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Abstract— In this article, we revise a well-known derivative
estimation scheme which is based on a least squared error
polynomial approximation of a noisy measurement signal. Our
contribution is to determine the influence of the estimation
parameters onto the covariance matrix and the temporal delay
of the estimation result. Also, it is shown that the least squares
estimator is statistically optimal in the presence of white
gaussian measurement noise. Our ideas are applied to the
estimation of derivatives of the first state of Chen’s Chaotic
Oscillator and to the fault tolerant swing up of the Inverted
Pendulum on a Cart.

I. INTRODUCTION

The need for a fast and robust time derivative estimation

regarding noisy measurement signals arises in a variety of

disciplines, as in control engineering, fault diagnosis, signal

processing and transmission. Various ideas for derivative

estimation have been suggested in the past. In the continuous

time case, popular approaches to derivative estimation are

based on high gain observers, sliding mode observers or

the so called ‘algebraic’ identification of the parameters of

a spline approximation, see [1],[2],[9],[10] and references

therein, for instance. In the discrete time case, the problem of

derivative estimation was commonly viewed in the context of

FIR filters, see [3], [8], [11] and the vast literature collected

in [4], for instance.

In this paper, we revise the well established derivative

estimation scheme that is based on a least squares polynomial

approximation of the measurement signal, see [5], [6] for

an overview. Our contribution is to determine the influence

of the estimation parameters such as approximation interval

length, sampling rate and degree of the approximating poly-

nomial onto the variance and the delay of the estimation

result. These questions have not been adressed so far, to the

best of our knowledge, but appear as fundamental problems

from our own practical experience. We show that in the pres-

ence of white gaussian measurement noise, the least squares

estimator is optimal in the following sense: The variance of

the estimated derivative lies exactly on the theoretical lower

bound of any unbiased estimator, the so called Cramér Rao

Bound (CRB) [13]. For large sampling numbers, a very good

approximation of the covariance matrix of the polynomial’s

estimated parameter vector is then calculated, that gives

insight into the effect of the estimation scheme parameters.

In order to determine the temporal delay of the estimation

result, it is assumed that on each approximation interval the
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clean measurement signal corresponds to a polynomial of one

degree higher than the derivative to be estimated. For true

signals not meeting this requirement, the taken assumption

means that for analytical purposes the true signal is replaced

by its truncated Taylor expansion, whose derivative (of the

degree to be estimated) is a linear approximation of the true

derivative. A general result for the delay is then derived.

As a demonstration of our ideas, Chen’s Chaotic Oscillator

is simulated and derivatives of the first state component

are estimated. Furthermore, our ideas are applied in the

laboratory to the fault tolerant swing up of the Inverted

Pendulum on a Cart. While the results in Section II are

developed for the discrete time setting, in Section III the

continuous time case is considered in order to facilitate the

mathematical treatment. This does not represent a major

restriction of the area of application, since the properties of

the discrete time and continuous time estimators nearly do

not differ if the sampling time is sufficiently small, which is

assumed in the remainder of this work.

Our contribution is structured as follows: In Section II,

we first recall the least squares estimation of polynomial

coefficients before showing the optimality of the estimator.

Afterwards, an approximate analytical expression of the

covariance matrix is derived. The temporal delay of the esti-

mation scheme is tackled in Section III. Section IV discusses

the trade-off between parameters. Simulation results of the

derivative estimation applied to Chen’s Chaotic Oscillator are

provided in Section V-A, and the fault tolerant swing up of

the Inverted Pendulum on a Cart is described in Section V-B.

We draw our conclusions in Section VI.

II. STATISTICAL PROPERTIES OF THE LEAST

SQUARES ESTIMATION

In this section we start with recalling the derivative es-

timation scheme based on least squares in a discrete time

setting. Afterwards, we show that, under the condition of

white gaussian noise, the least squares derivative estimator

is statistically optimal in that the variance of the estimated

derivative lies exactly on the Cramér Rao Bound. Finally, by

calculating an explicit expression for the covariance matrix

of the unknown parameter vector of the signal’s polynomial

model, the effect of each estimation scheme parameter on

the result is enlighted.

