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Abstract— The finite-time stabilization of nonlinear Port-
Controlled Hamiltonian (PCH) systems is investigated in this
paper, and a number of approaches to the finite-time control
design are proposed. Based on a finite-time stability criterion
and the so-called “energy shaping plus damping injection”
technique, the continuous finite-time stabilization problem is
studied for the PCH systems, and several global stabilization
results are obtained. Via Hamiltonian realization, the results
obtained for the Hamiltonian systems are applied to investigate
continuous finite-time stabilization of nonlinear affine systems,
and several global control design results are presented. Study
on several examples shows that the control design approaches
developed in this paper work very well.

I. INTRODUCTION

The Port-Controlled Hamiltonian (PCH) system, proposed
by [9], [17], has been well investigated in a series of recent
works, see, e.g. [3], [4], [10], [13], [18], [20]. A new
passivity-based control theory, known as the interconnec-
tion and damping assignment (IDA-PBC) methodology, was
developed in [13] and then many stabilization results were
obtained for both PCH systems and mechanical systems
by using the new methodology [13], [14]. It is well worth
pointing out that [14] proposed a new control design pro-
cedure, called “energy shaping plus damping injection”, for
the PCH system. This procedure is very important because
it can not only provide the PCH system a better Hamiltonian
formulation but also set up an easy way to the stabilization
of the PCH system. It is noted that the Hamiltonian function,
the sum of potential and kinetic energies in physical systems,
is a good candidate of Lyapunov functions for many physical
systems. Due to this and its nice structure with clear physical
meaning, the PCH system has some distinctive advantages
in control designs and has found its wide use in many prac-
tical control problems. Particularly, it has been successfully
applied to the control of power systems [5], [12], [16], [21]
and mechanical systems [14], [19], respectively.

It is also noted that, in general, an asymptotical stable
controller cannot guarantee that the system under study
achieves the control performance of fast convergence, and
a finite-time controller often has to be designed in practice
for some special control problems. As indicated in [8], a
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finite-time controller possesses not only fast convergence but
also better robustness and disturbance attenuation properties.
During the past two decades, the finite-time control problem
has drawn an increasing attention and many results have been
obtained for several classes of dynamic systems, see, e.g.
[1], [2], [6]–[8], [11], [15]. Different versions of Lyapunov
stability theorem were proposed in [1], [6] for analyzing
the finite-time stability of nonlinear systems. These results
are very important in the sense that they have provided a
basic tool for the finite-time stability analysis and control
design of nonlinear control systems. It should be pointed out
that designing a continuous finite-time feedback controller
is challenging because such a controller necessarily involves
non-Lipschitz closed-loop dynamics [1]. As a result, there
are few works on the continuous finite-time control design
for general nonlinear systems. In particular, there are, to
the authors’ best knowledge, few results on the finite-time
control of nonlinear Hamiltonian systems.

In this paper, we investigate the global finite-time stabi-
lization of nonlinear PCH systems, and propose a number of
approaches to their finite-time control design. Based on an
obtained stability criterion and the so-called “energy shaping
plus damping injection” technique [14], the continuous finite-
time stabilization problem is studied for the PCH systems,
and several global stabilization results are obtained. Via
Hamiltonian realization, we apply the stability results ob-
tained for the Hamiltonian systems to investigate continuous
finite-time stabilization of nonlinear affine systems, and
present several global control design results. Study on several
examples shows that the control design approaches proposed
for both the PCH systems and nonlinear affine systems in this
paper work very well.

The remainder of the paper is organized as follows.
Section II presents a result on the finite-time stability of a
class of Hamiltonian systems. In Section III, the continuous
finite-time stabilization problem is investigated for the PCH
system. Section IV is the application to nonlinear affine
systems, which is followed by the conclusion in Section V.

II. FINITE-TIME STABILITY OF A CLASS OF
HAMILTONIAN SYSTEMS

This section studies the finite-time stability of a class of
Hamiltonian systems, and presents a global stability criterion.

