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Abstract— A robust, flight control law is investigated to
provide fault tolerance for air vehicles experiencing iner-
tial state measurement sensor degredation. The method is
particularly useful on low cost, precision weapons pursuing
dynamic targets. Observation techniques are facilitated by
representing the surface actuator aerodynamic induced hinge
moment by a function that is Lipschitz within the actuator
sweep angle. A stable output feedback flight control law,
requiring only acutator angular position and current measure-
ments, is designed to handle the hinge moment effects and
track a predetermined angle-of-attack reference trajectory.
Benefits include improved effectiveness, improved reliability
without additional hardware, and a cost and weight savings.
Simulations are conducted on a tactical missile interceptor to
evaluate the controller at various operating conditions in the
flight envelope.

I. INTRODUCTION

As war zones transition to large cities and urban areas, it

is becoming necessary to consider civilian populations when

selecting battlefield weapons. Therefore, modern tactical

munitions are becoming smaller and more numerous in

a given battlespace. With recent developments in modern

guidance systems, minaturization of these weapons allows

increased precision while reducing the risk of collateral

damage. However, attacking and/or defending against spe-

cific targets encompassing large civilian areas can require

large numbers of offensive and defensive munitions with

unprecedented accuracy. The risk of system failures in-

variably will increase with the number of active weapons

in the battlespace. It is desirable to keep system costs

low and many of these weapons will guide and control

autonomously without a contingency management protocol

subsequent to launch.

Most air vehicles possess an inertial measurement unit

(IMU) to measure the respective airframe rates and accel-

erations. These measurements are subsequently fed back to

the guidance and flight control computer for processing.

The following study specifically addresses issues associated

with corruption or loss of IMU sensor feedback. This

could result from noise corruption, saturation caused by

high accelerations during a boost phase, or complete sensor

failure. Degredation or loss of IMU sensor integrity in a

tactical precision munition would seriously inhibit flight

control system response to guidance commands. Cumulative

errors result in a missed target intercept and effectively

introduce an unguided munition in a potentially civilian

populated battlespace.

For this study, it is desired to provide an alternative to

inertial measurements during a faulted state by using an

observer. The observer relies on the actuator dynamics along

with the nonlinear hinge moment induced by aerodynamic

forces on the actuator surfaces. Research on nonlinear

observers is extensive in the literature. Observers for non-

linearities satisfying a Lipschitz condition are considered

in [1]. A special form of the observer in [1] with a state

feedback regulation controller is developed in [2] and shown

to satisfy certainty equivalence.

In this research, it is required that the air vehicle track a

predetermined angle-of-attack (AoA) reference trajectory.

Following from [2], a solution to the output feedback

tracking control problem is expounded. A dynamic model

augmented with aerodynamic hinge moment bias from the

flight control surface actuator is provided. Aerodynamic

hinge moments are estimated using computational fluid

dynamics (CFD) and modeled as a nonlinear, multivariable

continuous function. The hinge moment bias contribution is

shown to be locally Lipschitz within the actuator sweep an-

gle for specified flight conditions. The overall system model

is presented as separate linear and nonlinear components.

A linear, full-state feedback controller is designed with a

sufficient condition under which exponential stabilization

is achieved. With only actuator position and current output

available for measurement, a nonlinear observer is designed

and a sufficient condition developed for exponential stablil-

ity. Based on the controller and observer design, certainty

equivalence is obtained and simulations are conducted on

a tactical missile interceptor to verify flight control law

performance.

II. MODELING

Although many guided munitions use IMU measurements

to predict inertial velocity, the modeling effort in this

section assumes that the weapon velocity components can

be acquired from an external tracking source such as a fire

control radar. Future work, discussed in Section VI, will

investigate the feasibility of augmenting the dynamics with

a true velocity state.

Neglecting gravity, for a given airspeed and altitude, the

nonlinear, longitudinal equations of motion can be described
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by [3]

mα̇VT = FT sinα− LA(α, δ) +mVT q (1)

q̇ =
M(α, δ)

Iyy
(2)

where FT is the propulsion force, α is the angle-of-attack

and q is the pitch rate. The aerodynamic lift force, LA,

and pitching moment, M , are functions of α and actuator

control surface angular deflection, δ. The constants VT , m,

and Iyy represent the vehicle airspeed, mass, and pitch

axis moment of inertia, respectively. For this study, the

propulsion forces are assumed to be zero and changes in the

lift force and pitching moment are relatively linear within

the flight envelope and can be linearized to give

α̇ =
Zα
VT

α+
Zδ
VT

δ + q (3)

q̇ = Mαα+Mδδ (4)

where Z(•),M(•) are the corresponding acceleration and

moment stability derivative constants relative to (•), respec-

tively.

