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Abstract— One way to guarantee stability in nonlinear model
predictive control (NMPC) is to calculate a suitable stabilizing
terminal penalty term and terminal region. This is in general a
difficult task. In this paper a structured approach to overcome
this problem for the class of Lure systems subject to state and
input constraints is provided. In particular, the terminal penalty
term and the terminal region are computed by solving a set of
LMIs. The example of a flexible joint robotic arm illustrates
the results of this paper.

I. INTRODUCTION

Due to its ability to handle control systems subject to state

and input constraints model predictive control (MPC) has

been applied in a wide area of practical control problems in

recent years, see [8, 13] for an overview. The basic idea of

predictive control is as follows: By solving online a finite

horizon optimal control problem based on current measure-

ments of the system, an optimal control input trajectory is

obtained. The first part of this trajectory is applied to the

system and the optimal control problem is solved again based

on new measurements at the next sampling instant. Although

MPC schemes often lead to good performance, closed-

loop stability is not naturally guaranteed. By now, various

approaches guaranteeing stability even for NMPC have been

developed, see e.g. [2, 6, 7, 10, 12]. Several NMPC schemes

use a terminal penalty term and a terminal region, both cal-

culated off-line, to guarantee closed-loop stability, see e.g [3,

6]. However, the calculation of the terminal penalty term and

the terminal region is not a trivial task. Various approaches

have been proposed to tackle this problem. For example in

[4] an LMI based approach is presented which uses linear

differential inclusion (LDI) techniques [1]. However, this

approach requires an LDI representation of the considered

system which is conservative and in general hard to obtain.

The goal of this paper is to derive a more structured way to

obtain the terminal region and the terminal penalty term for

the class of Lure systems.

The remainder of the paper is organized as follows: In

Section II a brief introduction to stability of NMPC is

given. Section III introduces the considered system class and

provides the main results, namely a structured approach to

derive a stabilizing terminal penalty term and terminal region

for Lure systems via LMIs. Two different types of Lure

systems are considered which differ by the sector conditions

the appearing nonlinearities satisfy. The presented solution

approaches differ in aspects of applicability on one side and

solvability on the other side. In Section IV two examples

illustrate the results. Conclusions are provided in Section V.
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II. STABILIZING PREDICTIVE CONTROL

Consider nonlinear systems of the form

ẋ = f(x, u), x(0) = x0 (1)

with x ∈ R
n and u ∈ R

m, subject to state and input

constraints

u(t) ∈ U ∀ t ≥ 0, (2)

x(t) ∈ X ∀ t ≥ 0. (3)

Here X ⊆ R
n is the state constraint set and U ⊂ R

m is

the set of feasible inputs. The control task is to stabilize

the origin of system (1) in an optimal way while satisfying

the constraints. One approach to achieve this is NMPC. This

control method predicts the future behavior of the system.

Therefore, we introduce predicted states and inputs, x̄ and

ū. The predicted states may differ from the real state x of

the considered system (1). In general, the cost function J ,

that is minimized over the prediction horizon Tp, takes the

form

J
(

x̄(·), ū(·)
)

=
∫ tk+Tp

tk
F

(

x̄(τ), ū(τ)
)

dτ

+ E
(

x̄(tk + Tp)
)

(4)

with the stage cost F and the terminal penalty term E. The

open-loop optimal control problem, that is solved repeatedly

at the sampling instants tk = kδ, where δ is the sampling

time between each optimization (assumed to be constant), is

min
ū(·)

J
(

x̄(·), ū(·)
)

, (5)

subject to

˙̄x(τ) = f
(

x̄(τ), ū(τ)
)

, x̄(tk) = x(tk),
x̄(τ) ∈ X , ū(τ) ∈ U , ∀τ ∈

[

tk, tk + Tp

]

,

x̄(tk + Tp) ∈ E .

(6)

The solution of the optimization problem is the optimal input

trajectory

ū⋆
(

t;x(tk)
)

=arg min
ū(·)

J
(

x̄(·), ū(·)
)

. (7)

Note that in the stated version the system states are forced to

lie within the terminal region E at the end of the prediction

horizon Tp. The control input applied to system (1) is

updated at each sampling instant tk by the repeated solution

of the open-loop optimal control problem (5), i.e. the applied

control input is

u(t) = ū⋆(t;x(tk)), t ∈
[

tk, tk + δ
)

. (8)

Each optimization at time tk uses the measured state x(tk)
as initial condition for the predicted system behavior x̄(t).
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Therefore, the NMPC scheme presented provides state

feedback at the sampling instants tk.

