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Abstract— This paper presents a nonlinear predictive control
scheme for a new linear axis. Its guided carriage is driven
by a nonlinear mechanism consisting of a rocker with a pair
of pneumatic muscle actuators arranged at both sides. This
innovative drive concept allows for an increased workspace
as well as higher carriage velocities as compared to a direct
actuation. Modelling leads to a system of nonlinear differential
equations including polynomial approximations of the volume
characteristic as well as the force characteristic of the pneu-
matic muscles. For the control of the carriage position and the
mean pressure a nonlinear model predictive trajectory control
is designed. The main idea of the used method consists in a
minimization of the tracking error at the end of the prediction
horizon. That way the computation load can be kept relatively
small. Remaining model uncertainties as well as nonlinear
friction can be counteracted by an observer-based disturbance
compensation. Experimental results from an implementation on
a test rig show a high control performance.

I. INTRODUCTION

As shown in earlier work [1], [2] pneumatic muscles

in combination with sophisticated nonlinear control can be

used in motion control applications where precise tracking

control of desired trajectories is required. Due to this fact,

current research at the University of Rostock focusses on the

use of pneumatic muscles as low-cost actuators in robotics.

Pneumatic muscles are tension actuators consisting of a fiber-

reinforced vulcanised rubber tubing with connection flanges

at both ends. Because of a special fiber arrangement, the

pneumatical muscle contracts with increasing internal pres-

sure, which can be used for actuation purposes. Pneumatic

muscles offer major advantages in comparison to classical

pneumatic cylinders. They have significantly less weight,

there are no stick-slip effects, the muscles are insensitive to

dirty working environment and they have a larger maximum

force. The nonlinear characteristics of the muscle, however,

demand for nonlinear control, e.g. optimal control in ear-

lier research [2]. There, a nonlinear control scheme for a

one-degree-of-freedom linear axis directly driven by pneu-

matic muscles was presented. To increase both the available

workspace and the maximum velocity of the carriage, a new

nonlinear drive mechanism is employed as depicted in fig.

1. Here, two guideways with roller bearing units allow for

rectilinear movements of the carriage with relatively small

friction forces. The carriage is driven by a rocker. A bearing

unit at the head of the rocker allows for both rotational and

translational relative motion and transmits the drive force to

the carriage. The rocker is actuated by a pair of pneumatic
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Fig. 1: High-speed linear axis

muscles in an antagonistic arrangement. The mounting points

of the pneumatic muscles at the rocker have be defined so as

to gain a reasonable trade-off between increase in maximum

velocity and reduction of the achievable drive force. The

mass flow rate of compressed air in and accordingly out

of each pneumatic muscle is controlled by means of a

separate proportional valve. The incoming air is available

at a maximum pressure of 7 bar, whereas the outlet air

is discharged at atmospheric pressure, i.e. 1 bar. Pressure

declines in the case of large mass flow rates are avoided by

using an air accumulator for each muscle.

The paper is structured as follows: first, the modelling of the

mechatronic system is addressed. For the nonlinear charac-

teristics of the pneumatic muscle, i.e. the muscle volume and

the muscle force, polynomial descriptions are used in terms

of contraction length and internal muscle pressure. Second, a

nonlinear model predictive trajectory control scheme for the

linear axis is proposed, which aims at reducing the predicted

state error. For the control design the carriage position and

the mean muscle pressure of the pair of pneumatic muscles

serve as controlled variables. A disturbance force resulting

from remaining modelling errors w.r.t. the force characteristic

of the pneumatic muscles as well as the friction characteristic

of the carriage is compensated by a nonlinear reduced-order

disturbance observer. By this, desired trajectories for both

carriage position and mean pressure can be tracked with

high accuracy as shown by experimental results from an

implementation at a test rig.
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Fig. 2: Kinematical structure of the high-speed linear axis

II. MODELLING OF THE MECHATRONIC SYSTEM

As for modelling, the mechatronic system under consider-

ation is divided in a mechanical and a pneumatic subsystem,

which are coupled by the drive torque resulting from the

tension forces of the pair of pneumatic muscles. In contrast

to the model of [3] the dynamics of the pneumatic subsystem

is taken into consideration as well.