Consider a dissipative Hamiltonian system described as
follows [10], [22]

ẋ = [J(x)−R(x)]
∂H

∂x
, x(t0) = x0, (1)

where x ∈ R
n, JT (x) = −J(x) ∈ R

n×n, 0 6 R(x) ∈
R
n×n, and H(x) is the Hamiltonian function with x = 0 as
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its minimum point.
To analyze the finite-time stability of the system (1), we

give two lemmas first.
Lemma 1: (Jensen’s inequality [7])
(

n
∑

i=1

|xi|
a2

)
1

a2
6

(

n
∑

i=1

|xi|
a1

)
1

a1
, 0 < a1 6 a2, (2)

where a1, a2 and xi, i = 1, 2, ..., n, are all real numbers.
In Lemma 1, let a2 = 1 and a1 = 1

p
, then we obtain the

following inequality
n
∑

i=1

|xi|
1

p >

(

n
∑

i=1

|xi|
)

1

p

, p > 1. (3)

Lemma 2: ([1]) Consider a dynamic system
ẋ = f(x), f(0) = 0, x(t0) = x0, x ∈ R

n. (4)
If there exist a real number β > 1 and a C1 radially
unbounded Lyapunov function, V (x), of the system such
that

V̇ 6 −kV
1

β (x(t)), k > 0 (5)

holds along the trajectories of the system starting from any
x0 ∈ R

n, then the origin is a global finite-time stable
equilibrium of the system (4). Furthermore, the settling time
of the system (4) with respect to x0 satisfies

T (x0) 6 t0 +
β

k(β − 1)
V

β−1

β (x0), ∀x0 ∈ R
n. (6)

Now we are ready to investigate the global finite-time
stability of the system (1). By studying the Hamiltonian
structural properties of the system, a proper form of the
Hamiltonian function is obtained (see (7) below), which leads
to the following result.

Theorem 1: Consider the Hamiltonian system (1). If
(1) the Hamiltonian function is given as

H(x) =
n
∑

i=1

(

x2i
)

α
2α−1 , (7)

where α > 1 is a real number, and
(2)

k := min
16i6n

{

inf
x∈Rn

{

σR
i (x)

}

}

> 0, (8)

where σR
i (x), i = 1, 2, ..., n, denote the eigenvalues of

R(x),
then the system (1) is globally finite-time stable at the origin.
Furthermore, the settling time with respect to x0 satisfies

T (x0) 6 t0 +
(2α− 1)2

4kα(α− 1)
H

α−1

α (x0). (9)

Proof: It is easy to see that H(x) is a C1 radially unbounded
positive definite function. For any x0 ∈ R

n, let x(t) :=
x(t; t0, x0) be the trajectory of the system (1) starting from
x0. Choose H(x) as a Lyapunov function candidate, then
along x(t) we obtain

Ḣ = ∇TH[J(x)−R(x)]∇H = −∇THR(x)∇H

6−k∇TH · ∇H = −k
( 2α

2α− 1

)2
n
∑

i=1

(

x2i
)

1

2α−1 .

Since α > 1, it follows from (3) that

Ḣ 6 −k
( 2α

2α− 1

)2
n
∑

i=1

[

(

x2i
)

α
2α−1

]
1

α

6 −k
( 2α

2α− 1

)2[
n
∑

i=1

(

x2i
)

α
2α−1

]
1

α

,

that is,

Ḣ 6 −k
( 2α

2α− 1

)2

H
1

α (x(t)). (10)

By Lemma 2, it can be concluded that the origin is a
global finite-time stable equilibrium of the system (1) and
moreover, the settling time T (x0) satisfies (9).

Remark 1: When R(x) is a constant positive definite
matrix, Condition (8) holds naturally.

