j,ni j, ri jp,si jq(1 ≤ i, j ≤ N,1 ≤ p ≤ mi j,1 ≤
q ≤ ni j) satisfying ‖g̃i(x,x(t −d(t)),s,s(t −d(t)))‖2 ≤

∑N
j=1 ∑

mi j

p=1 ri jp‖e j‖
p +∑N

j=1 ∑
ni j

q=1 si jq ‖e j(t −d(t))‖q for 1 ≤
i ≤ N.

The inequalities in the Assumption 1 can be

further rewritten as ‖g̃i(x,x(t −d(t)),s,s(t −d(t)))‖ ≤

∑N
j=1 RT

i jYi j(‖e j‖) + ∑N
j=1 ST

i jZi j(‖e j(t −d(t))‖), where

Ri j = (ri j1,ri j2, . . . ,ri jp)
T , Si j = (si j1,si j2, . . . ,si jq)

T ,

Yi j(.) = (‖e j‖,‖e j‖
2, . . . ,‖e j‖

mi j)T , Zi j(.) = (‖e j(t −d(t))‖,
‖e j(t −d(t))‖2, . . . ,‖e j(t −d(t))‖ni j)T .

Obviously, {J(t), I} is completely controllable, there must

exist control gain matrices Ki(t) and positive matrices

Ui(t) and Qi(t) satisfying (J(t)+Ki(t))
TUi(t)+Ui(t)(J(t)+

Ki(t))+U̇i(t) ≤−Qi(t) for i = 1,2, . . . ,N.

Remark 1: The coupling terms are bounded by high-order

functions and the gains are assumed to be known in the

Assumption 1. Therefore, the conditions in the Assumption

1 are weaker comparing with many existent results and

applicable to a large class of complex dynamical networks.

Based on the above preliminaries, a locally network syn-

chronization criterion is deduced as follows.

Theorem 1: For complex delayed dynamical network (1),

suppose that Assumption 1 hold. Then the synchronization

manifold S is locally asymptotically stable for any con-

tinuous time-varying function d(t) satisfying (2) under the

adaptive controllers

ui = Ki(t)ei −θi(t)
∂V T

i (ei)

∂ei

−ϑi(t)
∂V T

i (ei)

∂ei

, (6)

in which θi(t) and ϑi(t) are adaptive parameters with adap-

tive laws θ̇i =
1
2
Γi‖

∂V T
i (ei)
∂ei

‖2− 1
2
Γiρiθi, ϑ̇i =

1
2
Πi‖

∂V T
i (ei)
∂ei

‖2−

1
2
Πiρiϑi −

1
4
Πiρi

θ̃ 2
i

(ϑi−θ̃i)
, where Γi,Πi and ρi are posi-

tive scalars, θ̃i = ∑N
j=1

1
2
(
‖Ri j‖

2

4δi j
+

‖Si j‖
2

4λi j(1−d∗) ), and hi =

max{mi j,ni j}(1 ≤ j ≤ N), Vi(ei) = ∑
hi

k=1
1
k
(eT

i Ui(t)ei)
k.
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Proof. Construct a Lyapunov-Krasovskii functional candi-

date as

Ṽ (e,θ , t) =
N

∑
i=1

{Vi(ei)+Γ−1
i (θi − θ̃i)

2 +Ψ−1
i (ϑi − θ̃i)

2

+
N

∑
j=1

λi j

∫ t

t−d(t)
‖e j(s)‖

2kds},

(7)

where λi j are sufficiently small positive scalars.

The time derivation of ˙̃V along the solutions of the closed-

loop systems is

˙̃V (e,θ , t) =
N

∑
i=1

hi

∑
k=1

(eT
i Ui(t)ei)

k−1eT
i ((J(t)+Ki(t))

TUi(t)

+Ui(t)(J(t)+Ki(t))+U̇i(t))ei

+
N

∑
i=1

(
∂Vi(ei)

∂ei

g̃i(x,x(t −d(t)),s,s(t −d(t))))

+
N

∑
i=1

N

∑
j=1

λi j(‖e j‖
2k − (1− ḋ(t))‖e j(t −d(t))‖2k)

+
N

∑
i=1

(2Γ−1
i (θi − θ̃i)θ̇i +2Ψ−1

i (ϑi − θ̃i)ϑ̇i

−ϑi(t)‖
∂V T

i (ei)

∂ei

‖2 −θi(t)‖
∂V T

i (ei)

∂ei

‖2).