To guarantee stability of the closed-loop system the

following assumptions are typically required to hold [6]:

Assumption 1: X ⊆ R
n is closed, connected, and the origin

is contained in the interior of X .

Assumption 2: U ⊂ R
m is compact and the origin is

contained in the interior of U .

Assumption 3: The vector field f : R
n × R

m → R
n is

continuous and satisfies f(0, 0) = 0. In addition, it is locally

Lipschitz in x.

Assumption 4: The system (1) has a unique continuous

solution for any initial condition in the region of interest and

any piecewise continuous and right-continuous input function

u(·) : [0, Tp] → U .

Assumption 5: F : X × U → R is continuous in

all arguments with F (0, 0) = 0 and F (x, u) > 0 ∀
(x, u) ∈ X × U \ {0, 0}.

It is shown in [5] and [7] that closed-loop stability can be

guaranteed if the conditions on the terminal penalty term E

and the terminal region E stated in Lemma 1 hold.

Lemma 1: If the open-loop optimal control problem (5) has

a feasible solution at time t = 0, if the Assumptions 1-5 are

satisfied, and if the terminal penalty term E and the terminal

region E satisfy

1. E is C1, E(x) ≥ 0 ∀ x ∈ E , and E(0) = 0,

2. E ⊆ X is closed and connected, and the origin is

contained in the interior of E ,

3. There exists a continuous local control law k : R
n →

R
m with k(0) = 0, such that

∂E

∂x
f
(

x, k(x)
)

+ F
(

x, k(x)
)

< 0 and k(x) ∈ U , (9)

for all x ∈ E ,

then the (nominal) closed-loop system is stable in the sense

that ‖x‖ → 0 as t → ∞.

In general, it is hard to calculate the terminal penalty term

and the terminal region, see e.g. [4, 6]. For certain subclasses

of nonlinear systems there exist structured approaches to

solve this problem. In the following we consider the class of

Lure systems and derive a method to calculate the terminal

penalty term and the terminal region via LMIs.

III. MAIN RESULTS

In the following we limit the attention to nonlinear continu-

ous time Lure systems, i.e. systems of the form

ẋ = Ax + Gγ(z) + Bu,

z = Hx,
(10)

where A ∈ R
n×n, B ∈ R

n×m, G ∈ R
n×p and H ∈ R

p×n

are constant linear matrices and z ∈ R
p denotes a linear

combination of the states. The vector γ(z) : R
p → R

p

consists of p nonlinear functions dependent on z such that the

Assumptions 3 and 4 are satisfied. Furthermore, the signal z

and the nonlinearities γ(z) satisfy a so called sector condition

of the form
(

mz − γ(z)
)T

γ(z) ≥ 0, (11)

where m = diag(m1,m2, . . . ,mp) with mi ∈ R, see [11].

The first part of this section considers Lure systems with a

complete sector condition (m → ∞), i.e. the nonlinearities

γ(z) lie either in the complete first or in the complete third

quadrant. The resulting solution method is applicable to

a broad class of Lure systems. However, in certain cases

solvability of the obtained set of LMIs might be a problem

since the approach requires that a restrictive equality

condition holds. Thus, in the second part of this section,

Lure systems with a more restrictive sector condition are

considered, i.e. the nonlinearities are growth bounded in the

first and third quadrant. This restriction on the nonlinearities

is used to overcome the solvability problem of the LMIs.

Remark 1: The results of this paper can also be applied

to nonlinear systems that can be transformed to Lure form

(corresponding to the considered sector condition) via a

regular transformation.

In the following, the control objective is to stabilize the

origin of system (10) using the nonlinear model predictive

controller defined by (1)-(8). For this, the stage cost F , the

terminal penalty term E and the terminal region E are chosen

to be

F (x, u) = xT Qx + uT Ru, (12)

E(x) = xT Px, (13)

E(α) = {x ∈ X : xT Px ≤ α}, (14)

where 0 ≤ Q = QT ∈ R
n×n, 0 < R = RT ∈ R

m×m,

0 < P = PT ∈ R
n×n and α ∈ R

+. With this choice F (x, u)
satisfies Assumption 5. For simplicity of presentation we

consider linear constraints:

Assumption 6: The constraint sets X and U are described

by linear inequalities:

X = {x ∈ R
n : cix

x ≤ 1, ix = 1, . . . , rx}, (15)

U = {u ∈ R
m : diu

u ≤ 1, iu = 1, . . . , ru}, (16)

where ci ∈ R
1×n and di ∈ R

1×m and rx and ru the number

of state and input constraints.