For most vehicles, δ is considered a “virtual” deflection

and is resolved from an internal surface mixing strategy

that incorporates muliple true fin deflections. To facilitate

this preliminary study, a vehicle was designed where virtual

deflections and true deflections map one-to-one. The true

control surface deflection is typically measured relative to

the vehicle body axis coordinate system. Figure 1 illustrates

this convention and depicts the influence of an aerodynamic

drag force, FD, inducing an actuator hinge moment. The

resulting hinge moment bias, MH , is nonlinear and a

combined torque profile can be represented as a multi-

variable, continuous, scalar function which can be deduced

mathematically from Figure 1 as

MH = FDlH sin(δ − α) =
1

2
ρV 2

T SH lH sin(δ − α) (5)

α

VT

δ

δ−α

FH

FD

MH

Fig. 1. Aerodynamic hinge moment bias description
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Fig. 2. Aerodynamic hinge moment bias comparison

where ρ is the air density, and lH , SH are an aerodynamic

reference length and area, respectively. Figure 2 shows

the hinge moment computed using equation (5) compared

to a CFD approximation. More complex geometries will

invariably produce more complex airflows. Therefore, the

relationship in (5) will not necessarily hold for all configu-

rations. Other methods such as polynomial curve-fitting or

piece-wise approximations may be required. The subsequent

control design discussed in Section III, however, can still

be applied. The flight control surface on most small, low

cost munitions is electro-mechanically actuated and can be

modeled as a linear DC motor. The nonlinear hinge moment

bias component enters as an external disturbance. Assigning

a convention where the hinge moment bias opposes the

internal actuator torque when positive current is applied,

the mechanical dynamics of the flight control actuator can

be represented as

Jδ̈ = Kti−MH(α, δ) (6)

where i is the applied current and J and Kt are the

system inertia and motor torque constant, respectively. The

electrical circuit dynamics of the actuator are described by

Vs = Ri+ L
di

dt
+ Vb (7)

where R and L are the coil resistance and induc-

tance, respectively, Vb = Ktδ̇ is the back electro-motive

force, and Vs is the supply voltage control input signal.

Combining equations (3)-(7) and choosing the states as

[α q δ δ̇ i] = [x1 x2 x3 x4 x5] gives the state-space repre-

sentation

ẋ1 = µ1x1 + x2 + µ2x3

ẋ2 = Mα x1 +Mδ x3

ẋ3 = x4 (8)

ẋ4 = µ3[Kt x5 −MH(x1, x3)]

ẋ5 = µ4(−Kt x4 −Rx5 + u)
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where

µ1 = Zα

VT
, µ2 = Zδ

VT
, µ3 = 1

J
, µ4 = 1

L

Angle-of-attack is typically computed from inertial mea-

surement quantities and, subsequently fed back to the flight

control algorithm for tracking error computation. However,

lacking a valid measurement of inertial quantities, only

the surface actuator position and current are considered

legitimate outputs

y1 = x3, y2 = x5 (9)

Although a global representation of the hinge moment

bias is not required, the anticipated flight conditions could

conceivably result in the quantity (δ − α) > π
6 . Therefore,

a linear approximation would be insufficient. Including the

second term in an infinite series approximation of sin(δ−α)
and defining µH = 1

2ρV
2
T SH lH from (5) gives

M̂H = µH
[

(δ − α) − 1
6 (δ − α)3

]

(10)

By redefining the hinge moment bias as

ψ = M̂H − µH(δ − α) (11)

equation (8) can be rewritten as

ẋ = Ax+Bu+ Ψ (12)

y = Cx

where

A =













µ1 1 µ2 0 0
Mα 0 Mδ 0 0
0 0 0 1 0

µ3µH 0 −µ3µH 0 µ3Kt

0 0 0 −µ4Kt −µ4R













BT = [0 0 0 0 µ4] BTψ =
[

0 0 0 −µ3µH

6 0
]

C =

[

0 0 1 0 0
0 0 0 0 1

]

and

Ψ(x) = Bψ(x3 − x1)
3 (13)

Let ∆max = ‖δ − α‖∞. For a given airspeed and altitude,

the nonlinearity, Ψ, is locally Lipschitz, with constant γ,

within the set of all possible AoA and actuator angular

positions of the flight envelope

‖Ψ(xa) − Ψ(xb)‖ ≤ γ ‖xa − xb‖ (14)

