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Abstract—This paper studies synchronization properties of 
two classes of complex networks: directed time-varying network 
and undirected time-invariant network with constant edge 
weights. Based on Lyapunov stability theory, sufficient 
conditions for globally exponential and asymptotical 
synchronization are proposed for both of the two networks 
under control, which consists of an impulsive controller and a 
switching controller with time-invariant delayed. A numerical 
example is provided for illustration. 

I. INTRODUCTION 
N  recent years, complex networks have attracted 
increasing attention in the scientific community because of 
the ubiquity of complex networks in sciences and societies 

naturally. Undoubtedly, many complex systems in nature can 
be modeled as networks [1, 2]. Furthermore, the real-world 
complex networks have the following features: (i) the 
dynamical system of coupled nodes may be normal systems, 
chaotic systems, or more complex systems; (ii) the topology 
could be time-varying; (iii) the states of the nodes may 
change because of the occurrence of impulses or switches, 
and the topology may change instantaneously, e.g., a star 
network may switch to a nearest-neighbor network; (iv) there 
exists time delays and some of them cannot be ignored. 

One of the interesting phenomena is the synchronization of 
all dynamical nodes in complex network [3-9]. Nijmeijer et al 
studied the existence and stability of the linear invariant 
synchronous state in a simple coupled identical dynamical 
network through Lyapunov’s direct method in Ref. [3]. A 
previously common method is to make the nonlinear nodes 
linear around the synchronous state and the coupling 
configuration matrix diagonal thereby [4-6]. For the networks 
which can not achieve synchronization themselves, the 
introduced controller can control them to synchronize [7-8]. 
Criteria for locally and globally adaptive synchronization of 

an uncertain network are deduced in Ref. [7]. Chen et al 
proved that a single controller can pin a complex network to a 
homogenous solution [8]. 
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In particular, some practical complex networks may 
change suddenly and sharply and thus the modes switch 
simultaneously. This kind of networks can be found in many 
evolutionary processes, such as bursting rhythm models in 
pathology, optimal control models in economics and so on. 
For these networks, we need a different controller, and [9] 
presents a hybrid control strategy.  

However, in reality, time-delay in signal transmission and 
response of controller may cause time-delay in the controller 
(see more details in [10]). Unfortunately, the control with 
delay in complex network has not been studied yet. 

In this paper, synchronization problems of two classes of 
complex networks, namely, directed time-varying network 
and undirected time-invariant network with constant edge 
weight are studied respectively. The control strategy 
introduced in this paper is a hybrid control method, which is a 
combination of an impulsive controller and a switching 
controller with constant time delay. This control strategy 
shows the advantages as follows: (i) it only uses the small 
control impulses in different modes [11]; (ii) it can reduce the 
information redundancy and simple to implement; (iii) it also 
acts on the complex system, of which behaviors are 
unpredictable; (iv) time delay in controller represents the 
response lag of each node, which can represent networks 
more realistically. Each isolated node of complex network 
under this hybrid control may work on several different 
modes according to different switching intervals. Based on 
the Lyapunov stability theory, sufficient conditions for 
globally exponential and asymptotical synchronization of 
both networks are obtained. 

The organization of this paper is as follows. In section 2, 
synchronization of a class of directed time-varying network is 
discussed. A class of undirected time-invariant network is 
then discussed in section 3. A numerical example is given to 
verify the effectiveness of the proposed control methods in 
section 4.  

II. SYNCHRONIZATION ANALYSIS OF HYBRID CONTROL 
COMPLEX NETWORK WITH TIME-VARYING TOPOLOGY  

Consider a complex dynamical network with coupling 
time-delay. The network consists of  identical coupled 
nodes, of which each node is an n-dimensional dynamical 
subsystem with linear and nonlinear parts, which is described 
by 
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where ,  is the 

state variable of node .  is a nonlinear 
vector-valued function with . 
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Remark 1. The varying asymmetric coupling matrix 

 shows two characters of the network: (i) 

the network is directed, i.e., ;   (ii) the 

topology of the network is time-varying, i.e., the link from 
two corresponding nodes  to 

nnij tctC ×= ))(()(
)()( tctc jiij ≠

i j may cut when  

changes from nonzero to zero, vice versa. 

)(tcij

 
The network (1) is said to achieve synchronization when 

,  as , where  be 
a solution of an isolate node of the network (1) without 
coupling, i.e., 

)()( tstxi = ),,2,1( Ni L= ∞→t )(ts

),()( stgAsts +=& .             (2) 
As an isolate node of the network,  can be an 
equilibrium point, a nontrivial periodic orbit, or even a 
chaotic orbit. 
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where  and  are  constant matrices, with 

switching signal 
σB kE nn ×
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where  ))(,())(,(),,(~ tstgtxtgsxtg ii −= . 
 
Lemma 1[12]. If , Y are real matrices with appropriate 
dimensions, there exist a constant 

X
0>ε , that 

YYXXXYYX TTTT 1−+≤+ εε . 
Lemma 2[13]. Given a constant 0>ξ , then  

yyxxyx TTT ξξ +≤ −12 , for all and . nRx ∈ nRy ∈
Lemma 3[14]. If nnRP ×∈  is a positive definite matrix, 

 is an symmetric matrix, then 

 

nnRQ ×∈
QxxPxxQP TT ≤− )( 1

minλ
 ,  nT RxPxxQP ∈≤ − ,)( 1

maxλ
where )(min ∗λ  and )(max ∗λ  are the minimum and 
maximum eigenvalues of  ∗ , respectively. 
 

The notations  used throughout the Letter stands for 
some positive-definite matrices. Similar to Refs.[9, 13], the 
following assumptions are made for our results. 

