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Abstract— This paper analyzes the stability properties of
a state observer estimating the system states from delayed
measurements for a linear time invariant plant. The delay is
assumed to be a known piecewise constant function of time.
The observer construction is a two step procedure and has a
“chain-like” structure, consisting of two cascaded dynamical
systems. The manifestation of the time-varying delayed output
on the observer stability is analyzed at both the “zeroth” and
the “first” links in the chain of observers.

I. INTRODUCTION

In several real-time applications, all the state variables

may not be available for direct measurements. Hence a

state observer is generally employed to reconstruct the

unmeasurable state variables. The observation problem

is complicated if the system output is available after a

delay interval. Studies have shown that stable “time-

delay” observers can be realized in practice under suitable

conditions [1]-[4]. Careful scrutiny of research work reveal

though that while the delays associated with states [10]-[12]

have been studied in great detail, the setbacks due to output

delay ramifications are rarely addressed.

Notable research to estimate the states in the presence of

delayed outputs include constant-gain observer design [9]

and chain observer for observing the states from delayed

outputs [6]-[8]. In the latter, the chain of state observers

rebuild the systems states at different time-delay instants

within the delay window. The main assumption is that the

delay is known and a constant. It is seen that if the delay

is known but time-varying the observation errors are quite

large.

In this paper, the chain observer with a cascade of two

systems [6] estimating the states from the delayed output is

considered. The delay is modeled as a piecewise constant.

We analyze the impact of the time varying nature of the

delay on the stability of observer system. In the process, we

derive conditions under which exponential stability of the

observer error dynamics is guaranteed.

The paper is organized as follows. In section 2, the mathe-

matical description of the single-input single-output (SISO)

linear systems with delayed output is presented. In section 3,

the dynamics and the stability concepts of the observer are

discussed. In section 4, the theoretical results are verified

through simulation studies performed on a simple linear

system and finally the conclusions are presented.

II. LINEAR SYSTEMS SUBJECT TO OUTPUT DELAYS

The class of single-input-single-output (SISO) systems con-

sidered in this paper are represented as,

ẋ(t) = Ax(t) + Bu(t) t ≥ ∆, x(−∆1) = x̄

ȳ(t) = Cx(t − ∆(t)) (1)

where x(t) ∈ R
n is the state vector. u(t) ∈ R is the system

input. A and B are constant matrices with appropriate

dimensions. ȳ(t) represents the delayed output while the

undelayed output is represented as y(t) = Cx(t).

It is assumed that the system in (1) is observable

i.e., the pair (A,C) is stabilizable. Alternately, there

exists a suitably dimensioned gain matrix K such that

Re (λi(A − KC)) < 0, i = 1, . . . , N , where λi(·) denotes

the ith eigenvalue of (·). We denote, Am = A − KC.

∆ is a function of time, i.e, its magnitude varies randomly

with time and 0 < ∆(t) ≤ ∆̃. ∆̃ is the upper bound on all

the delays. The output delay is piecewise constant, i.e, the

value ∆i is a constant in the interval (ti−1, ti). For the

next interval (ti, ti+1), it assumes a different value. The

time intervals (ti − ti−1), ∀i = 1 . . . N . are assumed to be

of unequal widths of size ∆ti. We assume that this delay

profile is known (see Fig. (1)).

III. MAIN RESULT

A chain observer for state estimation of output delayed LTI

systems (described above) is derived. The observer structure

is motivated by a construction similar to the one in [5]. We

propose a cascade structure involving two dynamical systems

for the observer dynamics for estimating the states using the

delayed output measurements.

˙̂x0(t) = Ax̂0(t) + Bu0(t) + K(ȳ(t) − Cx̂0(t)) (2)

˙̂x1(t) = Ax̂1(t) + Bu1(t) + eA∆(t)K(ȳ(t) − Cx̂1(t))

(3)
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The variable x̂0(t) denotes the estimate of the states at a

time t−∆(t) and x̂1 denotes the estimate of the states at the

current time t. Likewise, u0(t) is the system input at time

t − ∆(t) and u1 denotes the estimate of the states at the

current time t. The observer states are initialized as follows

x̂0(0) = x̂(−∆1)

x̂1(τ) = x̂(0) (4)

∆1 is the output delay magnitude in the interval t0 ≤ t < t1
and τ is the initial time, t0

Referring to the cascade structure above, we denote the

observer dynamics in (2) as the zeroth-observer and the

dynamics in (3) as the first-observer.