∀xa, xb ∈ X X := {x ∈ R
5 | 0 ≤ |x3 − x1| ≤ ∆max}

III. OUTPUT FEEDBACK CONTROL DESIGN

A controller is necessary to track a predetermined AoA

reference trajectory. The predetermined reference trajectory,

xr, can be selected to satisfy a reference model with a

desired dynamic performance corresponding to

ẋr = Axr +Bur + Ψ(xr) (15)

Although it is necessary to track AoA and pitch rate, the

output vector from (12) only provides actuator position

and current measurement. Therefore, an output feedback

tracking controller is required. This section outlines the

development of a stable, output feedback controller with a

nonlinear observer beginning with the following definition:

Definition 1: [4] Suppose A ∈ Cn×n is stable in the

sense that all eigenvalues have negative real parts. Then

δs(A) = min
ω∈R

σmin(A− jωI) (16)

is the distance to the set of unstable matrices where

σmin(A − jωI) is the minimum singular value of

(A− jωI), ∀ω ∈ R.

Lemma 1: Consider the Algebraic Riccati Equation

(ARE)

A∗P + PA + PP + ρI = 0

and associated Hamiltonian matrix

H =

[

A I
−ρI −A∗

]

where ρ > 0 and A is Hurwitz. If
√
ρ < δs(A), then H

is hyperbolic (all eigenvalues of H have nonzero real parts)

and there exists a unique P = PT > 0 which is the solution

to the ARE.

Proof: The eigenvalues of H may be found by

considering

det(sI − H) = det

[

sI −A −I
ρI sI + A∗

]

= det[(sI −A)(sI + A∗) + ρI] = 0

It follows that s = jω is an eigenvalue of H if the matrix

[(A− jωI)∗(A− jωI) − ρI]

is singular. Noting from (16) that

δ2s(A)I ≤ (A− jωI)∗(A− jωI), the eigenvalues

of H will always have nonzero real parts if

δ2s(A) − ρ > 0 or
√
ρ < δs(A).

In order to fulfill the AoA tracking requirement and man-

age the hinge moment nonlinearity outlined in Section II,

an output feedback controller consisting of a linear state

feedback control law coupled with a nonlinear observer is

presented.

Theorem 1: Consider the system given by (12) with

nonlinearity defined by (14). The output tracking control

law

u = Lẋ5r +Rx5r +Ktx4r −Kcê (17)
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with ê = x̂− xr and nonlinear observer

˙̂x = Ax̂+Bu+ Ψ(x̂) + Lo(y − Cx̂) (18)

where Kc,Lo ∈ R
5 are gain vectors chosen such that

Ac = A− BKc and Ao = A− LoC are Hurwitz, renders

the tracking error dynamics

ė = Ace+ Ψ(x) − Ψ(xr), e = x− xr (19)

and observer error dynamics

˙̃x = Aox̃+ Ψ(x) − Ψ(x̂), x̃ = x− x̂ (20)

exponentially stable for all x ∈ X if

γ < δs(Ac) and γ < δs(Ao) (21)

Proof: Substituting (17) into (8) gives

ė = Ace+BcKcx̃+ Ψ(x) − Ψ(xr) (22)

Consider a Lyapunov function candidate

V (e, x̃) = ξeTPce+ x̃TPox̃ (23)

where ξ is a positive constant and Pc, Po ∈ R5×5 are
symmetric, positive definite. Taking the time derivative
of (23) yields

V̇ (e, x̃) = ξ{eT (AT

c Pc + PcAc)e + 2e
T
Pc[Ψ(x) − Ψ(xr)]+

2e
T
PcBcKcx̃} + x̃

T [AT

o Po + PoAo]x̃ + 2x̃
T
Po[Ψ(x) − Ψ(x̂)]

≤ ξ{eT (AT

c Pc + PcAc)e + 2γ‖Pce‖ ‖e‖ + 2PcBcKc‖e‖ ‖x̃‖}

+ x̃
T (AT

o Po + PoAo)x̃ + 2γ‖Pox̃‖ ‖x̃‖

≤ ξ{eT (AT

c Pc + PcAc + PcPc + γ
2
I)e + 2PcBcKc‖e‖ ‖x̃‖}

+ x̃
T (AT

o Po + PoAo + PoPo + γ
2
I)x̃

Now, for any ηc, ηo > 0, there exist symmetric, positive

definite Pc, Po such that

ATc Pc + PcAc + PcPc + γ2I = −ηcI (24)