With Theorem 1, we have the following corollary.
Corollary 1: Consider the Hamiltonian system (1). If the

Hamiltonian function is given as

H(x) =

n
∑

i=1

|xi|
β , 1 < β < 2 (11)

and meanwhile, the dissipative matrix R(x) satisfies (8), then
the system (1) is globally finite-time stable at the origin and
moreover, the settling time with respect to x0 satisfies

T (x0) 6 t0 +
1

kβ(2− β)
H

2−β
β (x0). (12)

Proof: It follows from (11) that

H(x) =

n
∑

i=1

(

x2i
)

β
2 =

n
∑

i=1

(

x2i
)

α
2α−1 ,

where α := β
2β−2 . Since 1 < β < 2, it is easy to show that

α > 1. Thus, all the conditions of Theorem 1 are satisfied,
and it can be concluded that the system (1) is globally
finite-time stable at the origin. Moreover, substituting α =

β
2β−2 into (9), we can obtain (12). Therefore, the proof is
completed.

Remark 2: It is noted from the proof of Corollary 1 that
the Hamiltonian function given in (11) can be rewritten as
the form of (7). On the other hand, since α > 1 ⇒ 1 <
2α

2α−1 < 2, the Hamiltonian function given in (7) can be
also expressed as the form of (11). Thus, the form of the
Hamiltonian function given in (7) is equivalent to that given
in (11).

Remark 3: It is noted that the stability criterion proposed
in Theorem 1 or Corollary 1 can reduce to the case of
conventional asymptotical stability, as long as one takes α =
1 in (7) or β > 2 in (11). In this sense, the stability results
obtained in this paper can be regarded as an extension of
some existing results on conventional asymptotical stability
[22].

III. FINITE-TIME STABILIZATION OF PCH
SYSTEMS

In this section, we utilize the results obtained in Section
2 to investigate continuous finite-time stabilization of non-
linear PCH systems, and propose several global stabilization
results.
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Consider the following PCH system [9], [17]

ẋ = [J(x)−R(x)]
∂H

∂x
+ g(x)u, x(t0) = x0, (13)

where x ∈ R
n, u ∈ R

m, JT (x) = −J(x) ∈ R
n×n, 0 6

R(x) ∈ R
n×n, and H(x) is the Hamiltonian function with

x = 0 as its minimum point.
Our aim is to design a continuous feedback law u = u(x)

such that the closed-loop system consisting of the system
(13) and the control u(x) is globally finite-time stable at the
origin.

In the following, we use Theorem 1 and the “energy
shaping plus damping injection” technique [14] to design
the continuous finite-time control law. We will design a
continuous feedback law u = u(x) such that the closed-loop
system can be expressed as

ẋ = [J̄(x)− R̄(x)]
∂H̄

∂x
, (14)

where J̄(x) is some skew-symmetric matrix, R̄(x) is a
positive definite one with

k := min
16i6n

{

inf
x∈Rn

{

σR̄
i (x)

}

}

> 0, (15)

σR̄
i (x), i = 1, 2, ..., n, stand for the eigenvalues of R̄(x), and

H̄ =

n
∑

i=1

(

x2i
)

α
2α−1 , α > 1. (16)

Remark 4: In the above design, the Hamiltonian function
(the system’s total energy) is shaped from H(x) → H̄(x),
which is called “energy shaping”, while the dissipative part
of the structural matrix is altered from R(x) → R̄(x) :=
R(x) +∆R(x), which is called “damping injection”, where
∆R(x) can be regarded as the injected damping [14].