(8)

Based on Assumption 1, it is obvious that the following

inequality is satisfied.

∂Vi(ei)

∂ei

g̃i(x,x(t −d(t)),s,s(t −d(t)))

≤
N

∑
j=1

RT
i jYi j(‖e j‖)‖

∂Vi(ei)
T

∂ei

‖

+
N

∑
j=1

ST
i jZi j(‖e j(t −d(t))‖)‖

∂Vi(ei)
T

∂ei

‖

≤
N

∑
j=1

(
‖Ri j‖

2

4δi j

‖
∂Vi(ei)

T

∂ei

‖2 +δi j‖Yi j(‖e j‖)‖
2)

+
N

∑
j=1

(
‖Si j‖

2

4λi j(1−d∗)
‖

∂Vi(ei)
T

∂ei

‖2

+λi j(1−d∗)‖Zi j(‖e j(t −d(t))‖)‖2)

≤2θ̃i‖
∂Vi(e

T
i )

∂ei

‖2 +
N

∑
j=1

(
mi j

∑
k=1

δi j‖e j‖
2k

+
ni j

∑
k=1

λi j(1−d∗)‖e j(t −d(t))‖2k).

(9)

Substituting (9) into (8), we have

˙̃V (e,θ , t) ≤
N

∑
i=1

(
hi

∑
k=1

(eT
i Ui(t)ei)

k−1(−eT
i Qi(t)ei)

+
N

∑
j=1

(
ni j

∑
k=1

λi j‖e j‖
2k +

mi j

∑
k=1

δi j‖e j‖
2k))

+
N

∑
i=1

(2Γ−1
i (θi − θ̃i)θ̇i +2Ψ−1

i (ϑi − θ̃i)ϑ̇i)

−
N

∑
i=1

(θi − θ̃i)‖
∂V T

i (ei)

∂ei

‖2 −
N

∑
i=1

(ϑi − θ̃i)‖
∂V T

i (ei)

∂ei

‖2

≤
N

∑
i=1

(−
hi

∑
k=1

(eT
i Ui(t)ei)

k−1(eT
i Qi(t)ei)+(θi − θ̃i)(ρiθ)

+(ϑi − θ̃i)(−ρiθ −
1

2
ρi

θ̃i
2

(ϑi − θ̃i)
)

+
N

∑
j=1

(
ni j

∑
k=1

λi j‖e j‖
2k +

mi j

∑
k=1

δi j‖e j‖
2k)),

(10)

if we choose parameters λ j = max
i
{λi j} and δ j = max

i
{δi j}

for 1 ≤ i ≤ N. The following inequalities hold:

N

∑
i=1

(−
hi

∑
k=1

(eT
i Ui(t)ei)

k−1(eT
i Qi(t)ei)

+
N

∑
j=1

(
ni j

∑
k=1

λi j‖e j‖
2k +

mi j

∑
k=1

δi j‖e j‖
2k))

≤
N

∑
i=1

(−
hi

∑
k=1

(eT
i Ui(t)ei)

k−1(eT
i Qi(t)ei)

+
N

∑
j=1

(
h j

∑
k=1

λ j‖e j‖
2k +

h j

∑
k=1

δ j‖e j‖
2k))

=
N

∑
i=1

hi

∑
k=1

(−(eT
i Ui(t)ei)

k−1(eT
i Qi(t)ei)

+Nλi‖ei‖
2k +Nδi‖ei‖

2k),

where λ j = 0(ni j < j ≤ h j) and δ j = 0(mi j < j ≤ h j).
Considering the following equality:

(θi − θ̃i)(−ρiθi)+(ϑi − θ̃i)(−ρiϑi −
1

2
ρi

θ̃i
2

(ϑi − θ̃i)
)

= −ρi(θi −
1

2
θ̃i)

2 +
1

4
ρiθ̃

2
i −ρi(ϑi −

1

2
θ̃ 2

i )2 −
1

4
ρiθ̃

2
i

= −ρi(θi −
1

2
θ̃i)