Theorem 3.1: Given the SISO system in (1) subject to

time-varying, piece-wise constant measurement delays, the

observer system in (2) and (3) with initial conditions spec-

ified in (4) ensures stable observation error dynamics, i.e.,

‖x(t) − x̂1(t)‖ ≤ ǫ, ǫ > 0. For the specific case when

the measurement delays are constant, the observation errors,

‖x(t) − x̂1(t)‖ → 0
Proof: The proof is detailed in the sections below

and is organized as follows. We first prove the stability of

the zeroth-observer. It is shown that the errors associated

with observing the states at x(t − ∆(t)) are bounded. The

second part of the proof shows the boundedness of the errors

associated with observing the states at x(t), namely the

stability of the first-observer.

A. Stability analysis of the zeroth-observer

In this section, the effects of the change in the delay at

specific instants of time on the observer error dynamics is

analyzed. Firstly over any interval [ti−1 ti] where the delay

is constant (say ∆c), the observation error is defined as

η0(t) = x(t − ∆c) − x̂(t − ∆c) (5)

The time derivative of η0(t) in this interval over which the

delay is a constant is

η̇0(t) = ẋ(t − ∆c) − ˙̂x(t − ∆c) (6)

= Ax(t − ∆c) + Bu(t − ∆c)

−{Ax̂(t − ∆c) + Bu(t − ∆c) + KCη0(t)}

η̇0(t) = Amη0(t) (7)

where, as mentioned before Am = A − KC is Hurwitz.

Next, the error in observation due to changes in the delay

magnitude is analyzed.

- At t = t1 the zeroth observer estimates the states at the

instant t1 − ∆1, while the first observer estimates the states

at t1.

- At the same instant, the output delay changes to a new

value, say ∆2.

- This implies that the zeroth-observer would now have

to start estimating the states from t1 − ∆2. This is due to

the fact that, with the change in ∆, the initial condition

for the zeroth-observer changes correspondingly for the

interval over which this new delay value remains a constant

i.e, at t = 0, the initial condition for the zeroth-observer

is x̂(−∆1) in the interval [0, t1] and with the change in

delay at t = t1, the initial condition for the zeroth-observer

is x̂(t1 − ∆2) in the interval [t1, t2].

- The estimated values for this interval [t1, t2] need not be

specified explicitly because it is available from the output

of the first-observer.

- The zeroth-observer now starts estimating the states as

though they are propagating from t1 with an initial condition

starting from t − ∆2.

- Hence there is a finite change in the observer states

from t1 − ∆1 to t1 − ∆2. This contributes to the error

in the observation which is equal to x̂(t1−∆2)−x̂(t1−∆1).

Differentiating x̂(t1 − ∆2) − x̂(t1 − ∆1), substituting the

observer dynamics and after simplifying one obtains,

˙̂x(t1 − ∆2) − ˙̂x(t1 − ∆1) =

= (A − KC)(x̂(t1 − ∆2) − x̂(t1 − ∆1))

+B(u(t1 − ∆2) − u(t1 − ∆1))

= Amδx̂1(t) + Bδu1(t) (8)

In (8), δx̂1(t) represents the finite error between the observer

states due to change in the delay value at t = ti. Similarly,

δu1(t) denotes the error in the inputs due to the change in the

delay. Thus, generalizing (8), at any instant t = ti, when the

magnitude of the output delay changes, the error in observer

due to the change in initial conditions can be expressed as

˙̂x(ti − ∆i+1) − ˙̂x(ti − ∆i) = Amδx̂i(t) + Bδui(t) (9)

where ∆i is the delay in the interval ti−1 ≤ t < ti and

∆i+1 is the delay in the next interval ti ≤ t < ti+1. δx̂i(t) =
x̂(ti−∆i+1)−x̂(ti−∆i) and δui(t) = u(ti−∆i+1)−u(ti−
∆i). Note, that this error exists because, the first-observer

has not yet converged to the true states at t = ti − ∆i+1.

Substituting (9) in (6), for any t = ti and simplifying,

η̇0(ti) = Amη0(ti) + Amδ
x̂i(t) + Bδui(t) (10)

Therefore, the observation error dynamics can be written as

η̇0(t) =







Amη0(t) + Amδ
x̂i(t) + Bδui(t), at t > ti

Amη0(t) for t ∈ [ti−1, ti)

(11)

The delay profile assumed at the observer is shown in

Fig. (1).