Let
Ha(x) := H̄(x)−H(x), (17)

and recall g(x) ∈ R
n×m. When m < n, without loss of

generality, we assume that g(x) has full column rank. In
this case, to obtain the Hamiltonian structure given in (14),
the control law u(x) should be designed such that
g(x)u(x) = [J(x)−R(x)]∇Ha+[Ja(x)−Ra(x)]∇H̄, (18)

where Ja(x) is a skew-symmetric matrix to be determined,
Ra(x) is a symmetric one to be determined such that
Ra(x)+R(x) := R̄(x) satisfies (15), and ∇H := ∂H

∂x
. Since

g(x) is not invertible and only has full column rank, u(x)
can only influence the terms in the range space of g(x). This
leads to the following constraint equation

g⊥(x)
(

[J(x)−R(x)]∇Ha + [Ja(x)−Ra(x)]∇H̄
)

= 0

(19)
for any choice of u(x) such that (18) holds, where g⊥(x) is
a full rank left annihilator satisfying g⊥(x) · g(x) = 0.

Equation (19), called the matching condition, is a set
of algebraic equations with respect to Ja(x) and Ra(x).
For many PCH systems, especially some typical physical
systems, their particular structure can help us obtain such a
solution pair (Ja(x), Ra(x)).

If a solution pair (Ja(x), Ra(x)) of (19) is obtained, then
[J(x) − R(x)]∇Ha + [Ja(x) − Ra(x)]∇H̄ with this pair

(Ja(x), Ra(x)) can be expressed as
[J(x)−R(x)]∇Ha+[Ja(x)−Ra(x)]∇H̄ = g(x)τ(x). (20)

Choosing
u = τ(x), (21)

which is a continuous feedback controller, we can show that
u = τ(x) is a global finite-time stabilizer of the system (13).

Moreover, it follows from Theorem 1 that the settling time
of the closed-loop system satisfies

T (x0) 6 t0 +
(2α− 1)2

4kα(α− 1)
H̄

α−1

α (x0). (22)

For the convenience of description, the continuous feed-
back law u = τ(x) given in (21) is called the derived
control of Equation (19) with respect to the solution pair
(Ja(x), Ra(x)).

Summarizing the above leads to the following result.
Theorem 2: Consider the system (13) with rank g(x) =

m < n. If there exist a real number α > 1, a symmet-
ric matrix Ra(x) ∈ R

n×n and a skew-symmetric matrix
Ja(x) ∈ R

n×n such that (19) holds and meanwhile, R̄(x) :=
Ra(x) + R(x) satisfies (15), then the system (13) can be
globally finite-time stabilized by the continuous feedback law
u = τ(x), which is the derived control of Equation (19) with
respect to the solution pair (Ja(x), Ra(x)). Furthermore, the
settling time of the closed-loop system satisfies (22).

Remark 5: The control law u = τ(x) given in Theorem
2 is continuous but, in general, non-smooth.

Remark 6: Ra(x) in Theorem 2 is only required to be
symmetric, not positive (semi-)definite, which can provide
us more choices of (Ja(x), Ra(x)) such that Equation (19)
holds.

In the following, we give an example to show how to
apply Theorem 2 to design continuous finite-time stabilizers
for PCH systems.

Example 1: Design a finite-time controller to stabilize the
following PCH system

ẋ = [J(x)−R(x)]
∂H

∂x
+ g(x)u, x(t0) = x0, (23)

where x = (x1, x2, x3)
T ∈ R

3, u = (u1, u2)
T ∈ R

2, and

J(x) =





0 1 0
−1 0 − 1
0 1 0



 , g(x) =





1 0
0 1
1 0



 ,

R(x) = Diag{0, 1, 2}, H(x) =
1

2
x21 +

1

2
x22 + x

4

3

3 .

Let
H̄(x) =

(

x21
)

2

3 +
(

x22
)

2

3 +
(

x23
)

2

3 , Ha(x) := H̄(x)−H(x),

where α = 2 in (16). Then, it can be checked that

g⊥(x)
(

[J(x)−R(x)]∇Ha + [Ja(x)−Ra(x)]∇H̄
)

= 0

(24)
has a solution pair (Ja(x), Ra(x)) as follows

Ja(x) =





0 − 1 1
1 0 1

−1 − 1 0



 , Ra(x) =





1 0 0
0 0 0
0 0 −1



 .