2 −ρi(ϑi −
1

2
θ̃ 2

i )2
,

then we have

˙̃V (e,θ , t) ≤
N

∑
i=1

hi

∑
k=1

(−λmin(Ui(t))
k−1λmin(Qi(t))‖ei‖

2k

+Nλi‖ei‖
2k +Nδi‖ei‖

2k),

if we choose parameters λi j and δi j small enough to render

that the following inequality holds:

−λ k−1
min (Ui(t))λmin(Qi(t))+Nλi +Nδi = −∆i < 0,
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where ∆i are positive scalars. Furthermore, we have

˙̃V (e,θ , t) ≤
N

∑
i=1

(−hi∆i‖ei‖
2k).

Based on the Lyapunov-Krasovskii stability theorem and

Barbalat Lemma, the proposed decentralized adaptive state

feedback controllers can ensure that the synchronization

manifold S is locally asymptotically stable for any continu-

ous time-varying function d(t) satisfying (2). This completes

the proof of the Theorem 1.

Remark 2: If delay d(t) = 0 and the coupling term

bounded by first-order polynomials, namely, g̃i(x,x(t −
d(t)),s,s(t −d(t))) ≤ ∑N

j=1 γi j‖e j‖, where γi j are known but

nonnegative constants for i, j = 1,2, . . . ,N, then it is not

difficult for us to obtain the Theorem 1 in [12].

In the following subsection, we discuss the global syn-

chronization case.

B. Global Synchronization

In the previous section, we have given a sufficient con-

dition to guarantee that the trajectory of the dynamical

network (1) will come to the locally stable synchronization

manifold S. However, it is more interesting to study the

global synchronization of the dynamical network (1).

Rewrite node dynamics ẋi(t) = f (xi(t), t) as ẋi(t) =
Bxi(t)+h(xi(t), t), where B ∈ Rn×n is a constant matrix and

h : Ω → Rn is a continuous differentiable nonlinear function.

Thus, the dynamical networks (1) is described by

ẋi(t) = Bxi(t)+h(xi(t), t)+gi(x1,x2, · · · ,xN ,x1(t −d(t)),

x2(t −d(t)), · · · ,xN(t −d(t)))+ui, i = 1,2, . . . ,N,

(11)

let ei(t) = xi(t)− s(t), i = 1,2, . . . ,N, then one can get the

following error system

ėi(t) = Bei(t)+ h̃(xi(t),s(t), t)

+ g̃i(x,x(t −d(t)),s,s(t −d(t)))+ui, i = 1,2, . . . ,N,

(12)

where h̃(xi(t),s(t), t) = h(xi(t), t)−h(s(t), t), g̃i(x,x(t−d(t))
,s,s(t − d(t))) = gi(x1,x2, . . . ,xN ,x1(t − d(t)),x2(t −
d(t)), . . . ,xN(t − d(t))) − gi(s,s, . . . ,s,s(t − d(t)),s(t −
d(t)), . . . ,s(t−d(t))). Based on the fact that s(t) is bounded,

we use the differential mean value theorem, along with (12),

we have the following matrix equation:

ėi(t) = (B+Σ(t))ei(t)+ g̃i(x,x(t −d(t)),s,s(t −d(t)))+ui,

i = 1,2, . . . ,N,

(13)

where Σ(t) = diag{Σ1(t),Σ2(t), . . . ,Σn(t)} ∈ Rn×n is the

derivative of h(xi(t), t) at θ(t), s(t) ≤ θ(t) ≤ xi(t).
Since {(B+Σ(t)), I} is completely controllable, there must

exist control gain matrices Ki(t) and positive matrices Ui(t)
and Qi(t) satisfying ((B + Σ(t))+ Ki(t))

TUi(t)+Ui(t)((B +
Σ(t))+Ki(t))+U̇i(t) ≤−Qi(t) for i = 1,2, . . . ,N.

Then one can get the following global network synchro-

nization criterion.