ATo Po + PoAo + PoPo + γ2I = −ηoI (25)

if the associated Hamiltonian matrices

Hc =

[

Ac I

−(γ2 + ηc)I −ATc

]

, Ho =

[

Ao I

−(γ2 + ηo)I −ATo

]

are hyperbolic. From (21) in the hypothesis, consider the

continuous function f(γ) = γ2 − δ2s(Ac) < 0. Since f is

continuous, there exists ηc > 0 such that

f(γ) = γ2 + ηc − δ2s(Ac) < 0 or
√

γ2 + ηc < δs(Ac)

A similar continuity argument can be made regarding the

observer resulting in
√

γ2 + ηo < δs(Ao). Therefore, the

Hamiltonian matrices, Hc and Ho, are hyperbolic from

Lemma 1, and it follows from (24) and (25) that

V̇c(e, x̃) ≤ −ξηc‖e‖2 + 2ξPcBcKc‖e‖ ‖x̃‖− ηo‖x̃‖2 (26)

Defining ξc = 2‖PcBcKc‖, ξ = ηcηo

ξ2
c

, and noting

(

1√
2

ηc
√
ηo

ξc
‖e‖ − 1√

2

√
ηo‖x̃‖

)2

≥ 0 (27)

gives

V̇ (e, x̃) ≤ −ξηc‖e‖2 + ξξc‖e‖ ‖x̃‖ − ηo‖x̃‖2

≤ −η
2
cηo
ξ2c

‖e‖2 +
ηcηo
ξc

‖e‖ ‖x̃‖ − ηo‖x̃‖2

≤ −1

2

(

η2
cηo
ξ2c

‖e‖2 + ηo‖x̃‖2

)

(28)

Therefore, V (e, x̃) is a Lyapunov function and e, x̃ → 0
exponentially as t→ ∞.

Remark 1: The number δs is realization dependent.

Therefore, a coordinate transformation, x′ = Tx, can be

used to reduce the value of γ and increase δs [5]. When

using standard SI units, the actuator inertia is typically very

small relative to Kt, R, and L resulting in large values of

µ3. A similarity transformation e′ = Te where

‖T−1ψ(Txa) − T−1ψ(Txb)‖ ≤ γ′‖xa − xb‖ (29)

can be used to produce a new Lipschitz constant where

γ′ < γ.

IV. TRAJECTORY GENERATION

Full-state reference trajectories must be provided to the

controller of Section III for tracking. For output α, the

relative degree of the full state system (8) is four and,

therefore, four differentiations of the output are required to

compute a desired feedforward reference trajectory. For a

given set of desired initial and final boundary conditions on

α, a polynomial interpolation method [6] was used to pro-

duce smooth, continuous trajectories in α and corresponding

derivatives. Given the desired initial and final values of α,

an equilibrium could be calculated using (4) to determine

the initial and final values of δ required to trim the vehicle.

The actuator deflection trajectory dynamics can then be

computed from

µ2δ̇ = −Mδδ + α̈− µ1α̇−Mαα (30)

Once the differential equation (30) is solved for δ, the re-

maining derivatives δ̇, δ̈,
...
δ can be found analytically by two

more differentiations of (30) and using
...
α, α(4). Now that all

derivatives in α and δ are known, q and i can be determined

from (3) and (6), respectively. Differentiating (6), solving

for di/dt, and substituting into (7) results in the feedforward

control voltage reference

V ffs =µHKtL[cos(δ − α)(1 − α)δ̇

+ cos(δ − α)(δ − 1)α̇+
...
δ ] +Ktδ̇ +Ri (31)

This particular strategy, as described here, is capable of

being discretized and solved in real-time.

V. SIMULATION RESULTS

Simulations were conducted to verify the control design

developed in the previous section. To reflect the perfor-

mance of a small, agile precision weapon, it was desired

that the airframe perform a 10◦ α-maneuver in 100 mil-

liseconds at Mach 3. Values for the airframe and actuator
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TABLE I

AIRFRAME PARAMETERS

Parameter Value

Zα ( m

sec2−rad
) -3250

Zδ ( m

sec2−rad
) 475

Mα ( 1

sec2
) -4481

Mδ ( 1

sec2
) 5186

VT ( m

sec
) 1018

TABLE II

ACTUATOR PARAMETERS

Parameter Value

Kt ( N-m

amp
) 0.562

J (kg-m
2) 0.005

R (Ω) 1.420

L (mH) 10

Vmax (Volt) 48

SH (cm
2) 14.0

lH (cm) 0.140

parameters are given in Tables I and II, respectively. The

predetermined state reference trajectories were computed

using the algorithm discussed in Section IV.