Moreover, it is easy to see that R̄(x) = Ra(x) + R(x) (=
Diag{1, 1, 1}) satisfies (15). Thus, it follows from Theorem
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2 that the system (23) can be globally finite-time stabilized
by a continuous feedback law.

On the other hand, a straightforward computation shows
that
[J(x)−R(x)]∇Ha + [Ja(x)−Ra(x)]∇H̄ = g(x)u(x),

where the derived control with respect to (Ja(x), Ra(x)) is
given as

u(x) =





−x2 −
4

3
x

1

3

1 + 4

3
x

1

3

3

x1 + x2 −
4

3
x

1

3

2 + 4

3
x

1

3

3



 , (25)

which is a global continuous finite-time stabilizer of the
system (23).

Furthermore, noticing that α = 2 and k = 1 in this
example, it is easy to know from (22) that the settling time
of the closed-loop system consisting of the system (23) and
the controller (25) satisfies

T (x0) 6 t0 +
9

8
H̄

1

2 (x0).

In what follows, we provide a more general result on the
finite-time stabilization of the system (13).

Theorem 3: Consider the system (13). If there exist a real
number α > 1 and an n× n symmetric matrix Ra(x) such
that

(1)
f(x) ∈ Span

0
{g(x)}+ Ker{dH̄}, (26)

where f(x) := [J(x)−R(x)]∇Ha−Ra(x)∇H̄ , H̄(x)
and Ha(x) are given in (16) and (17), respectively,
Span

0
{·} stands for the generated space with C0 scalar

functions as the coefficients and dH̄ is the differential
one-form of H̄ , and

(2)

k := min
16i6n

{

inf
x∈Rn

{

σR+Ra

i (x)
}

}

> 0, (27)

where σR+Ra

i (x), i = 1, 2, ..., n, denote the eigenval-
ues of R(x) +Ra(x),

then the system (13) can be globally finite-time stabilized by
a continuous feedback law u(x). Furthermore, the settling
time of the resulting closed-loop system satisfies (22).
Proof: It can be seen from (26) that there exist a continuous
vector field η(x) ∈ R

m and ξ(x) ∈ Ker{dH̄} such that
f(x) = g(x)η(x) + ξ(x). (28)

Choosing u = η(x) and substituting it into the system (13)
lead to the following closed-loop system

ẋ = [J(x)−R(x)]∇H + f(x)− ξ(x)

= [J(x)−R(x)]∇H + [J(x)−R(x)]∇Ha

−Ra(x)∇H̄ − ξ(x)

= [J(x)−R(x)]∇H̄ −Ra(x)∇H̄ − ξ(x)

= [J(x)− (R(x) +Ra(x))]∇H̄ − ξ(x). (29)
On the other hand, since ξ(x) ∈ Ker{dH̄}, dH̄ · ξ(x) =

LξH̄ = 0. It thus follows from [22] that ξ(x) can be
expressed as

ξ(x) = Ja(x)∇H̄, (30)

where Ja(x) is an n× n skew-symmetric matrix.

Substituting (30) into (29) leads to

ẋ =
[(

J(x)− Ja(x)
)

−
(

R(x) +Ra(x)
)] ∂H̄

∂x
. (31)

Noticing that J(x)− Ja(x) is skew-symmetric and R(x) +
Ra(x) satisfies (27), it follows from Theorem 1 that the
closed-loop system (31) is globally finite-time stable at the
origin, and moreover, the settling time of the closed-loop
system satisfies (22). Thus, the proof is completed.

Remark 7: For the convenience of description in the se-
quel, the control u = η(x) given in the above proof is called
the derived control of (26) with respect to f(x).

Remark 8: It can be seen from Corollary 1 that Theorems
2 and 3 still hold when H̄(x) given in (16) is replaced by
H̄(x) =

∑n
i=1
|xi|

β (1 < β < 2).