σP

Assumption 1. For +∈ Rt , there exists continuous function 
0)( ≥tϕ , which satisfy  

)()()()(),,(~ tePtettePsxtg i
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and [ ] ( )χστσ ,:)(mode i=− , where  and +∈ Zχ

1+<−< χχ τ ttt . 

Assumption 3. If the state  of system (5) is in the )(tei σ  

mode, the delayed state )( τ−tei is in the )(mode τσ −  
mode of node . i
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where 0>ε , 0>ξ  and 0>μ  are constants. 
 
Theorem 1. Suppose that Assumptions 1-3 are satisfied.  
i) If there exist two constants α , β  satisfying  0≥≥ αβ  

and 0)(ˆ <−≤ βγ t  such that 

,,2,1,0)(ln 1 L=≤−− − ktt kkk αρη      (11) 
then the trivial solution of the error system (5) is globally 
exponentially stable, which implies network 
synchronization is reached exponentially by every node in 
the network (1) under control (4). 

ii) If 0)(ˆ ≥tγ  and there exists a constant 1≥α such that 
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then 1=α  implies that the trivial solution of the error 
system (5) is stable,  and 1>α  implies that the trivial 
solution of the error system (5) is asymptotically stable 
which implies that network synchronization is reached 
asymptotically by every node in the network (1) under 
control (4).  
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From Lemma 2, there exist a constant 0>ξ , such that 
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Thus, the trivial solution of the error system (5) is globally 
exponentially stable, which implies network synchronization 
is reached exponentially by every node in the network (1) 
under control (4). 
 ii) If 0)(ˆ ≥tγ , and there exists a constant 1≥α  satisfying 
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then 1=α  implies that the trivial solution of the error 
system (5) is stable,  1>α  implies that the trivial solution of 
the error system (5) is asymptotically stable, therefore, 
network synchronization is reached asymptotically by every 
node in the network (1) under control (4). 
 

The proof is completed. 

III. SYNCHRONIZATION ANALYSIS OF HYBRID CONTROL 
COMPLEX NETWORK WITH INVARIANT TOPOLOGY 

In section 2, we discuss a class of directed time-varying 
network. But some of real networks are with time-invariant 
topology. Therefore, in this section, we discuss a class of 
undirected time-invariant network, which is described by 
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Theorem 2. Suppose Assumptions 1-2 are satisfied.  
i) If there exist two constants β ′ , α ′  satisfying  

0≥′≥′ αβ  and 0)(ˆ <′−≤′ βγ t  such that 
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then the trivial solution of the error system (19) is globally 
exponentially stable, which implies network 
synchronization is reached exponentially by every node in 
the network (18) under control (4). 

ii) If 0)(ˆ ≥′ tγ  and there exists a constant 1≥′α such that 

L,2,1,0)(ˆln 1 =≤′+′ ∫
+ kdssk

k

t

tk γρηα , 

then 1=α  implies that the trivial solution of the error 
system (19) is stable,  and 1>α  implies that the trivial 
solution of the error system (19) is asymptotically stable 
which implies that network synchronization is reached 
asymptotically by every node in the network (18) under 
control (4).  

 
The proof is similar with Theorem 1, the details are omitted. 
 

Remark 2. Theorem 1 and Theorem 2 don’t impose any 
bound on the delay constant τ . Thus, our synchronization 
results are independent of delay. 

IV. AN ILLUSTRATIVE EXAMPLE 
In this section, we give an example to illustrate the 

effectiveness of the proposed method. 
Consider a nearest-neighbor coupled network with 5 
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Switching signal ),(: kiσσ =  changes with time and node, 
such as, for L,1,0=h , when 

( ) ( )( ]12002.0,2002.0 +∈ hht , , 5,3,1=i 1BB =σ , 

4,2=i , 2BB =σ . When 

( ) ( )( ]22002.0,12002.0 ++∈ hht , , 5,3,1=i 2BB =σ , 

4,2=i , 1BB =σ . 
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Let , IP =σ 2,1=σ , we have ),,(~ sxtg i  

 in error system and 

Ref. [9] shows that there exists a positive constant  

T
iiii xxxxxxxx ),,0( 121121311311 −−=

60=δ , 
satisfying δδ ≤≤ ixs , . Then we can obtain 

)()(2)(),,(~ tePtetePsxtg iiii
T

σσ δ≤ , δϕ 2)( =t . From 

(6) to (11), we obtain 1=ρ , 4991.389)( =tγ , 

2995.11=β , 0795.507)(ˆ =tγ , 00961.0 >=kη , 

10.4058=kρ  ,with 1=ε , 1=ξ , 1=μ . Assumptions 
1-2 are satisfied. 
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Fig.1.States error of the directed network under control (4) with 05.0=τ . 
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Fig.2. States error of the directed network under control (4) with 5=τ . 

Let 02.1=α , then  

. With this, from Theorem 1, the trivial 
solution of error system (5) is asymptotically stable. The 
complex network achieves asymptotical synchronization. 
Fig.1 and Fig.2 show the states error of each node in the 
nearest-neighbor coupled network with control delay 

∫
+

+
1 )(ˆln k

k

t

tk dssγαρη

3084.1−= 0<

05.0=τ  and 5=τ , respectively. The illustrative figures 
show that our synchronization results are independent of 

delay τ . 

V. CONCLUSION 
In this paper, we studied synchronization of two classes of 

complex networks, which are a class of directed time-varying 
network and a class of undirected time-invariant network 
with constant edge weights, respectively. The control strategy 
introduced is a hybrid control method, which is a combination 
of an impulsive controller and a switching controller with 
constant time delay. Sufficient conditions for globally 
exponential and asymptotical synchronization of both of the 
two networks are established. An illustrative example has 
been given to show the effectiveness of the theoretical results. 
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