Theorem 2: For complex delayed dynamical network (1),

suppose that Assumption 1 hold. Then the synchronization

manifold S is globally asymptotically stable for any con-

tinuous time-varying function d(t) satisfying (2) under the

adaptive controllers

ui = Ki(t)ei −θi(t)
∂V T

i (ei)

∂ei

−ϑi(t)
∂V T

i (ei)

∂ei

, (14)

in which θi(t) and ϑi(t) are adaptive parameters with adap-

tive laws θ̇i =
1
2
Γi‖

∂V T
i (ei)
∂ei

‖2− 1
2
Γiρiθi, ϑ̇i =

1
2
Πi‖

∂V T
i (ei)
∂ei

‖2−

1
2
Πiρiϑi −

1
4
Πiρi

θ̃ 2
i

(ϑi−θ̃i)
, hi = max{mi j,ni j}(1 ≤ j ≤ N),

Vi(ei) = ∑
hi

k=1
1
k
(eT

i Ui(t)ei)
k, where Γi,Πi and ρi are positive

scalars, θ̃i = ∑N
j=1

1
2
(
‖Ri j‖

2

4δi j
+

‖Si j‖
2

4λi j(1−d∗) ).

Proof: The proof is very similar to that of the Theorem

1, so is omitted here.

Assumption 2: Suppose that there exist known pos-

itive scalars mi j,ni j, ri jp,si jq(1 ≤ i, j ≤ N,1 ≤ p ≤
mi j,1 ≤ q ≤ ni j) satisfying ‖g̃i(x,x(t − τ),s,s(t − τ))‖2 ≤

∑N
j=1 ∑

mi j

p=1 ri jp‖e j‖
p +∑N

j=1 ∑
ni j

q=1 si jq‖e j(t − τ)‖q for 1 ≤ i ≤
N, where time-varying delay d(t) = τ , τ is a positive scale.

The inequalities in the Assumption 2 can be further rewrit-

ten as ‖g̃i(x,x(t − τ),s,s(t − τ))‖ ≤ ∑N
j=1 RT

i j Yi j(‖e j‖) +

∑N
j=1 ST

i jZi j(‖e j(t − τ)‖), where Ri j = (ri j1,ri j2, . . . ,ri jp)
T ,

Si j = (si j1,si j2, . . . ,si jq)
T , Yi j(.) = (‖e j‖,‖e j‖

2, . . . ,‖e j‖
mi j)T ,

Zi j(.) = (‖e j(t − τ)‖,‖e j(t − τ)‖2, . . . ,‖e j(t − τ)‖ni j)T .

Obviously, {(B+Σ(t)), I} is completely controllable, there

must exist control gain matrices Ki(t) and positive matri-

ces Ui(t) and Qi(t) satisfying ((B + Σ(t)) + Ki(t))
TUi(t) +

Ui(t)((B+Σ(t))+Ki(t))+U̇i(t) ≤−Qi(t) for i = 1,2, . . . ,N.

Theorem 3: For complex delayed dynamical network (1),

suppose that Assumption 2 hold. Then the synchronization

manifold S is globally asymptotically stable for any constant

coupling delay d(t) = τ under the adaptive controllers

ui = Ki(t)ei −θi(t)
∂V T

i (ei)

∂ei

−ϑi(t)
∂V T

i (ei)

∂ei

, (15)

in which θi(t) and ϑi(t) are adaptive parameters with adap-

tive laws θ̇i =
1
2
Γi‖

∂V T
i (ei)
∂ei

‖2− 1
2
Γiρiθi, ϑ̇i =

1
2
Πi‖

∂V T
i (ei)
∂ei

‖2−

1
2
Πiρiϑi −

1
4
Πiρi

θ̃ 2
i

(ϑi−θ̃i)
, hi = max{mi j,ni j}(1 ≤ j ≤ N),

Vi(ei) = ∑
hi

k=1
1
k
(eT

i Ui(t)ei)
k, where Γi,Πi and ρi are positive

scalars, θ̃i = ∑N
j=1

1
2
(
‖Ri j‖

2

4δi j
+

‖Si j‖
2

4λi j
).

Proof. Construct a Lyapunov-Krasovskii functional candi-

date as

Ṽ (e,θ , t) =
N

∑
i=1

{Vi(ei)+Γ−1
i (θi − θ̃i)

2 +Ψ−1
i (ϑi − θ̃i)

2

+
N

∑
j=1

λi j

∫ t

t−τ
‖e j(s)‖

2kds},

(16)

where λi j are sufficiently small positive scalars.