IV. FINITE-TIME STABILIZATION OF
NONLINEAR AFFINE SYSTEMS

In this section, we apply the results obtained for Hamilto-
nian systems to study continuous finite-time stabilization of
nonlinear affine systems, and propose several control design
results for the systems.

Consider the following nonlinear affine system
ẋ = f(x) + g(x)u, f(0) = 0, x(t0) = x0, (32)

where x ∈ R
n and u ∈ R

m.
If the system (32) has a dissipative Hamiltonian realization

as follows

ẋ = [J(x)−R(x)]
∂H

∂x
+ g(x)u

with J(x) skew-symmetric and R(x) positive semi-definite,
then we can directly utilize Theorem 2 or 3 to design
its continuous finite-time stabilizer. However, a dissipative
Hamiltonian realization is very difficult to obtain for most
nonlinear systems. It is thus necessary to develop a new way
based on general Hamiltonian structures to handle the finite-
time stabilization problem for the system (32).

In the following, we apply the orthogonal decomposition
method [22] to provide the system (32) a Hamiltonian
structure first. Then, based on the obtained Hamiltonian
structure, we propose several approaches to the finite-time
control design for the system (32).

Choose

H(x) =
n
∑

i=1

(

x2i
)

α
2α−1 , α > 1, (33)

which is a regular positive definite function [22]. By the
orthogonal decomposition Hamiltonian realization [22], with
this H(x), the system (32) can be expressed as

ẋ = [J(x) + S(x)]
∂H

∂x
+ g(x)u, (34)

where

J(x) =

{

1

‖∇H‖2 [ftd(x)∇HT −∇HfT
td(x)], x 6= 0

0, x = 0
(35)

is skew-symmetric, ftd(x) = f(x) − fgd(x), fgd(x) =
LfH

‖∇H‖2∇H , and

S(x) =

{

LfH

‖∇H‖2 In, x 6= 0

0, x = 0
(36)
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is symmetric.
Remark 9: A nonlinear affine system always has the

orthogonal decomposition Hamiltonian realization given in
(34) [22].

Notice that S(x) given in (36) is not a negative definite
matrix as desired. In the following, we use the idea of
“damping injection” to design a continuous feedback law
u(x) such that the closed-loop system is globally finite-time
stable at the origin.

Based on the Hamiltonian realization (34), we have the
following result.

Theorem 4: Consider the system (32) with rank{g(x)} =
m < n. If there exist a real number α > 1, a symmet-
ric matrix Ra(x) ∈ R

n×n and a skew-symmetric matrix
Ja(x) ∈ R

n×n such that
(1) the equation

g⊥(x)
(

[Ja(x)−Ra(x)]∇H
)

= 0 (37)

holds, i.e., Equation (37) has a solution pair
(Ja(x), Ra(x)), where H(x) is given in (33), and

(2)

k := min
16i6n

{

inf
x∈Rn

{

σRa−S
i (x)

}

}

> 0, (38)

where σRa−S
i (x), i = 1, 2, ..., n, denote the eigenval-

ues of Ra(x)− S(x), and S(x) is given in (36),
then the system (32) can be globally finite-time stabilized by
the derived control u = τ(x) of Equation (37) with respect
to the solution pair (Ja(x), Ra(x)). Furthermore, the settling
time of the closed-loop system consisting of the system (32)
and the control u = τ(x) satisfies

T (x0) 6 t0 +
(2α− 1)2

4kα(α− 1)
H

α−1

α (x0). (39)

Proof: Since Equation (37) holds for (Ja(x), Ra(x)), there
exists a continuous vector field τ(x) ∈ R

m such that
[Ja(x)−Ra(x)]∇H = g(x)τ(x).