The sets X and U , the function F (x, u), and the nonlinear-

ity γ(z) satisfy Assumptions 1-5 which are preconditions of

Lemma 1. To simplify notation the constraint sets X and U
are summarized by the constraint set

W =

{[

x

u

]

∈ R
n+m : cix + diu ≤ 1, i = 1, · · · , r

}

, (17)

where r = rx + ru. Note that di = 0 for a state constraint

and ci = 0 for an input constraint. The remaining, in general
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very challenging task is to derive a suitable terminal penalty

term E and terminal region E(α) such that the NMPC

scheme (1)-(8) satisfies Lemma 1. For this, we consider a

linear local feedback control

u = k(x) = Kx (18)

with K ∈ R
m×n. As will be shown, Lemma 1 is fulfilled

if a set of LMIs, depending on the linear feedback matrix

K, is satisfied. Considering the linear feedback law (18) the

constraint set W takes the form

W = {x ∈ R
n : wix ≤ 1, i = 1, · · · , r}, (19)

with wi = ci + diK. From the definition of W it clearly

follows that W ⊆ X . The following Lemma is needed to

guarantee satisfaction of the constraints:

Lemma 2: The ellipsoid E(α) = {x ∈ R
n : xT Px ≤ α} is

contained in the set W if and only if

wi(αP−1)wT
i ≤ 1, i = 1, · · · , r. (20)

Proof: The proof can be found in [4] and [1].

Based on this, in the following methods are derived which

provide a structured way to calculate the terminal region and

the terminal penalty term. In the first part, Lure systems satis-

fying a complete sector condition are considered. The second

part provides an approach for Lure systems with growth

bounded nonlinearities. The basic idea of both methods is

to formulate the stability condition (9) as LMIs by taking

the special structure of Lure systems into account.

A. Lure systems satisfying a complete sector condition

The approach presented in this subsection considers Lure

systems (10) satisfying the sector condition

zT γ(z) ≥ 0. (21)

This condition requires that the nonlinearities γ(z) lie either

in the complete first or in the complete third quadrant. The

following theorem states for the considered class of systems

stability conditions in terms of LMIs for P , K and α and

thus provides a way to calculate the terminal region E(α)
and the terminal penalty term E defined in (12)-(14):

Theorem 1: If the open-loop optimal control problem (5)

has a feasible solution at time t = 0, and if there exist

matrices 0 < N1 = NT
1 ∈ R

n×n and N2 ∈ R
m×n, and

a constant α ∈ R
+ such that the LMIs





−∆ − ∆T N1Q
1

2 NT
2 R

1

2

Q
1

2 N1 I 0

R
1

2 N2 0 I



 > 0, (22)

[

1
α

ciN1 + diN2

(ciN1 + diN2)
T N1

]

≥ 0, (23)

−HN1 = GT , (24)

are satisfied for i = 1, . . . , r with ∆ = [A B][N1 NT
2 ]T ,

then the closed-loop of the NMPC scheme defined by (1)-

(8) is stable in the sense that ‖x‖ → 0 as t → ∞, where

P = N−1
1 and K = N2N

−1
1 .

Proof: Closed-loop stability of the NMPC scheme de-

fined by (1)-(8) can be guaranteed if the conditions of

Lemma 1 hold. Hence, one has to show that the conditions of

Theorem 1 imply satisfaction of the conditions of Lemma 1.

With the choice of E(x) = xT Px, condition 1 of Lemma 1

is obviously satisfied ∀x ∈ E(α) since P = N−1
1 > 0.

The stabilizing control law k(x) in Lemma 1 is chosen to

u = k(x) = Kx, where K = N2N
−1
1 . Applying the Schur

complement on (23), one obtains

1

α
− (ciN1 + diN2)N

−1
1 (ciN1 + diN2)

T ≥ 0, (25)

i = 1, · · · , r. Since N1 > 0, P = N−1
1 , K = N2N

−1
1 , and

wi = ci + diK, this inequality is equivalent to

1

α
− wiP

−1wT
i ≥ 0, i = 1, . . . , r. (26)

Thus, it follows from Lemma 2 that E(α) ⊆ X since

E(α) ⊆ W . Furthermore, the chosen terminal region E(α) =
{x ∈ X : xT Px ≤ α} is closed and connected and contains

the origin. In addition, (26) implies that u = k(x) = Kx

satisfies the input constraints, and k(x) = Kx clearly fulfills

the requirement k(0) = 0. Thus, to proof condition 3 in

Lemma 1 it remains to show that (9) holds ∀ x ∈ E(α).
In the case of the considered class of Lure systems and the

choice of E(x) and F (x, u), inequality (9) becomes

xT (AT P + PA + KT BT P + PBK)x
+xT (Q + KT RK)x

+γT (z)GT Px + xT PGγ(z) < 0.