By taking the time derivative of ˙̃V along the trajectories

of the closed-loop system which gotten by substituting (15)
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into (13), we have

˙̃V (e,θ , t) =
N

∑
i=1

hi

∑
k=1

(eT
i Ui(t)ei)

k−1eT
i (((B+Σ(t))

+Ki(t))
TUi(t)+Ui(t)((B+Σ(t))+Ki(t))+U̇i(t))ei

+
N

∑
i=1

(
∂Vi(ei)

∂ei

g̃i(x,x(t − τ),s,s(t − τ)))

+
N

∑
i=1

N

∑
j=1

λi j(‖e j‖
2k −‖e j(t − τ)‖2k)

+
N

∑
i=1

(2Γ−1
i (θi − θ̃i)θ̇i +2Ψ−1

i (ϑi − θ̃i)ϑ̇i

−ϑi(t)‖
∂V T

i (ei)

∂ei

‖2 −θi(t)‖
∂V T

i (ei)

∂ei

‖2).

(17)

∂Vi(ei)

∂ei

g̃i(x,x(t − τ),s,s(t − τ))

≤
N

∑
j=1

RT
i jYi j(‖e j‖)‖

∂Vi(ei)
T

∂ei

‖

+
N

∑
j=1

ST
i jZi j(‖e j(t − τ)‖)‖

∂Vi(ei)
T

∂ei

‖

≤
N

∑
j=1

(
‖R2

i j‖
2

4δi j

‖
∂Vi(ei)

T

∂ei

‖2 +δi j‖Yi j(‖e j‖)‖
2)

+
N

∑
j=1

(
‖Si j‖

2

4λi j

‖
∂Vi(ei)

T

∂ei

‖2 +λi j‖Zi j(‖e j(t − τ)‖)‖2)

≤2θ̃i‖
∂Vi(e

T
i )

∂ei

‖2

+
N

∑
j=1

(
mi j

∑
k=1

δi j‖e j‖
2k +

ni j

∑
k=1

λi j‖e j(t − τ)‖2k).

(18)

Substituting (9) into (8), we have

˙̃V (e,θ , t) ≤
N

∑
i=1

(
hi

∑
k=1

(eT
i Ui(t)ei)

k−1(−eT
i Qi(t)ei)

+
N

∑
j=1

(
ni j

∑
k=1

λi j‖e j‖
2k +

mi j

∑
k=1

δi j‖e j‖
2k))

+
N

∑
i=1

(2Γ−1
i (θi − θ̃i)θ̇i +2Ψ−1

i (ϑi − θ̃i)ϑ̇i)

−
N

∑
i=1

(θi − θ̃i)‖
∂V T

i (ei)

∂ei

‖2 −
N

∑
i=1

(ϑi − θ̃i)‖
∂V T

i (ei)

∂ei

‖2

≤
N

∑
i=1

(−
hi

∑
k=1

(eT
i Ui(t)ei)

k−1(eT
i Qi(t)ei)

+(θi − θ̃i)(ρiθ)+(ϑi − θ̃i)(−ρiθ −
1

2
ρi

θ̃i
2

(ϑi − θ̃i)
)

+
N

∑
j=1

(
ni j

∑
k=1

λi j‖e j‖
2k +

mi j

∑
k=1

δi j‖e j‖
2k)),

(19)

if we choose parameters λ j = max
i
{λi j} and δ j = max

i
{δi j}

for 1 ≤ i ≤ N. The following inequalities hold:

N

∑
i=1

(−
hi

∑
k=1

(eT
i Ui(t)ei)

k−1(eT
i Qi(t)ei)

+
N

∑
j=1

(
ni j

∑
k=1

λi j‖e j‖
2k +

mi j

∑
k=1

δi j‖e j‖
2k))

≤
N

∑
i=1

(−
hi

∑
k=1

(eT
i Ui(t)ei)

k−1(eT
i Qi(t)ei)

+
N

∑
j=1

(
h j

∑
k=1

λ j‖e j‖
2k +

h j

∑
k=1

δ j‖e j‖
2k))

=
N

∑
i=1

hi

∑
k=1

(−(eT
i Ui(t)ei)

k−1(eT
i Qi(t)ei)