A. Modelling of the mechanical subsystem

The chosen mechanical model for the high-speed linear

axis consists of the following three elements (fig. 2): a rigid

body for the rocker as actuated link (mass mR, reduced mass

moment of inertia w.r.t. the rocker joint JR, distance sR to the

centre of gravity CR, varying length of the link lR), a single

lumped mass for the lateral connecting rods (mass mA, centre

of gravity distance lA to the rocker joint) and a lumped mass

for the carriage (mass mC).

The inertial yz-coordinate system is chosen in the base

joint of the rocker. The mounting points of the pneumatic

muscles at the rocker are characterised by the distance lA in

longitudinal direction and the perpendicular distance b of the

lateral connecting rods as shown in fig. 2. The motion of the

high-speed axis is completely described by the generalised

coordinate ϕ(t), which denotes the inclination of the rocker

w.r.t. the plumb line. The carriage position is related to the

rocker angle by the horizontal component zC(t) = l · tanϕ(t),
where l denotes the length between the mounts at the head

and the bottom of the rocker at carriage position zC = 0.

The equation of motion directly follows from Lagrange’s

equations in form of a second order differential equation

J(ϕ)ϕ̈ + k(ϕ, ϕ̇) = τ − τU , (1)

with the resulting mass moment of inertia J(ϕ) = mC · l
2 ·(1+

tanϕ2)2 +JR +mA · l
2
A and the term k(ϕ, ϕ̇) = 2 ·mC · l2 · (1+

tanϕ2)2 · tanϕ · ϕ̇2−(mR/2 · l +mA · lA) ·g ·sinϕ , which takes

into account the centrifugal as well as the gravity forces. The

drive torque τ resulting from the muscle forces FMi, i = {l,r}
can be stated as

τ =~ex · (FMr ·~rFr ×~eMr +FMl ·~rFl ×~eMl) , (2)

with the unity vector ~ex = [1,0,0]T in x-direction and the

unity vectors ~eMi = ~dMi/dMi in direction of the pneumatic

muscle forces. The position vectors ~rFi describe the con-

necting points, where the muscle forces act on the rocker.

All remaining model uncertainties are taken into account by

the disturbance torque τU . On the one hand, these uncertain-

ties stem from approximation errors concerning the static

muscle force characteristics and non-modelled viscoelastic

effects of the vulcanised rubber material. On the other hand,

time-varying damping and friction acting on the carriage as

well as on the rocker depend in a complex manner on lots

of influence factors and cannot be accurately represented by

a simple friction model.

B. Modelling of the pneumatic subsystem

A mass flow ṁMi, i = {l,r} into the pneumatic muscle

leads to an increase in internal pressure pMi, and a con-

traction ∆ℓMi of the muscle in longitudinal direction due to

specially arranged fibers. The maximum contraction length

∆ℓM,max is given by 25% of the uncontracted length. This

contraction effect can be exploited to generate forces. The

force FMi and the volume VMi of a pneumatic muscle depend

nonlinear on the according internal pressure pMi and the

contraction length ∆ℓMi. The definition of the contraction

length can be derived from fig. 2. Given the length of the

uncontracted muscle ℓM , the contraction length of a pneu-

matic muscle can be calculated with the distance dMi = |~dMi|
between both connecting points of each muscle i = {l,r}.