Choosing u(x) = τ(x), which is the so-called derived
control, and substituting it into (34), we obtain

ẋ =
[

J̄(x)−
(

Ra(x)− S(x)
)]∂H

∂x
, (40)

where J̄(x) := J(x) + Ja(x) is skew-symmetric.
On the other hand, Condition (2) holds. It follows from

Theorem 1 that the system (40) is globally finite-time stable
at the origin, and meanwhile, the settling time satisfies (39).
Thus, the proof is completed.

Remark 10: It is noted that Ra(x) in Theorem 4 is only
required to be symmetric, not positive (semi-) definite, and
this would allow for more choices of (Ja(x), Ra(x)) such
that Condition (37) holds.

In the following, we give an example to show how to
apply Theorem 4 to design continuous finite-time stabilizers
for nonlinear affine systems.

Example 2: Consider the following affine system

ẋ =







x2
−x1 − x2

x2 +
4

3
x

1

3

1 −
4

3
x

1

3

3






+





1 0
0 1
1 0



u := f(x)+g(x)u.

(41)

Let
H(x) =

(

x21
)

2

3 +
(

x22
)

2

3 +
(

x23
)

2

3

with α = 2, then the system (41) can be expressed as
ẋ = [J(x) + S(x)]∇H + g(x)u,

where

J(x) =

{

1

‖∇H‖2 [ftd(x)∇HT −∇HfT
td(x)], x 6= 0

0, x = 0,

ftd(x) = f(x)− fgd(x), fgd(x) =
LfH

‖∇H‖2∇H , and

S(x) =

{

LfH

‖∇H‖2 I3, x 6= 0

0, x = 0.
Now, consider the following equation

g⊥(x)
(

[Ja(x)−Ra(x)]∇H
)

= 0. (42)

A straightforward computation shows that (42) has a solution
pair as follows

Ja(x) = −J(x), Ra(x) = I3 + S(x),

and furthermore,

min
16i63

{

inf
x∈R3

{σRa−S
i (x)}

}

= 1 > 0.

Thus, it follows from Theorem 4 that the system (41) can be
globally finite-time stabilized by the derived control of (42)
with respect to the solution pair (Ja(x), Ra(x)).

Next, we find the derived control. Through a straightfor-
ward computation, we know that

[Ja(x)−Ra(x)]∇H = g(x) ·





−x2 −
4

3
x

1

3

1

x1 + x2 −
4

3
x

1

3

2



 .

Therefore, the derived control of (42) is given as

u(x) =





−x2 −
4

3
x

1

3

1

x1 + x2 −
4

3
x

1

3

2



 . (43)

Moreover, noticing that α = 2 and k = 1 in this example,
it follows from Theorem 4 that the settling time of the closed-
loop system consisting of the system (41) and the control
(43) satisfies

T (x0) 6 t0 +
9

8
H

1

2 (x0),

where x(t0) = x0 is the system’s initial condition.
Similar to the case of Theorem 3, we have the following

result on the finite-time control design of the system (32).
Theorem 5: Consider the system (32) with the Hamilto-

nian function (33). If there exist a real number α > 1 and a
symmetric matrix Ra(x) ∈ R

n×n such that both
Ra(x)∇H ∈ Span

0
{g(x)}+ Ker{dH} (44)

and (38) hold, then the system (32) can be globally finite-
time stabilized by u = −η(x), where η(x) is the derived
control of (44) with respect to Ra(x)∇H . Moreover, the
settling time of the closed-loop system consisting of the
system (32) and the control u = −η(x) satisfies (39).
Proof: The proof is similar to those of Theorems 3 and 4,
and thus omitted.

Remark 11: Since Ra(x) in Theorem 5 is only required
to be symmetric, not positive (semi-)definite, it is easy to see
that there are more choices of Ra(x) such that (44) holds.

1206



Next, we present another result on the finite-time stabi-
lization of the system (32) by using Hamiltonian structure
obtained with the Jacobian matrix of f(x).

Letting Jf denote the Jacobian matrix of f(x), we have
the following result.