A. Basics of the estimation scheme

Let y(t) be a noisy measurement of the clean signal x(t),

y(t) = x(t) + η(t), (1)
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where η(t) is assumed to be white, gaussian noise. The task

is to estimate the j-th derivative of x(t), x(j)(t). The result of

the estimation be denoted by x̂(j)(t). The estimation scheme

is based on a local polynomial model of x(t). Let M be its

order, so that the polynomial model xM (t) is given by

xM (t) =

M∑

i=0

ait
i. (2)

The parameters of xM (t) are summarized in the vector

θ = (a0, a1, . . . , aM )T (3)

and have to be estimated on the basis of the measurement

signal y(t). Let θ̂ be the estimated parameter vector (with

elements â0, â1 etc.). Suppose that n + 1 samples have been

measured on the time interval [0, T ] at equidistant instants

t = i · Ts, with Ts denoting the sampling time. The time

interval may be shifted arbitrarily later on to allow for an

online estimation scheme. Let y be the measurement vector,

which is given by

y = (y(0), y(Ts), y(2Ts), . . . , y(nTs))
T, (4)

with T = nTs. Once θ̂ has been estimated, the sought

derivative x̂(j)(t) at time instant t = T can be calculated

by

x̂(j)(T ) =

M∑

i=j

i!

(i − j)!
âiT

i−j = cT θ̂ (5)

with the row vector

cT = (0, 0, ..., j!, (j + 1)!T, ...,
M !

(M − j)!
T M−j). (6)

It is straightforward to show that in view of (5), the

variance of x̂(j)(T ) is given by

Var(x̂(j)(T )) = cT C
θ̂

c, (7)

where C
θ̂

denotes the covariance matrix of θ̂. In view of (7),

the performance of the derivative estimation depends on the

quality of estimating θ, i.e. on the covariance matrix C
θ̂
.

B. Optimality of the Least Squares estimator

In the absence of noise, the measurement would yield the

data vector 1

x = (xM (0), xM (Ts), xM (2Ts), . . . , xM (nTs))
T. (8)

Estimating the parameter vector θ corresponds to adapting

the linear model

x = V θ (9)

to the noisy measurement vector. The matrix V is given by

[5]

V =









1 0 . . . . . . 0
1 Ts T 2

s . . . T M
s

1 2Ts (2Ts)
2 . . . (2Ts)

M

...
...

...
...

...

1 nTs (nTs)
2 . . . (nTs)

M









. (10)

1We consider a polynomial signal x(t) = xM (t) for the subsequent
statistical analysis of the estimator.

The least squares estimate θ̂ minimizes the mean squared

error between model and measurement vector y. In other

words, it is the solution of the minimization problem

θ̂ = min
θ

‖ y − V θ ‖2 . (11)

Clearly, θ̂ is given by the pseudoinverse of V :

θ̂ = (V TV )−1V T y , (12)

which is only defined for n ≥ M .

It is a known result in the theory of estimation that linear

estimation problems under white gaussian noise can be

solved in a statistically optimal fashion by the least squares

estimator. This is based on the fact that the covariance

matrix of the least squares estimator lies exactly on the lower

theoretical bound, the so called Cramér Rao Bound (CRB)

[13], [12]. The CRB states that the following inequality holds

for the covariance matrix Cρ̂ of any unbiased estimator of

the parameter vector ρ:

Cρ̂ − I−1(ρ) ≥ 0, (13)

where I(ρ) denotes the Fisher Information matrix and where

the symbol ’≥ 0’ means that the symmetric matrix on the left

hand side of (13) is positive semidefinite. Eq. (13) becomes

an equality for the least squares estimator, and its covariance

matrix C
θ̂

is given by

C
θ̂

= σ2
(
V TV

)
−1

= I−1(θ), (14)

where σ2 is the noise power.

We now show that the optimal estimation of the parameter

vector θ transforms into an optimal estimation of the sought

derivative x(j)(T ). This is done by considering the general

form of the CRB, which states that the estimation of a value

α, that depends on the parameter vector θ through a known

function

α = g(θ), (15)

is reigned by the following inequality [13]:

Var(α̂) ≥
∂g(θ)

∂θ
I−1(θ)

(
∂g(θ)

∂θ

)T

. (16)

In our case, α corresponds to x(j)(T ), and according to (5),

the function g(θ) reduces to a dot product x(j)(T ) = cT θ.