Simple geometrical considerations lead to the length of the

left respectively right pneumatic muscle

dMi =
√

d2
Miy +d2

Miz , (3)

with dMiy =−ℓA ·cosϕ±b ·sinϕ +ℓA and dMiz =−ℓA ·sinϕ∓
b · cosϕ ± a. As a result, the contraction lengths for both

pneumatic muscles are related to the rocker angle

∆ℓMi = ℓM −dMi(ϕ) . (4)

The dynamics of the internal muscle pressure follows directly

from a mass flow balance in combination with the energy

equation for the compressed air in the muscle. As the

internal muscle pressure is limited by a maximum value

of pMi,max = 7 bar, the ideal gas equation represents an

accurate description of the thermodynamic behaviour. The

thermodynamic process is modelled as a polytropic change

of state with n = 1.26 as identified polytropic exponent. The

identified volume characteristic (fig. 3) of the pneumatic

muscle can be described by a polynomial function of both

contraction length ∆ℓMi and the muscle pressure pMi

VMi (∆ℓMi, pMi) =
3

∑
j=0

a j ·∆ℓ j
Mi ·

1

∑
k=0

bk · pk
Mi. (5)

The resulting state equation for the internal muscle pressure
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Fig. 3: Identified volume characteristic of the pneumatic

muscle

0
0.05

0.1
0.15

0.2
0.25

0

2

4

6

8

x 10
5

−500

0

500

1000

1500

2000

dl
Mi

 [m]p
Mi

 [Pa]

F
M

i [
N

]

Fig. 4: Identified force characteristic of the pneumatic

muscle

in the muscle i is given by

ṗMi =
n

VMi +n · ∂VMi

∂ pMi
· pMi

[uMi

−
∂VMi

∂∆ℓMi

·
∂∆ℓMi

∂ϕ
· pMi · ϕ̇

]

, (6)

where uMi = RL · TMi · ṁMi denotes the input variable. The

internal temperature TMi can be approximated with good

accuracy by the constant temperature T0 of the ambiance, see

[4]. In this way, temperature measurements can be avoided,

and the implementational effort is significantly reduced.

The force characteristic FMi (pMi,∆ℓMi) of a pneumatic mus-

cle states the resulting tension force for given internal

pressure pMi as well as given contraction length ∆ℓMi and

represents the connection of the mechanical and the pneu-

matic system part. The nonlinear force characteristic (fig.

4) has been identified by static measurements and, then,

approximated by the following polynomial description

FMi (pMi,∆ℓMi) =
3

∑
m=0

(am ·∆ℓm
Mi) · pMi −

4

∑
n=0

(bn ·∆ℓn
Mi)

= F̄Mi (∆ℓMi) · pMi − fMi (∆ℓMi) .

(7)

III. NONLINEAR MODEL PREDICTIVE CONTROL

(NMPC)

Predictive control represents a class of algorithms that are

based on the prediction of the system states x over a time

span denoted prediction horizon TP. Model predictive control

implies that a process model is used for the prediction of

the dynamic behaviour. An outline of NMPC is given by

[5]. Based on the state space model and the measured state

vector at time t0, the sequence of input variables according to

a chosen cost function is calculated. After applying the first

element of the input vector to the process, the optimization

procedure is repeated at the following time instant with

the prediction horizon moving forward: the moving horizon

approach [6]. The main idea of the following algorithm

consists of a minimization of the tracking error at the end of

the prediction horizon TP between the predicted state and the

desired state resulting from trajectory planning [7], [8]. The

minimization is achieved by repeated approximate numerical

optimization in each time step, in the given case using the

Newton-Raphson technique. The optimization is initialised in

each time step with the optimization result of the preceding

time step in form of the input vector. The NMPC-algorithm

is based on the following nonlinear time-discrete state space

representation

xk+1 = f(xk,uk) , yk = h(xk,uk) , (8)

with the state vector xk ∈Rn, the control input uk ∈Rm, the

output vector yk ∈ R p and the initial vector x0 ∈ Rn. The

constant M specifies the prediction horizon TP as a multiple

of the sampling time ts

TP = M · ts . (9)

The predicted input vector at time k becomes

uk,M =

[

u
(k)
1

T
, ...,u

(k)
M

T
]T

, (10)

with uk,M ∈ Rm·M . The predicted state vector at the end of

the prediction horizon φM(xk,uk,M) is obtained by repeated

substitution of k by k +1 in the time-discrete state equation

(8)

xk+2 = f(xk+1,uk+1) = f(f(xk,uk),uk+1)

...

xk+M = f(· · · f
︸ ︷︷ ︸

M

(xk,uk), · · · ,uk+M−1
︸ ︷︷ ︸

M

) = φM(xk,uk,M) .
(11)

The difference between φM(xk,uk,M) and the desired state

vector xd leads to the final control error

eM,k = φM(xk,uk,M)−xd , (12)

i.e., to the control error at the end of the prediction horizon.