Theorem 6: Consider the system (32) with Jf non-
singular. If there exist a real number α > 1 and a symmetric
matrix Ra(x) ∈ R

n×n such that
(1)

h(x) ∈ Span
0
{g(x)}+ Ker{dH̄}, (45)

where h(x) := J−T
f ∇Ha − Ra(x)∇H̄ , H̄(x) =

∑n
i=1

(

x2i
)

α
2α−1 , Ha(x) := H̄(x)−H(x) and

H(x) =
1

2
fT (x)f(x); (46)

(2)

k := min
16i6n

{

inf
x∈Rn

{

σR̄
i (x)

}

}

> 0, (47)

where R̄(x) := Ra(x)−
1

2
(JT

f + J−T
f ),

then the system (32) can be globally finite-time stabilized by
the derived control u = η(x) of (45) with respect to h(x).
Proof: Since (45) holds, similar to the proof of Theorem 3, it
follows that there exist a continuous vector field η(x) ∈ R

m

and a skew-symmetric matrix Ja(x) ∈ R
n×n such that

h(x) = g(x)η(x) + Ja(x)∇H̄. (48)
On the other hand, since Jf is non-singular, it thus follows

from [22] that the system (32) has a Hamiltonian realization
as follows

ẋ = J−T
f ∇H + g(x)u, (49)

where H(x) is given in (46).
Choose u = η(x), which is the so-called derived control

of (45). Substituting u = η(x) into the system (49) and using
(48) lead to

ẋ = J−T
f ∇H + h(x)− Ja(x)∇H̄

=
[{1

2
(J−T

f − J−1f )− Ja(x)
}

−
{

Ra(x)−
1

2
(J−T

f + J−1f )
}]

∇H̄

= [J̄(x)− R̄(x)]∇H̄, (50)
where J̄(x) := 1

2
(J−T

f − J−1f )− Ja(x) is skew-symmetric.
Noticing that (47) holds true, it follows from Theorem

1 that the closed-loop system (50) is globally finite-time
stable at the origin, which implies that the system (32) can
be globally finite-time stabilized by the derived control of
(45). Thus, the proof is completed.

V. CONCLUSION

We have investigated the finite-time stabilization of non-
linear PCH systems in this paper, and proposed a number of
approaches to the finite-time control design. Via Hamiltonian
realization, the results obtained for the Hamiltonian systems
have been applied to the global continuous finite-time stabi-
lization of nonlinear affine systems, and a number of control
design approaches have been obtained. Study on several
examples has shown that the control design approaches

proposed for both the PCH systems and nonlinear affine
systems in this paper work very well.
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Archive für Elektronik und Übertragungstechnik, 49: 362-371.

[18] A. J. van der Schaft, 1999, L2-gain and Passivity Techniques in
Nonlinear Control, Berlin: Springer.

[19] G. Viola, R. Ortega, R. Banavar, J. A. Acosta and A. Astofi, 2007.
Total energy shaping control of mechanical systems: Simplifying the
matching equations via coordinate changes. IEEE Trans Automatic
Contr, 52(6): 1093-1099.

[20] Y. Wang, G. Feng, and D. Cheng, 2007. Simultaneous stabilization of
a set of nonlinear port-controlled Hamiltonian systems. Automatica,
43(3): 403-415.

[21] Y. Wang, G. Feng, D. Cheng and Y. Liu, 2006. Adaptive L2 distur-
bance attenuation control of multimachine power systems with SMES
units. Automatica, 42(7): 1121-1132.

[22] Y. Wang, C. Li and D. Cheng, D., 2003. Generalized Hamiltonian
realization of time-invariant nonlinear systems. Automatica, 39(8),
1437-1443.

[23] Z. Xi, D. Cheng, Q. Lu and S. Mei, 2002. Nonlinear decentralized
controller design for multi-machine power systems using Hamiltonian
function method. Automatica, 38(3): 527-534.

1207