In light of this, the variance of x̂(j)(T ) is bounded by

Var(x̂(j)(T )) ≥ cTI−1(θ)c = cT C
θ̂

c. (17)

The comparison of (17) und (7) shows that the least squares

estimation scheme makes the variance of x̂(j)(T ) lie on the

CRB and, therefore, estimates the derivative x(j)(T ) in a

statistically optimal way.

C. Covariance matrix

In order to gain more insight into the effect that the

parameters of the estimation scheme (i.e. sampling time

Ts, window length T , polynomial order M ) have onto the

variance of the estimation result, an explicit formula for the

covariance matrix C
θ̂

is needed. For that purpose, the matrix
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V TV has to be inverted. An approximate general inverse of

V TV can be found whenever the number of samples n+1 is

sufficiently large, e.g. n > 100, which is quite in accordance

with practical settings.

To this end, note that the element Vij of matrix V is

Vij = ((i − 1)Ts)
j−1

, (18)

and, therefore,

[
V TV

]

ij
=

n+1∑

ν=1

(Ts(ν − 1))i+j−2

= T i+j−2
s

(

δi1δj1 +

n∑

ν=1

νi+j−2

)

, (19)

where δi1δj1 = 1 only if i = j = 1, elsewhere it is zero.

To the knowledge of the authors, there is no result for a

general inverse of V TV yet.

From geometric reasoning, it is obvious that

n∫

0

xkdx = nk+1

k+1
<

n∑

i=1

ik <
n+1∫

1

xkdx = (n+1)k+1
−1

k+1
<

(n+1)k+1

k+1
,

(20)

since xk is strictly monotonous for k > 1, x ≥ 0. This results

in the inclusion

1 <
k + 1

nk+1

n∑

i=1

ik <
(n + 1)k+1

nk+1
= (1 + 1

n
)k+1. (21)

Hence, it is is clear that for large n
n∑

i=1

ik ≈
nk+1

k + 1
(22)

is a valid approximation. Therefore, the matrix elements
[
V TV

]

ij
may be approximated by

[
V TV

]

ij
≈ [̃V TV ]ij = T i+j−2

s

ni+j−1

i + j − 1
. (23)

Note that
[
V TV

]

11
= n + 1 whereas [̃V TV ]11 = n, which

is also a reasonable approximation for large n.

With (23) the factorization of the matrix Ṽ TV is clear:

Ṽ TV =
















n n2

2
Ts

n3

3
T 2

s . .
.

nM+1

M+1
T M

s

n2

2
Ts

n3

3
T 2

s
n4

4
T 3

s . .
.

nM+2

M+2
T M+1

s

n3

3
T 2

s
n4

4
T 3

s
n5

5
T 4

s . .
.

nM+3

M+3
T M+2

s

. .
.

. .
.

. .
.

. .
.

. .
.

nM+1

M+1
T M

s
nM+2

M+2
T M+1

s
nM+3

M+3
T M+2

s . .
.

n2M+1

2M+1
T 2M

s
















=
1

nT 2
s

D















1 1
2

1
3

. .
.

1
M+1

1
2

1
3

1
4

. .
.

1
M+2

1
3

1
4

1
5

. .
.

1
M+3

. .
.

. .
.

. .
.

. .
.

. .
.

1
M+1

1
M+2

1
M+3

. .
.

1
2M+1















︸ ︷︷ ︸

=: HM+1

D =
D HM+1D

nT 2
s

(24)

with the diagonal matrix

D = diag
(
nTs, (nTs)

2, . . . , (nTs)
M+1

)
(25)

and the Hilbert-matrix HM+1 of dimension M + 1.

A general inverse of HM+1 is given by (see [7])

[H−1
M+1]ij = (−1)i+j(i + j − 1)

(
M+i

M+1−j

)(
M+j

M+1−i

)(
i+j−2

i−1

)2
.