The quadratic cost function to be minimized follows as

JMPC =
1

2
· eT

M,keM,k , (13)
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and, hence, the necessary condition for an extremum can be

stated as
∂JMPC

∂eM,k
= eM,k

!
= 0 . (14)

A Taylor-series expansion of (14) at uk,M in the neighbour-

hood of the optimal solution leads to the following system

of equations

0 = eM,k +
∂φM

∂uk,M
∆uk,M +T.h.O. (15)

The vector ∆uk,M represents the difference, which has to

be added to the input vector uk,M to obtain the optimal

solution. The n equations (15) represent an under-determined

set of equations with m · M unknowns having an infinite

number of solutions. An unique solution for ∆uk,M can be

determined by solving a L2-optimization problem with (15)

as side condition, which leads to the Moore-Penrose pseudo

inverse of
∂φM

∂uk,M
[1]

∆uk,M = −

(
∂φM

∂uk,M

)+

eM,k . (16)

One major advantage of predictive control is the posibility

to easily account for input constraints, which are present in

almost all control applications. To this end, the cost function

can be extended with a corresponding term h(u), see [1].

The overall NMPC-algorithm can be described as follows:

Choice of the initial input vector u
(d)
0,M at time

k = 0. For differential flat systems like the considered

linear axis, the desired initial vector u
(d)
0,M can be calculated

by evaluating an inverse system model (29) with the

specified reference trajectory as well as a certain number

of its time derivatives. Repetition of steps a) - c) at each

sampling time k ≥ 0 :

a) Calculation of an improved input vector vk,M according

to

vk,M = uk,M −ηk

(
∂φM

∂uk,M

)+

eM,k . (17)

The step width ηk can be determined with, e.g., the

Armijo-rule [9].

b) For the calculation of uk+1,M the elements of the vector

vk,M have to be shifted by m elements and the desired

input vector ud corresponding to the final state has to

be inserted at the end

uk+1,M =

[
0(m(M−1)×m) I(m(M−1))

0m×m 0(m×m(M−1))

]

vk,M

+

[
0(m(M−1)×m)

I(m)

]

ud .

(18)

The desired input vector ud is given by the inverse

dynamics (29).

c) The first m elements of the improved input vector vk,M

are applied as control input at time k

u(k) =
[

I(m) 0(m×m(M−1))

]
vk,M . (19)

In the proposed algorithm only one iteration is performed per

time step. A similar approach using several iteration steps is

described in [10], [11].

A. Numerical Calculations

The analytical computation of the Jacobian
∂φM

∂uk,M
becomes

increasingly complex for larger values of M. Therefore, a

numerical approach is preferred taking advantage of the

chain rule, i = 0, ...,M−1

∂φM

∂u
(k)
i+1

=
∂φM

∂xk+M−1

·
∂xk+M−1

∂xk+M−2

· · ·
∂xk+i+2

∂xk+i+1

·
∂xk+i+1

∂u
(k)
i+1

. (20)

Introducing the abbreviations

Ai :=
∂xk+i+1

∂xk+i

=
∂ f

∂x

(

xk+i,u
(k)
i+1

)

, (21)

Bi :=
∂xk+i+1

∂u
(k)
i+1

=
∂ f

∂u

(

xk+i,u
(k)
i+1

)

, (22)

the Jacobian can be computed as follows

∂φM

∂uk,M
= [AM−1AM−2 · · ·A1B0,AM−1 · · ·A2B1, ...,

AM−1BM−2,BM−1] .