(27)

Using (24), it follows that

γT (z)GT Px + xT PGγ(z) ≤ 0 (28)

is satisfied since GT P = −H and zT γ(z) ≥ 0. Thus,

inequality (27) holds if

xT (AT P + PA + KT BT P + PBK)x
+xT (Q + KT RK)x < 0

(29)

is fulfilled. This inequality holds for all x if

AT P + PA + KT BT P + PBK+Q + KT RK < 0. (30)

Applying the Schur complement on (22), with N1 > 0, P =
N−1

1 , K = N2N
−1
1 one obtains (30). Hence, if (22) and

(24) hold, condition (9) of Lemma 1 holds and therefore

condition 3 of Lemma 1. Additionally, by assumption the

open-loop optimal control problem (5) is feasible at t = 0.

Therefore, all requirements for Lemma 1 are fulfilled and

thus the closed-loop is stable in the sense that ‖x‖ → 0 as

t → ∞.

One drawback of the approach presented in this subsection

is the equality condition (24) which is required to guarantee

closed-loop stability. For certain systems this condition may

be too restrictive such that the set of LMIs (22)-(24) do not

posses a feasible solution. Therefore, in the following sub-

section Lure systems with a more restrictive sector condition

are considered. The conditions on the nonlinearities of such

systems are used to overcome the solvability problem of the

set of LMIs.
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B. Lure systems with growth restricted nonlinearities

In the following we consider Lure systems which satisfy
(

mz − γ(z)
)T

γ(z) ≥ 0, (31)

where 0 < m < ∞. Inequality (31) can be expressed in

matrix form as
[

x

γ

]T [

0 − 1
2HT mT

− 1
2mH I

] [

x

γ

]

≤ 0. (32)

As in the previous subsection, the nonlinearities γ(z)
lie either in the first or in the third quadrant, but are

growth bounded. Loosely speaking, this means that the

nonlinearities γ(z) lie in a sector which is defined by the

z-axis and the line mz. The following theorem provides

a structured way to calculate a suitable terminal penalty

term E and terminal region E(α) as defined in (12)-(14) to

guarantee closed-loop stability:

Theorem 2: If the open-loop optimal control problem (5)

has a feasible solution at time t = 0, and if there exist

matrices 0 < N1 = NT
1 ∈ R

n×n and N2 ∈ R
m×n, and

constants τ ∈ R
+ and α ∈ R

+ such that the inequalities








−∆ − ∆T −Γ N1Q
1

2 NT
2 R

1

2

−ΓT τI 0 0

Q
1

2 N1 0 I 0

R
1

2 N2 0 0 I









> 0, (33)

[

1
α

ciN1 + diN2

(ciN1 + diN2)
T N1

]

≥ 0, (34)

are satisfied for i = 1, . . . , r with ∆ = [A B][N1 NT
2 ]T

and Γ = G + τ
2N1H

T mT , then the closed-loop of the

NMPC scheme (1)-(8) is stable in the sense that ‖x‖ → 0
as t → ∞, where P = N−1

1 and in (18) K = N2N
−1
1 .

Proof: Using the results of the proof of Theorem 1 it follows

that Theorem 2 guarantees stability of the closed-loop if it

can be shown that inequality (27) holds for all x and γ

satisfying (32). Writing (27) in matrix form as

[

x

γ

]T





[

AT P + PA + KT BT P

+PBK + Q + KT RK

]

PG

GT P 0





[

x

γ

]

< 0, (35)

and applying the S-Procedure, see e.g. [1], it follows that

(35) respectively (27) holds for all x and γ satisfying (32) if

there exists a non-negative τ ∈ R
+ such that the inequality





[

AT P + PA + KT BT P

+PBK + Q + KT RK

]

PG + τ
2HT mT

GT P + τ
2mH −τI



 < 0 (36)

is satisfied. Multiplying (36) from both sides with the matrix
»

P
−1

0

0 I

–

, substituting N1 = P−1, N2 = KP−1, and

introducing ∆ and Γ, as defined in Theorem 2, one obtains
[

∆ + ∆T Γ
ΓT −τI

]

+
[

N1Q
1

2 NT
2 R

1

2

0 0

] [

I 0
0 I

] [

Q
1

2 N1 0

R
1

2 N2 0

]

≤ 0.