(26)

Due to (24), the sought inverse reads

˜(V T V )
−1

= D−1H−1
M+1D

−1(nT 2
s ), (27)

and its components are given by

[

˜(V T V )
−1
]

ij

= (−1)i+j(i + j − 1)
1

ni+j−1

1

T i+j−2
s

×

(
M + i

M + 1 − j

)(
M + j

M + 1 − i

)(
i + j − 2

i − 1

)2

. (28)

With the approximate representation of the inverse ac-

cording to (28), it is clear that by increasing the number of

samples, that is by increasing n, the entries of the covariance

matrix can be reduced arbitrarily close to zero, corresponding

to an infinite noise damping. The identity

1

ni+j−1

1

T i+j−2
s

=
Ts

T i+j−1
, (29)

shows explicitly that for a fixed window length T the

sampling time Ts should be chosen as small as technically

possible, whereas for a fixed sampling time increasing the

window length T steadily reduces the noise. In those cases

where the number of samples n + 1 is fixed due to limited

storage capacity, a larger sampling time Ts is preferable.

One should additionally bear in mind that the polynomial

approximation of the original signal x(t) is only locally valid,

so that T should not be chosen too large. It is furthermore not

recommendable to increase the polynomial order M of the

signal model xM (t) far beyond the sought derivative order

j, because the binomial coefficients in (28) will tend to be

very large. This effect means that increasing M will cause

the approximating polynomial to actually model the noise.

Equation (28) also explains why estimating higher derivatives

is highly sensitive to noise. Let us suppose M = j, which

minimizes the variance of the estimation result. In this

case, the vector c relating C
θ̂

and Var(x̂(j)(T )) according

to (7) reads cT = (0, .., 0, M !). Therefore, the element

(M + 1, M + 1) of ˜(V T V )
−1

times (M !)2 corresponds

to the approximate noise gain when the M -th derivative

is estimated by approximation with minimal order M . For

n = 250 and Ts = 0.001, which are typical values, the

approximate noise gain is equal to 0.77 for the estimation of

the first derivative (M = 1), equal to 737.3 for the second

derivative (M = 2) and equal to 1.65 · 106 for the third

derivative (M = 3). It is for that reason that estimates of the
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third or even higher derivatives are rarely seen in practice 2.

III. DELAY OF THE LEAST SQUARES ESTIMATOR

Estimating a signal’s derivative by polynomial

approximation in an online fashion induces a temporal

delay due to the fact that the true signal contains in

its Taylor expansion terms of higher degree than the

approximating polynomial. Since this delay is not caused

by noise, we discuss it for the noiseless case. While we are

considering the time continuous approximation here, the

time discrete approximation was discussed in section II.

This does not affect the validity of the following analysis,

since for small sampling times Ts the time discrete case

converges to the time continuous case.

For describing the online scenario, the present time can

- without loss of generality - be denoted by t = T , in

accordance with the previous chapter. The estimation result

available at t = T is based on the signal information

gathered during the past time interval [0, T ]. Let us

assume that the j-th derivative at t = T of the true signal

x(t) is to be estimated; the approximation polynomial is

denoted by x̂(t). If there is a time τ ∈ [0, T ] for which

x̂(j)(T ) = x(j)(T − τ) holds, then the estimation result

obtained for time T reproduces the derivative of the real

signal at time T − τ . Therefore, we call this time interval τ
the temporal delay of the estimation scheme.

In order to make analytical calculations possible, certain

assumptions about the true signal have to be made. We

assume that the true noiseless signal x(t) is a polynomial of

degree N = j + 1 in the time interval [0, T ]. As mentioned

earlier, this assumption means that for analytical purposes

the original true signal is replaced by its truncated Taylor

expansion, whose j-th derivative is a linear approximation

of the j-th derivative of the true original signal. For small T
and sufficiently smooth signals, the analytical results based

on that assumption will approximately hold for the original

signal as well.

In the following, by ’true signal x(t)’ we will denote

a polynomial of degree N . By least squares estimation,

x(t) is approximated by a polynomial x̂(t) of degree M.