(23)

For the inversion of the matrix S
(
φM,uk,M

)
=

∂φM

∂uk,M

(
∂φM

∂uk,M

)T

, the Cholesky-decomposition has proved

advantageous in terms of computational effort. It is

supposed, that the matrix S is symmetric and positive

definite, thus the matrix
∂φM

∂uk,M
has full rank. However

bad conditioned problems necessitate more expensive

algorithms like the QR-factorization or the singular value

decomposition [9].

B. Choice of the NMPC Design Parameters

The most important NMPC design parameter is the predic-

tion horizon TP, which is given as product of sampling time

ts and the constant value M as described by equation (9),

see also fig. 5. Large values of TP lead to a slow and smooth

transient behaviour. For fast trajectory tracking, a smaller

value TP is desirable concerning a small tracking error. Very

small values TP, however, influence the stability negatively.

The choice of the sampling time ts is crucial as well: a small

sampling time is necessary regarding discretisation error and

stability; at the same time, however, the NMPC-algorithm

has to be evaluated in real-time within the sampling interval.

Furthermore, the smaller ts, the larger becomes M for a given

prediction horizon, which in turn increases the computational

complexity of the optimization step. Consequently, a system-

specific trade-off has to made for the choice of M and ts. This

paper follows the moving horizon approach with a constant

prediction horizon and, hence, a constant dimension m ·M

of the corresponding optimization problem in contrast to the

shrinking horizon approach [10], [11].
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IV. NMPC OF THE LINEAR AXIS

With the rocker angle ϕ , the angular velocity ϕ̇ and the

internal muscle pressures pMi as states and u = [uMl ,uMr]
T

as the input vector, the state space equation follows from

equations (1) and (6). For discretisation the Euler approxima-

tion has been chosen. Thus, the computation effort remains

relatively small in comparison to alternative methods, e.g.

the Heun discretisation. Furthermore, no significant improve-

ment was obtained for the given system with the Heun

discretisation method because of the small sampling time ts =
2 ms. Only in the case of large sampling times, the increased

computational effort by a sophisticated time discretisation

method is advantageous. However, a small sampling time

yields a smaller tracking error than a large sampling time,

independent of the discretisation method.

Taking advantage of the differential flatness of the system

[12], the desired input vector ud is calculated using desired

values for the flat outputs yd and their time derivatives.

Subsequent differentiations of the two flat outputs lead to

y1 = ϕ , ẏ1 = ϕ̇ , (24)

ÿ1 = ϕ̈ (ϕ, ϕ̇ , pMl , pMr) , (25)
...
y 1 =

...
ϕ (ϕ, ϕ̇, ϕ̈, pMl , pMr, ṗMl , ṗMr) , (26)

y2 = pM = 0.5 · (pMl + pMr) , (27)

ẏ2 = ṗM = 0.5 · (ṗMl + ṗMr) . (28)

These equations allow for calculating the desired input vector

ud =

[
uld (y1, ẏ1, ÿ1,

...
y 1,y2, ẏ2)

urd (y1, ẏ1, ÿ1,
...
y 1,y2, ẏ2)

]

. (29)

A. Reduced nonlinear disturbance observer

Disturbance behaviour and tracking accuracy in view

of model uncertainties can be significantly improved by

introducing a compensating control action provided by a

nonlinear reduced-order disturbance observer. The observer

design is based on the equation of motion, where the variable

τU takes into account both the friction torques τRS and the

remaining model uncertainties of the muscle force charac-

teristics ∆FM . The nonlinear disturbance observer is capable

of counteracting impacts of changing carriage mass ∆mC as

well. The key idea for the observer design is to extend the

state equation with an integrator as disturbance model

ẏ = f(y,τU ,u) , τ̇U = 0 , (30)

where y = [ϕ, ϕ̇]T denotes the measurable state vector. The

estimated disturbance torque is obtained from

τ̂U = hT ·y+ z , (31)

with the chosen observer gain vector hT =
[

h1 h1

]
. The

state equation for z is given by

ż = Φ(y, τ̂U ,u) . (32)