Next, a general expression for η0(t) for any instant t = tN ,

N = 0, 1, 2, . . . ,∞ at which the delay magnitude changes
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Fig. 1. Profile of time-varying delay.

is derived. The procedure is as follows:

The solution of the dynamic equation (11) at t = t1 is

η0(t1) = exp(Am(t1 − 0))η0(0)

+

∫ t1

0

exp(Am(t1 − s)) {Amδx̂1(s) + Bδu1(s)} ds

‖η0(t1)‖ ≤ ‖ exp(Am∆t1)η0(0)‖

+

∥

∥

∥

∥

∫ t1

0

exp(Am(t1 − s)) {Amδx̂1(s) + Bδu1(s)} ds

∥

∥

∥

∥

≤ ‖ exp(Am∆t1)‖.‖η0(0)‖

+

∥

∥

∥

∥

∫ t1

0

exp(Am(t1 − s)) {Amδx̂1(s) + Bδu1(s)} ds

∥

∥

∥

∥

(12)

Since Am is Hurwitz, we have ‖ exp(Amt)‖ ≤ exp(−mt),
where m is the real part of the minimum eigenvalue of Am

Denoting

δ̄1 =

∥

∥

∥

∥

∫ t1

0

exp(Am(t1 − s)) {Amδx̂1(s) + Bδu1(s)} ds

∥

∥

∥

∥

(12) can be re-written as

‖η0(t1)‖ ≤ exp (−m∆t1) ‖η0(0)‖ + δ̄1 (13)

Next, at t = t2, the error vector is given as

η0(t2) = exp(Am∆t2)η0(t1)

+

∫ t2

t1

exp(Am(t2 − s)) {Amδx̂2(s) + Bδu2(s)} ds

(14)

and similarly as before we obtain,

‖η0(t2)‖ ≤ ‖ exp(Am∆t2)η0(t1)‖

+

∥

∥

∥

∥

∫ t2

t1

exp(Am(t2 − s)) {Amδx̂2(s) + Bδu2(s)} ds

∥

∥

∥

∥

i.e., ‖η0(t2)‖ ≤ exp(−m∆t2)‖η0(t1)‖ + δ̄2 (15)

Now substituting for ‖η0(t1)‖ from (13), we get

‖η0(t2)‖ ≤ exp(−m∆t2) exp {−m∆t1} ‖η0(0)‖

+exp(−m∆t2)δ̄1 + δ̄2

≤ exp (−m(∆t1 + ∆t2)) ‖η0(0)‖

+exp(−m∆t2)δ̄1 + δ̄2 (16)

where

δ̄2 =

∥

∥

∥

∥

∫ t2

t1

exp(Am(t2 − s)) {Amδx̂2(s) + Bδu2(s)} ds

∥

∥

∥

∥

Continuing as above, the error vector at any instant t = tN
can be written as

‖η0(tN )‖ ≤ exp

(

−m

N
∑

i=1

∆ti

)

‖η0(0)‖

+
N−1
∑

j=1

exp



−m

N
∑

i=j+1

∆ti



 δ̄j + δ̄N

(17)

where for i = 1, 2, . . . , N

δ̄i =

∥

∥

∥

∥

∥

∫ ti

ti−1

exp(Am(ti − s)) {Amδx̂i(s) + Bδui(s)} ds

∥

∥

∥

∥

∥

Remark 1: In (17), the term δ̄i represents the error in ob-

servation due to the delay variations. This error is multiplied

by an exponential term, which decays to zero and hence as

t → ∞, these cumulative delay errors also decay to zero.

If the delay changes very fast, i.e, ∆ti is very small, then

the cumulative error due the delay changes will be larger.

Similarly, if the delay changes at a very slow rate, then

the cumulative error as time increases will be of smaller

magnitude and the observer will be able to track the system

states much better.

Remark 2: From (17), it can be seen that at any t = tN ,

there will be a residual non-decaying error term δ̄N . This

implies that the observation error will be equal to a finite

non-zero value given by the magnitude of the term δ̄N . It

also implies that the observation error can be expected to lie

in a residual set of magnitude defined by the error term δ̄N .

The residuals at t = tN due to earlier delay changes would

have decayed to very small values due to the multiplying

exponential term.

Remark 3: In (17), if there were no delay changes, i.e

the measurement delay was a constant over the entire time

horizon, then there would be no residual errors, ie. δ̄i = 0.

and (17) reduces to

‖η0(tN )‖ ≤ exp (−mtN ) ‖η0(0)‖ (18)

which is the expression for observation error with constant

delays.