Two choices of M make sense: Recalling that the j − th
derivative is to be estimated, the choice M = j = N − 1
is the minimal possible order. According to section II-C,

this choice minimizes the noise of the estimation result

2For given n = 250, Ts = 0.001 and M , the exact noise gains can be
calculated instead of the approximate ones, since in this case the inverse
of (V T V ) is known. The exact noise gains are found as 0.76 for M =
1, 722.8 for M = 2 and 1.61 · 106 for M = 3. The small difference
between exact and approximate noise gains underlines the correctness of
the approximation of (V T V )−1.

but, as will be shown below, induces a temporal delay.

Alternatively, we might opt for M = j + 1 = N at the

cost of getting more noise into the estimation result. For

that choice, no delay appears in the estimation for small T ,

since the true signal x(t) would be perfectly approximated

in the noiseless case.

We now consider M = j. Let L2 be the Hilbert space of

quadratically integrable real functions on [0, T ]. For each n ∈
N0 let Vn be the subspace of L2 of real-valued polynomials

of degree equal to or less then n. Let Pn be the Legendre

polynomial of degree n on the interval [−1, 1], and let Qn

be defined by

Qn(t) = Pn((
2t

T
− 1)), ∀t ∈ [0, T ]. (30)

Clearly, the set of {Qi | i = 0, .., n} defines an orthogonal

basis of Vn. Thus x(t) can be written as

x(t) =

M+1∑

i=0

aiQi(t), ai =
< x, Qi >

‖ Qi ‖2
, (31)

where

< x(t), y(t) >=

∫ T

0

x(τ)y(τ)dτ, (32)

‖ x(t) ‖=

√
∫ T

0

x(τ)2dτ . (33)

As x̂(t) is the least squares approximation of x(t), it corre-

sponds to the element in VM that minimizes ‖ x(t)− y(t) ‖,

y(t) ∈ VM . Therefore, x̂(t) is the orthogonal projection of

x(t) onto VM , which is given by

x̂(t) =

M∑

i=0

aiQi(t). (34)

Theorem 1 Let x(t) be a polynomial of degree M + 1 on

the time interval [0, T ], and let x̂(t) ∈ VM be its orthogonal

projection onto VM . The M -th derivative of x̂(t) at t = T ,

x̂(M)(T ) will be subject to a delay of T
2 compared to the

M -th derivative of the true signal, x(M)(t). In other words,

x̂(M)(T ) = x(M)(T
2 ) holds.

Proof: We have

x(M)(
T

2
) = x̂(M)(

T

2
) + aM+1Q

(M)
M+1(

T

2
)

= x̂(M)(T ) + aM+1Q
(M)
M+1(

T

2
)

= x̂(M)(T ) + aM+1

(
2

T

)M

P
(M)
M+1(0),
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where the second equals sign is due to fact that x̂(t) is a

polynomial of degree M and, therefore, x̂M (t) = constant.

It remains to show that P
(M)
M+1(0) = 0. The Legendre

Polynomials are defined by

PM+1(x) = cM+1
dM+1

dxM+1
[(x2−1)M+1], cM+1 =

2−(M+1)

(M + 1)!
.

It follows

P
(M)
M+1(x) = cM+1

d2M+1

dx2M+1 [(x2 − 1)M+1]

= cM+1
d2M+1

dx2M+1

∑M+1
i=0

(
M+1

i

)
x2i(−1)M+1−i

= cM+1
d2M+1

dx2M+1 [x2M+2 − (M + 1)x2M + ..]

= cM+1(2M + 2)! x,

from which P
(M)
M+1(0) = 0 follows. That finishes the proof.

For the applications, we restate this result in the following

corollary 3:

Corollary 1 If the j − th derivative of a polynomial of

degree j+1 is estimated by approximation with a polynomial

of degree j on a time interval of length T by minimizing the

mean squared error, the resulting derivative estimation is

subject to a delay of length T
2 .

IV. TRADE-OFF BETWEEN PARAMETERS

The results of sections II-C and III should be taken into

account when choosing the parameters of the derivative

estimator. Note that in general a discrete time implementation

will be used. The parameters to be designed are the degree

M of the approximating signal, the sampling time Ts and the

window length T . While no generally applicable optimal tun-

ing rule for the parameters exist, since their effects are cross-

coupled, we suggest the following procedure: By reducing

Ts, the continuous-time case is approached, and the noise can

be eliminated arbitrarily, see (28) in combination with (29).