The Lipschitz constant was determined from (14) and the

maximum value of δ−α. Based on the maneuverability re-

quirements of the munition, AoA would not exceed a range

of ±25◦. The operational limits for actuator deflection were

±35◦. Therefore, ∆max = π
3 rad. Simple differentiation

of Ψ, as given in (13), shows that a maximum occurs at

δ − α = π
3 and results in a Lipschitz constant, γ = 426.

The control gains to produce Ac were initially selected

such that the time constant on α was at least three times

that of the desired maneuver time. The observer poles

were selected to be five times faster than the controller

poles. Note from Table II that the value of the actuator

inertia in SI units was small compared to the other physical

parameters in the system resulting in a large quantity µ3µH
which directly affects the nonlinearity (13). Therefore, a

transformation, as discussed in Remark 1, was required to

reduce the Lipschitz constant.

Excessive overshoot was noted on the actuator deflection

and in several cases the control effort was close to satu-

ration. Therefore, the gains were adjusted accordingly to

mitigate these effects. Final values of the control gains and

observer gains were determined as

Kc = [−688 104 674 36 9]

LTo =

[

−8 −197 −1 −48 7
−228 −1069 2 −96 8

]

(32)

The transformations selected to reduce the Lipschitz con-

stant and meet the sufficient condition of Theorem 1 were

Tc = diag{1 1 1 1000 1} → e′ = Tce

To = diag{1 1 1 2000 1} → x̃′ = Tox̃
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The corresponding Lipshitz constants and distance to sin-

gularity were computed as
√

(γ′c)
2 + ηc = 0.48 < δs(Ac) = 0.49

√

(γ′o)
2 + ηo = 0.38 < δs(Ao) = 0.98

where ηc = 0.05 and ηo = 0.1. Figure 3 compares the ob-

served and reference trajectories of a 10◦ maneuver where

the observer initial condition α̂ was set to 2◦. The con-

troller immediately begins to compensate for the observer

descrepancy which produces large transient errors in the

actuator rate dynamics. This transient is also reflected in the

true state tracking error shown in Figure 4. As the observer

converges (Fig. 5), the errors are mitigated and exponential

tracking behavior is exhibited. To evaluate the limits of

the control law, the observer initial condition was set at

α̂ = −30◦ and δ̂ = 9◦ for a maneuver transferring α from

10◦ → −5◦ in 500 milliseconds. In this case, the observed

hinge moment nonlinearity was initially more than twice
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that of the actual value. Although the observer converges

quickly, a maximum error of 20◦ is exhibited between the

α state and reference trajectory prior to convergence at

around 300 milliseconds. Actuator control power is close to

saturation and the actuator deflection rates are approaching

feasible limits. Tracking and observer performance for the

15◦ α-maneuver are shown in Figures 6 and 7, respectively.

VI. CONCLUSION

The research presented a preliminary study on feasibility

of an output feedback tracking control law with application

to flight control of air vehicles. The control law com-

pensates for absence of airframe inertial state information.

Application to guided air munitions is of particular interest.

The architecture requires knowledge of the behavior and

bounds on the surface control actuator hinge moments

relative to flight condition. It is shown that this behavior

can be represented by functions that are Lipschitz within the
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actuator state-space. An exponentially stable tracking con-

troller, using only actuator position and current feedback,

was developed to track a predetermined reference trajectory

and handle the nonlinear effects. Controller performance

was evaluated with simulation analysis and robustness was

demonstrated by varying the observer initial conditions. The

closed-loop actuator dynamics exhibited sensitivity to large

observation errors as a result of large actuator/airframe time

constant separation.

Various airframe and surface configurations will ulti-

mately be encountered. Therefore, future work will focus

on alternative hinge moment approximation methods to

address multiple and potentially time-varying configura-

tions. Additionally, fin mixing strategies will need to be

incorporated into the design architecture. Further investiga-

tions are also required in reference trajectory designs to

address implementation and performance issues. Designs

which incorporate airspeed and propulsion dynamics need

to be evaluated along with feasibility of a gain scheduling

architecture. Alternate methods will also be investigated to

address parameter variation and modeling uncertainty.
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