The observer gain h and the nonlinear function Φ have to be

chosen, such that the steady-state observer error e = τU − τ̂U

converges to zero. Thus, the function Φ can be determined

as follows

ė = 0 = τ̇U −hT · f(y,τU ,u)−Φ(y,τU −0,u) . (33)

In view of τ̇U = 0, equation (33) yields

Φ(y,τU −0,u) = −hT · f(y,τU ,u) . (34)

The linearised error dynamics ė has to be made asymptoti-

cally stable. Accordingly all eigenvalues of the Jacobian

Je =
∂Φ(y,τU − e,u)

∂ (τU − e)
(35)

must lie in the left complex half-plane. This can be achieved

by proper choice of the observer gain h1. The stability of the

observer control system have been investigated by thorough

simulations.

B. Compensation of the valve characteristic

The nonlinear valve characteristic (VC) is compensated by

pre-multiplying with its inverse valve characteristic (IVC)

in each input channel. The valve characteristic has been

identified by measurements. Here, the inverse valve char-

acteristic depends both on the commanded mass flow and

on the measured internal pressure and yields the appropriate

input voltage uVi of the proportional valves.

V. EXPERIMENTAL RESULTS

The described NMPC scheme with the observer-based

disturbance compensation has been implemented at the test

rig of the University of Rostock. It is equipped with two

pneumatic muscles DMSP-20 from FESTO AG. The internal

pressures of the muscles are measured by piezo-resistive

pressure sensors, while the carriage position is determined

by a linear incremental encoder with an accuracy of 10 µm.

The desired trajectories for the carriage position, the in-

ternal pressures and their corresponding time derivatives

are obtained from a trajectory planning module that pro-

vides synchronous time optimal trajectories. Here the de-

sired z−position varies in an interval between −0.33 m

and 0.33 m, see fig. 6. As can be seen, the maximum

velocities are about 0.8 m/s. Hence, the utilised workspace

and velocities are significantly larger than in [1] and [2]

or in [13], where a mass is directly moved by a single
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Fig. 6: Desired trajectories and according tracking errors

for the carriage position and the mean pressure
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Fig. 7: Position error with changed mass of the carriage

pneumatic muscle. The mean pressure of the both muscles

is kept constant on 4 bar during the whole experiment. The

sampling time ts was set to 2 ms to allow for evaluating the

NMPC-algorithm in real-time and, moreover, to constrain the

discretisation error. In the lower part of fig. 6, the obtained

results are depicted for a prediction horizon TP = 150 ms,

i.e. M = 75. The maximum tracking error for the carriage

position during the acceleration and deceleration intervals

is approx. 2 mm, the maximum steady-state error about

0.3 mm. The tracking error of the mean pressure during

the movements is below 1.1 bar, whereas the steady-state

pressure error is smaller than 0.1 bar. In fig. 7 the robustness

of the controlled system regarding a changing mass of the

carriage is demonstrated. An increase in the carriage mass

mC = 18 kg about 25 kg leads to a maximum position error

of 6 mm, the steady state error is still smaller than 0.3 mm.

VI. CONCLUSION

In this paper, a nonlinear model predictive trajectory

control is presented for a high-speed linear axis driven

by pneumatic muscles. To increase both the workspace

and the maximum velocity, the muscles are linked by a

rocker to the carriage in comparison to a direct actuated

solution. The modelling of this mechatronic system leads

to a system of nonlinear differential equations of fourth

order. For the nonlinear characteristics of the pneumatic

muscles polynomials serve as good approximations. As the

nonlinear valve characteristic is linearised by means of a pre-

multiplication with its approximated inverse characteristic,

the mass flow represents the new control input. One of the

critical issues of NMPC design is the real-time solution of a

optimization problem during each sampling interval. In the

considered fast control application, the optimization problem

was reduced to minimizing the predicted final state error at

the end of the prediction horizon. In order to compensate

remaining uncertainties in the muscle force as well as friction

a nonlinear disturbance observer is adapted in the control

structure. Experimental results show the good closed-loop

performance with maximum position errors approx. 2 mm.
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