Therefore, Ts should always be reduced to the minimum

feasible value, depending on the application, unless the

sampling number n + 1 is fixed due to memory capacity

reasons - in that special case, a large sampling time is

preferable. Secondly, T and M have to be designed. The

choice of M depends on the fact whether the estimation

result is used in an online application and whether it is fed

back in the closed control loop. By choosing M = j, with

3Since x̂M (t) = constant, the preceding proof equally shows that

x(M)(T
2

) = x̂(M)(T
2
). Therefore, one might conclude that the discussed

derivative estimation scheme is delayless. This would indeed be a false
conclusion, since the approximation is carried out on the time interval
[0, T ] in an online fashion, and the result of the approximation will only
be available at t = T .

j being the derivative order to be estimated, the noise is

further minimized, but a temporal delay in the estimation

result will appear that is approximately equal to T
2 , since

for small T the true signal can be well approximated by

a polynomial of degree M + 1 - see the next sections for

application examples. Therefore, the tolerable delay of the

application has to be identified, and T chosen accordingly. If

no delay can be tolerated due to stability reasons, M = j+1
has to be chosen. In this case, the estimation will be subject

to more noise, but almost no delay will appear. Note that

for M = j + 1, T cannot be raised arbitrarily in order

to further reduce the noise, since for too large T , the true

signal can not be modeled as a polynomial of degree j + 1
anymore, which will in turn create a delay. Increasing M
further beyond j + 1 leads to very noisy results, unless

the sampling time Ts is extremely small, which is usually

not the case. If the estimation result is used for an offline

application, the temporal delay does not represent a problem,

since the estimation result can be shifted by the amount

of the delay. Therefore, in this case the noise reduction is

the main concern, and M should be chosen as M = j.

Here, the choice of T depends on the noise level: on the

one hand, increasing T reduces the noise arbitrarily, but on

the other hand, only for a limited time interval the M -th

order Taylor approximation coincides well with the measured

signal. Therefore, T should slowly be increased starting from

small values, until the estimation result is sufficiently smooth.

V. APPLICATION EXAMPLES

In this section, the preceding results are applied to two

benchmark systems of the control community. First, Chen’s

Chaotic Oscillator serves as a system to demonstrate that the

results concerning the delay apply even when the examined

signal is of chaotic nature - noise is omitted during the

simulation, since the focus is on the estimation’s delay.

Second, we apply our results in a laboratory experiment to

the Inverted Pendulum on a cart. The pendulum performs a

swing up under faulty conditions. The faults are identified

in an offline fashion during a diagnostic sidestep before the

swing up, making use of the derivative estimation and the

presented insights about its delay.

A. Chen’s Chaotic Oscillator

As a demonstration system for our delay considerations,

we consider Chen’s Chaotic oscillator, which is given by

ẋ1 = a(x2 − x1)

ẋ2 = (c − a)x1 + cx2 − x1x3

ẋ3 = x1x2 − bx3. (35)
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The first and second derivative of x1 are estimated and

plotted against their true values. Clearly, ẍ1 is given by

ẍ1 = a(ẋ2 − ẋ1) = a(c(x1 + x2) − ax2 − x1x3). (36)

We used the following set of parameters: a = 35, b = 3, c =
28, x1(0) = −10, x2(0) = 0, x3(0) = 20. The sampling time

was chosen as Ts = 0.001, which is a typical value in control

applications. In figure 1, ẋ1 is plotted versus its estimation

for T = 0.05, while a linear and a quadratic approximation

was used, e.g. M = 1, 2. The appearing delay corresponds

to T/2 = 0.025 for the linear approximation, as predicted.

Furthermore, for M = 2, we observe almost no delay, but the

approximation shows little overshooting at the extremums of

ẋ1. This can be explained by the fact that the extremums of

ẋ1 correspond to turning points of x1(t). Near those points

the cubic term of the Taylor series expansion is essential for

characterizing the signal x1(t).
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Fig. 1. True ẋ1 and its estimations for M = 1 and M = 2.

In figure 2, the second derivative of x1(t) is estimated, by

quadratic and cubic approximation. The same observations

are made as in the case of the first derivative estimation.