Remark 4: If all the delays intervals were of equal width,

i.e ∆ti = ∆tj , i 6= j, then the observation error at t = tN

3031



is given as

‖η0(tN )‖ ≤ exp (−mN∆t) ‖η0(0)‖+
N

∑

j=1

exp (−m(N − j)∆t) δ̄j

(19)

B. Stability analysis of the first-observer

Using the state transition matrix, the system state at t i.e,

x1(t) can be written as

x1(t) = exp(A∆(t))x0(t)+

∫ t

t−∆(t)

exp(A(t−s))Bu(s)ds

(20)

Similarly, the observer states estimating the system states at

t can be expressed as:

x̂1(t) = exp(A∆(t))x̂0(t)+

∫ t

t−∆(t)

exp(A(t−s))Bu(s)ds

(21)

Subtracting (21) from (20) we obtain,

η1(t) = exp(A∆(t))η0(t) (22)

Next, a general expression for the observation error η1(t)
at any t = ti, i = 1, 2, . . . , N is derived as follows:

At t = t1, (22) can be written as

‖η1(t1)‖ ≤ ‖ exp(A∆(t))‖.‖η0(t)‖ (23)

Substituting for ‖η0(t)‖,

‖η1(t1)‖ ≤ α1{exp (−m∆t1) ‖η0(0)‖ + δ̄1}

≤ α1 exp {−m∆t1) ‖η0(0)‖ + α1δ̄1

(24)

where ‖ exp(A∆1)‖ ≤ α1. Similarly, at t = t2, the

observation error is

‖η1(t2)‖ ≤ α2{exp (−m(∆t1 + ∆t2)) ‖η0(0)‖

+exp (−m∆t2) δ̄1 + δ̄2}

≤ α2 exp (−m(∆t1 + ∆t2)) ‖η0(0)‖

+α2 exp(m1∆1)δ̄1 + α2δ̄2

(25)

where ‖ exp(A∆2)‖ ≤ α2. Hence a general expression for

the observation error at any instant t = tN is

‖η1(tN )‖ ≤ αN exp

(

−m

N
∑

i=1

∆ti

)

‖η0(0)‖

+αN

N−1
∑

j=1

exp



−m

N
∑

i=j+1

∆ti



 δ̄j + αN δ̄N

(26)

where ‖ exp(A∆N )‖ ≤ αN .

(26) implies that there will be a finite non-zero observation

error at any instant t = tN . This is the error that occurs in

the zeroth observer due to the delay changes. Additionally, in
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Fig. 2. Profile of time varying delay

the first-observer, each of these residual errors is multiplied

by a scaling constant ‖ exp(A∆i)‖ ≤ αi, i = 1, 2, . . . , N .

For a non-Hurwitz matrix A, each αi will amplify the

residual error further.

If matrix A is Hurwitz then ‖ exp(A∆N )‖, aids in diminish-

ing the observation errors. Thus, in this case the estimated

states will be closer to the true states. Note, m1 is the

smallest eigenvalue of A,

IV. SIMULATION RESULTS

The plant model for the actual system and the estimator are

in the canonical form with the state space representation as

ẋ =

[

0 1
−3 −1

]

x(t) +

[

0
1

]

u(t)

ȳ(t) =
[

1 0
]

x(t − ∆(t))

The gain matrix K is chosen such that the eigen values of

the matrix A − KC are at −10 and −15 respectively. The

input is u(t) = sin(t). The initial conditions for the linear

system and the observer are

x(τ) =

[

0.1
−0.1

]

, x̂0(τ) =

[

0
0

]

, x̂1(τ) =

[

0
0

]

, τ ∈ [−∆(t), 0]

The chain observer is simulated for a time-delayed output,

with the delay, ∆(t) varying in time. The value of ∆(t)
varies randomly in the range ∆ ∈ (0.1, 1) seconds and

∆t = 3 seconds.

Figure (2) shows the profile of ∆(t) w.r.t time. Figure (3)

shows the observation error, both transient and steady state

responses. The observation error plots are as expected. If

there was no change in the delay, then there would have

been a peak in the beginning and the errors would have

gradually decayed to zero. But the time varying delay
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Fig. 3. Observation Error

changes the observation errors significantly, as can been

seen from the plots.

Between t = 0 and t = 6, the change in the delay is small,

hence the error reaches the steady state value quickly. But

after 6 seconds, the differences in the two consecutive delay

magnitudes is larger. This results in larger peak overshoots in

the transient response of the observer. The overshoot in the

observer states is to accommodate the change in the system

output, due to change in the delay magnitude. The observer

then settles down to a steady state. But, the changing delays

constantly trigger the observer dynamics at every 3 seconds.

The observer is able to track the true states fairly accurately.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have relaxed the assumption that the output

delay is constant at all times. This is closer to a practical

situation, for example, cooperating dynamical systems that

exchange outputs over finite low bandwidth communication

channels. The uncertainties in these communication channels

contribute to changes in the delay. We have analyzed ob-

server responses to this time-varying delay and in the process

derived conditions for stable observer error dynamics. The

simulation results also confirm the theoretical results. Current

research is underway to extend these results for a situation

when the observer may not have a perfect knowledge of the

delay interval or the exact magnitude of the delay itself.
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