+Nλi‖ei‖
2k +Nδi‖ei‖

2k),

where λ j = 0(ni j < j ≤ h j) and δ j = 0(mi j < j ≤ h j).
Considering the following equality:

(θi − θ̃i)(−ρiθi)+(ϑi − θ̃i)(−ρiϑi −
1

2
ρi

θ̃i
2

(ϑi − θ̃i)
)

= −ρi(θi −
1

2
θ̃i)

2 +
1

4
ρiθ̃

2
i −ρi(ϑi −

1

2
θ̃ 2

i )2 −
1

4
ρiθ̃

2
i

= −ρi(θi −
1

2
θ̃i)

2 −ρi(ϑi −
1

2
θ̃ 2

i )2
,

then we have

˙̃V (e,θ , t) ≤
N

∑
i=1

hi

∑
k=1

(−λmin(Ui(t))
k−1λmin(Q(t))‖ei‖

2k

+Nλi‖ei‖
2k +Nδi‖ei‖

2k),

if we choose parameters λi j and δi j small enough to render

that the following inequality holds:

−λ k−1
min (Ui(t))λmin(Q(t))+Nλi +Nδi = −∆i < 0,

where ∆i are positive scalars. Furthermore, we have

˙̃V (e,θ , t) ≤
N

∑
i=1

(−hi∆i‖ei‖
2k).

Based on the Lyapunov-Krasovskii stability theorem, the

proposed decentralized adaptive state feedback controllers

can ensure that the synchronization manifold S is locally

asymptotically stable for any time-delay τ . This completes

the proof of the Theorem 3.

Remark 3: If delay τ = 0 and the coupling term

is bounded by first-order polynomials, namely, g̃i(x,x(t −
τ),s,s(t − τ)) ≤ ∑N

j=1 γi j‖e j‖, where γi j are known but non-

negative constants for i, j = 1,2, . . . ,N, then we can get the

Theorem 3 in [12].

IV. EXAMPLE

In this section, we will use an example to illustrate the

effectiveness of the criteria derived in this paper. we consider
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Fig.1. The synchronization errors ei j(t) for delayed network.

a lower-dimensional dynamical network with 2 nodes,
(

ẋ11

ẋ12

)

=

(

−2 0

0 −3

)(

x11

x12

)

+u1

+

(

0

x11 + x22 + x11(t −0.5sin(t))+ x12x21(t −0.5sin(t))

)

,

(

ẋ21

ẋ22

)

=

(

−2 0

0 −3

)(

x21

x22

)

+u2

+

(

0

x21 + x12 + x21(t −0.5sin(t))+ x22x11(t −0.5sin(t))

)

.

We choose Γi = 1, ρi = 1, Πi = 1, δi j = 0.1, τi j = 0.1,

λi j = 0.2 and Ki(t) = diag{−1,−2} and Ui(t) = diag{1,1}.

Further calculation, we have ‖Ri j‖
2 = 1, ‖Si j‖

2 = 1 and

Ui(t) = diag{1,1}, therefore, the conditions of the Theorem

1 are satisfied, then we can obtain the following decentralized

adaptive controllers:

u1 =

(

−1 0

0 −2

)(

e11

e12

)

−2(θ1(t)+ϑ1(t))

(

e11

e12

)

,

u2 =

(

−1 0

0 −2

)(

e21

e22

)

−2(θ1(t)+ϑ1(t))

(

e21

e22

)

,

θ̇1(t) = 2e2
11 +2e2

12 −θ1,

θ̇2(t) = 2e2
21 +2e222−θ2,

ϑ̇1(t) = 2e2
11 +2e2

12 −ϑ1 −
2.5

ϑ1 −5
,

ϑ̇1(t) = 2e2
21 +2e2

22 −ϑ2 −
2.5

ϑ2 −5

In Fig. 1, we plot the curves of the synchronization errors

between the states of the two nodes.

V. CONCLUSIONS

We have investigated the locally and globally adaptive

synchronization of the complex delayed dynamical network.

Several network synchronization criteria are deduced based

on the Lyapunov-Krasovskii functional approach. A time-

varying delay in the coupling term is allowed, in addition,

the assumptions in this paper are very common compared

with some similar results and the proposed controllers are

very simple in form.
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