Here, the sampling time was reduced to Ts = 5e − 4, and

the approximation length was chosen as T = 0.03. Again, the

predicted delay appears when the approximating polynomial

is of the same order as the derivative to be estimated.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

−6000

−4000

−2000

0

2000

4000

6000

time/sec

Chen’s Chaotic Oscillator, Second Derivative of x
1
(t)

 

 

T
2

ẍ1
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Fig. 2. True ẍ1 and its estimations for M = 1 and M = 2.

B. Experimental Validation - Fault Tolerant Swing Up of the

Inverted Pendulum on a Cart via offline Diagnosis

As a laboratory application of the preceding analysis,

the Inverted Pendulum on a Cart is swung up in the pres-

ence of a fault. For this purpose, a diagnostic sidestep is

performed before the swing up maneuver, allowing for an

offline analysis of possible faults which could be an actuator

performance loss, a cart position sensor offset, or an angle

sensor offset. The faults were implemented as software faults

and were chosen to be constant, but unkown to the diagnosis

unit. After the side step, the pendulum is swung up in

open loop and afterwards stabilized by a linear controller

in the upward position. During side step and stabilization,

the control signals were modified in such a way that the

effect of the estimated fault was neutralized.

The system is governed by the following set of equations

[14]:

φ̈ =
m

J
(gl sinφ − lu̇fa cosφ) − dφ̇ (37)

ẋ = ufa (38)

xm = x + fx (39)

φm = φ + fφ, (40)

where φ is the angle of the pole to the vertical position, x is

the cart’s position, u is the control input, which corresponds

to the cart’s speed, xm and φm denote the measured cart

position and pole angle, J is the moment of inertia of the

pendulum with respect to the axis of rotation, m is its

mass, l is the distance of the pivot point of the pole to

the center of its mass, g is the acceleration due to gravity

and d is a friction constant. The constant faults are called

fa (multiplicative actuator fault), fx and fφ (additive sensor

faults). Clearly, in the faultfree case, fa = 1, fx = 0, fφ = 0.

The parameters were identified as (all values in SI-units)

J/m = 0.294, l = 0.43, d = 0.064.

First, a reference trajectory x⋆
up(t), t ∈ [0, Tup] correspond-

ing to the swing-up maneuver was designed by numerical

solution of (37) with the help of MATLAB’s bvp4c.m, see

[15] for details - Tup = 2.1 sec was chosen. The swing

up is preceded by a sidestep of 0.75m, which brings the

pendulum from the downward equilibrium state at x = 0.6m
to the downward equilibrium state at x = −0.15m during

a transfer time of Tside = 2.0 sec. The swing up starts

at x = −0.15m, accordingly. The corresponding reference

trajectory of x(t) during side step is denoted by x⋆
side(t), t ∈

[−Tside, 0], and was designed in the same way as x⋆
up(t).

Clearly, the corresponding nominal control inputs are given

by u⋆
up(t) = ẋ⋆

up(t) and u⋆
side(t) = ẋ⋆

side(t) according to (38).

During the side step, two residuals were generated in the
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time interval t ∈ [−1.7,−0.3] , making use of the derivative

estimation:

r1(t) = ˆ̇x(t) − u⋆
side(t) (41)

r2(t) =
J

m
ˆ̈φ(t +

T

2
) +

J

m
d ˆ̇φ(t)

− (gl sin φm(t) − lu̇⋆
side(t) cosφm(t)) , (42)

where ˆ̇x(t), ˆ̇φ(t) and
ˆ̈φ(t) denote the respective derivative

estimates of x(t) and φ(t) on the basis of the measured

signals xm(t) and φm(t) 4. The approximation window T

was chosen as T = 0.16. Since
ˆ̈
φ(t) was estimated by

quadratic approximation, i.e. M = 2, the occuring delay of
T
2 had to be taken into account by shifting

ˆ̈φ(t) by −T
2 in

(42). Naturally, this could only be done in an offline fashion.