(37)

Applying the Schur complement to (37) one obtains (33).

Therefore, in combination with the results of the proof

of Theorem 1 it is shown that Theorem 2 satisfies all

requirements for Lemma 1 and thus, the closed-loop is stable

in the sense that ‖x‖ → 0 as t → ∞.

Stability of the closed-loop is already achieved if

inequality (31), i.e. the sector condition of the considered

system, is satisfied for all x in the state constraint set X ,

since E ⊆ X and (27) has to hold for all x ∈ E . This

means that also nonlinearities as for example γ(z) = z3 can

be considered as long as they satisfy (31) in the terminal

region E .

Remark 2: Inequality (33) does not represent an LMI if τ

is considered as a free variable. However, one can apply

e.g. a line search algorithm for τ , i.e. (33) is solved for

several fixed values of τ as an LMI multiple times to obtain

the desired solution.

One main advantage of the approaches presented is that the

LMIs (22)-(24), and the inequalities (33)-(34), respectively,

are easy to solve. Thus, the terminal region and the terminal

penalty term can be calculated without facing computational

problems. Usually, it is desirable to maximize the terminal

region E(α) in order to maximize the feasibility region of

the NMPC scheme, see e.g. [4]. The procedure to compute a

terminal region and a terminal penalty term for a stabilizing

NMPC controller usually is the following: A terminal penalty

matrix P is chosen and for the chosen P the constant α is

computed such that the terminal region E(α) is maximized,

see e.g. [3, 6]. The LMIs (22)-(24) and the inequalities (33)-

(34), respectively, provide the simultaneous calculation of

P and α. Thus, both degrees of freedom can be used to

maximize the terminal region. Since the volume of E(α) is

up to a constant αdet(P−1) the corresponding maximization

problem is

max
α,P,K

α det(P−1), (38)

subject to the LMIs (22)-(24) and the inequalities (33)-(34),

respectively. This is a non-convex optimization problem,

however, it can be transferred into a convex optimization

problem, see [4] for details.

Remark 3: The presented approaches can also be used to

design a linear controller which stabilizes the origin of

the considered (nonlinear) system while satisfying the con-

straints. The nonlinearities do not have to be known exactly

to obtain a stabilizing linear control law. Closed-loop stability

is already obtained if it can be assured that the nonlinearities

satisfy the required sector condition. Thus, the linear con-

troller design is robust towards all nonlinearities satisfying

the considered sector condition.
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IV. ILLUSTRATIVE EXAMPLES

Two examples are presented to illustrate the derived methods

to calculate the terminal region and the terminal penalty

term. The approach presented in Section III-A is applied

to an academic example which satisfies the complete sector

condition. Furthermore, a model of a flexible joint robotic

arm with growth bounded nonlinearities is used to illustrate

the method introduced in Section III-B.

A. Academic Example

To illustrate the results of Section III-A, the Lure system

ẋ1 = x2

ẋ2 = x1 + x3 + u

ẋ3 = −x1 + 1.5x2 − 2x3 − 0.7x3
3,

(39)

is considered. Thus, the system is described by the matrices

A =





0 1 0
1 0 1
−1 1.5 −2



 , B =





0
1
0



 ,

GT =
[

0 0 −0.7
]

, H =
[

0 0 1
]

,

(40)

and the nonlinearity γ(z) = z3, where z = x3. The

nonlinearity of the example system satisfies the complete

sector condition zT γ(z) ≥ 0.

The constraint set W is defined by the input constraints

−3 ≤ u ≤ 3 and the state constraints −0.5 ≤ x1 ≤ 0.5
and −0.75 ≤ x2, x3 ≤ 0.75. The task is to calculate a

terminal penalty term E and a terminal region E for the

NMPC scheme (1)-(8), where E, E and the stage cost F are

defined in (12)-(14), such that the NMPC controller stabilizes

the origin of the example system (39) while satisfying the

constraints. For the stage cost F defined in (12) the matrices

Q and R are chosen to be identity matrices of suitable

dimensions. The solution of the set of LMIs described in

(22)-(24) delivers the linear feedback matrix

K =
[

−2.5818 −2.9678 −0.6128
]

, (41)

x1

x2

x
3

-0.5

0

0.5
-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

Fig. 1. Terminal region E(α) in the constraint set W .

and the terminal penalty matrix

P =





5.2109 2.7336 0
2.7336 3.7426 0

0 0 1.4286



 , (42)

and thus, with α = 0.8036, the terminal penalty

term E(x) = xT Px and the terminal region

E(α) = {x ∈ W : xT Px ≤ α}. These matrices satisfy the

conditions of Lemma 1 and thus the NMPC scheme is stable

in the sense that ‖x‖ → 0 as t → ∞. Figure 1 shows the

calculated terminal region E(α) = {x ∈ W : xT Px ≤ α}
in the constraint set W .