The estimates of the first derivative were also calculated via

quadratic approximation (M = 2), and therefore no delay

appears. A digital implemention was used with a sampling

time of Ts = 0.001. At t = −0.3, the mean and variance

of r1(t) and r2(t) were evaluated. Under the condition that

only a single fault appears at once, a simple logic, based on

checking whether the mean and variance of r1(t) and r2(t)
exceed certain thresholds, determines if a fault is present and

isolates the fault. Fig. 3 plots r2(t) for the fault-free case and

the case where the actuator has a performance loss of 20%.

Taking the variance of r2(t), we can state a clear increase

from 6.4 ·10−4 for the fault-free case to 0.024 for the faulty

case. Therefore, taking a threshold of 0.001 allows to detect

whether an actuator fault is present or not5. In order to show

the occuring delay, Fig. 4 displays the second derivative of

the reference angle trajectory, φ̈⋆
side and the estimation

ˆ̈
φ for

different time windows T in the absence of faults. φ⋆
side(t) is

obtained by the numerical solution of (37).

After a possible fault has been isolated, its magnitude is

then estimated by

f̂a =
1

1.4

∫
−0.3

−1.7

ˆ̇x(τ)

u⋆
side(τ)

dτ (43)

f̂x =
1

1.4

∫
−0.3

−1.7

(xm(τ) − x⋆
side(τ)) dτ (44)

f̂φ =
1

1.4

∫
−0.3

−1.7

(φm(τ) − φ⋆(τ)) dτ. (45)

Having estimated the respective fault, the open loop swing

up of the pole and its closed loop control in the upward

4In this case, the measurement noise characteristics were unkown, since
the angle sensor was not modelled in detail. To some extent, a high
proportion of quantization noise can be assumed. Still, the properties of
the derivative estimation of the previous chapters could be confirmed.

5To be more precise, in the case of an actuator fault, both residuals r1(t)
and r2(t) deviate from zero, which is checked by the diagnostic logic.
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Fig. 3. Residuals r2(t) in fault-free case and for an actuator loss of 20%.
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Fig. 4. Second derivative φ̈⋆
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(t) and its estimation for M = 2 and two

choices for T . Clearly, increasing T raises the predicted delay of T
2

, while
the noise attenuation improves, see (28) together with (29).

position can be adapted by replacing the control signal

u(t) by
u(t)

f̂a

and the measurement signals φm(t), xm(t) by

φm(t) − f̂φ, xm(t) − f̂x.

We’d like to point out that the calculation of r2(t) is not

necessary in the present set-up. Instead, one could have

directly estimated f̂a in any case. Our intention in doing

so is to provide a laboratory demonstration of a successful

estimation of the second derivative, including a shift of the

magnitude of the occuring delay.

The swing up was sucessfully performed for all kinds of

faults, and only one representative result is depicted in Fig.

5, where the actuator was subject to a performance loss of

20%.

VI. CONCLUSIONS

The well-known least squares polynomial approximation

scheme for estimating the derivative(s) of a measured noisy

signal has been analysed with respect to its statistical proper-
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Fig. 5. Side-step, swing-up and stabilization of the pole under faulty
conditions: pole angle (top) and cart position (bottom). The actuator loss
of 20% was successfully identified during the side-step and could be
compensated for later on. The initial cart position is shifted by 0.1m in
order to avoid an exceeding of the available rail length.

ties and its temporal delay. The analysis gives important hints

for the optimal tuning of the parameters of the estimator,

such as sampling time, approximation window length and

order of the polynomial approximation. While no generally

applicable optimal set of parameters exists, a systematic way

to design the estimator is given in Section IV, which takes

into account the requirements of the given application. The

results have been validated by two sample problems: The

simulated estimation of the first and second derivative of

the first state component of Chen’s Chaotic Oscillator and

the experimental swing up of the Inverted Pendulum on a

Cart in the presence of actuator and sensor faults, where

the fault identification and isolation scheme was based on

the described derivative estimation method. The results in

Sections II and III have been derived under the assumption

that the true, noiseless measurement signal is of polynomial

type of known order on each time interval T . Even more,

the results concerning the estimation’s delay (section III)

are based on a polynomial model of order j + 1 when the

j-th derivative is to be estimated. The effect that might

be caused by neglecting the higher order terms of the

signal’s Taylor expansion has not been considered in this

work. Therefore, the preceding results are only valid for

signals with sufficiently fast converging Taylor series on each

interval T .
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