B. Flexible Joint Robotic Arm

The approach presented in Section III-B is applied to a

flexible joint robotic arm as shown in Figure 2, see e.g. [9].

The dynamics of the robotic arm are given by the matrices

A =









0 1 0 0
−48.6 −1.25 48.6 0

0 0 0 1
19.5 0 −16.17 0









, B =









0
21.6
0
0









,

GT =
[

0 0 0 −3.33
]

, H =
[

0 0 1 0
]

.

(43)

and the nonlinearity

γ(z) = sin z + z. (44)

One can observe that the nonlinearities contain, in contrast

to the model in [9], a linear part. This term was added in

order to satisfy the sector condition and is compensated in

the linear dynamics matrix A. Thus, the dynamics of the

robotic arm correspond to those in [9]. To fulfill the sector

condition (31) the following inequality has to hold

(

mz − sin(z) − z
)T (

sin(z) + z
)

≥ 0. (45)

This is obviously the case for all m ≥ 2. In the following

the constant m is chosen to be m = 2. The constraint

set W is defined by the input constraints −2 ≤ u ≤ 2
and the state constraints −π

2 ≤ x1, x3 ≤ π
2 and −5 ≤

x2, x4 ≤ 5. The task is to calculate the terminal region E
and the terminal penalty term E via the inequalities (33)-

(34), where E , E and F (respectively Q and R) are defined

as in the previous example. Using a line search algorithm and

solving (33)−(34) with fixed values for τ (see Remark 2) as

K

x3

mg

M

x1

x2

x4

Fig. 2. Flexible joint robotic arm.
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LMIs, the largest terminal region E is obtained for τ = 7.7.

The corresponding solution of the LMIs (33)-(34) delivers

the linear feedback matrix

K =
[

−1.8582 −0.4410 0.6562 −0.5066
]

, (46)

and the terminal penalty matrix

P =









17.6206 1.0311 −10.8430 3.3873
1.0311 0.1626 −0.6668 0.2020

−10.8430 −0.6668 15.4697 −1.1346
3.3873 0.2020 −1.1346 1.1990









, (47)

and thus, with α = 2.5503, the terminal penalty term E(x) =
xT Px and the terminal region E(α) = {x ∈ W : xT Px ≤
α}. Interestingly, for the robotic arm a solution of the set

of LMIs derived in Section III-A does not exist due to the

equality constraint (24).

V. CONCLUSIONS

In the first part of this paper a brief overview of some aspects

of stabilizing predictive control has been given. To satisfy the

conditions for NMPC stability, a suitable terminal penalty

term and terminal region have to be calculated. This is in

general a nontrivial task. Therefore, in the second part a

subclass of nonlinear systems, namely Lure systems, has

been considered and two methods have been introduced

which both provide a structured approach to calculate the

terminal penalty term and the terminal region via LMIs.

The first method is applicable to Lure systems satisfying

a complete sector condition and thus it is applicable to a

broader class of systems. However, it requires that a rather

restrictive equality constraint is satisfied which can lead to

solvability problems of the obtained set of LMIs. Therefore,

in a second step Lure systems with more restrictive, growth

bounded nonlinearities have been considered. The conditions

on these nonlinearities have been used to overcome the

solvability problem of the first method. In the last part two

examples, one for each solution approach, have illustrated

the results of this paper.
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[3] H. Chen and F. Allgöwer. A quasi-infinite horizon nonlinear model

predictive control scheme with guaranteed stability. Automatica,
34(10):1205–1217, 1998.

[4] W. Chen and D.J. Ballance. On attraction domain of model predictive
control of nonlonear systems with input/state constraints. Technical
report, CSC-99009, 1999. University of Glasgow.

[5] R. Findeisen. Nonlinear Model Predictive Control: A Sampled-Data

Feedback Perspective. PhD thesis, University of Stuttgart, 2004.
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