
 

 

 

Abstract—As most mobile robots are powered by 

batteries, their energy and operation times are limited. 

Therefore, how to minimize energy consumption and keep 

mobile robots to stay alive becomes an important problem. 

In this paper, by applying a dynamic energy-evaluation 

scheme, in which we consider if a robot has enough energy 

to go to next location, finish the task and return to the 

docking station in the path planning, we propose two 

staying-alive and energy-efficient path planning 

approaches based on the greedy TSP and Tabu-search 

methods, respectively. The experimental results show that 

our Tabu-search-based approach is the best and can 

provide an effective path planning by which a robot can 

be guaranteed to stay alive and finish all tasks with the 

minimum energy.  

I. INTRODUCTION 

 

OBILE robots can be used in many missions such as  

elder care, shopping navigation, carpet cleaning, lawn moving 

and rescue assistance after disasters [1][2]. As most mobile 

robots are powered by batteries, their energy and operation 

times are limited. For example, the humanoid robot from 

Honda can only walk for approximately 30 minutes with its 

rechargeable battery [14]. Therefore, how to minimize energy 

consumption and keep mobile robots to stay alive becomes an 

important problem. To stay alive, we need to guarantee that if 

a robot does not have enough energy,  he should be able to 

return to a docking station for battery changing or recharging, 

which needs to be done in an energy-efficient way for energy 

saving. In this paper, we focus on solving the staying-alive and 

energy-efficient path planning problem: given a robot and 

various tasks in different locations, how to find a path 

planning with the minimum energy to finish all tasks and stay 

alive.  

Energy-efficient path planning has been extensively studied 

from the previous work. In [9], Katoh et al propose an 

energy-efficient motion planning method for space 

manipulator by controlling the motion of the space 

manipulator to be elliptic. In [10] [11], Mei et al analyze 

power consumption of a robot at different speeds and propose 
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an effective energy-aware motion scheme. Barili et al [12] 

develop an energy-saving scheme by controlling the speeds 

and avoiding unnecessary stops for mobile robots. Chong et al 

[8] propose minimum-energy velocity-trajectory-control 

scheme considering practical energy consumption dissipated 

in motors. In [15], Jia et al propose a cost-efficient motion 

planning algorithm by integrating grid and topological 

information for robot exploration. In all of the above work, 

however, staying alive is not considered.  As we show later, in 

a path planning for mobile robots powered by batteries, if 

returning to a docking station for battery changing or 

recharging is not considered, a robot may exhaust all of its 

energy and stop in the middle of the path.  

To solve the staying-alive problem for mobile robots, 

several methods have been proposed [5-7]. Seungjun Oh et al 

[7] implement the auto recharging device on a mobile robot. 

However, in these methods, path planning is either not 

considered or handled with a static manner. As we show in 

Section 2, a static energy lower bound method may not work 

very well for energy saving. In [18-19], Zebrowski et al 

propose an energy delivery approach called a tanker approach. 

In their approach, a tanker robot serving as “mother” robot to 

traverse and distribute energy cells to “worker” robots if 

demanded. In [20], Floreano et al propose an evolution of a 

discrete time recurrent neural network approach that allows 

the robot to choose trajectory as function of location and 

remaining energy. Our work is a good complement for the 

above methods by providing staying-alive and 

energy-efficient path planning so robots or tanker robots can 

utilize the routes generated to finish their tasks with the 

minimum energy.  

In this paper, we propose two approaches to solve the 

staying-alive and energy-efficient path planning problem. To 

guarantee that a robot can always return to the docking station 

for battery changing or recharging, we apply a dynamic 

energy-evaluation scheme, in which we consider if a robot has 

enough energy to go to next location, finish the task and return 

to the docking station in the path planning. Based on this 

scheme, we propose two approaches for energy minimization. 

As the problem is a variation of the traveling salesman 

problem (TSP), a well-known NP-complete problem, we first 

propose an approach based on a greedy TSP method [22]. 

Then we propose a better approach based on the Tabu-search 
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method [17]. We conduct experiments based on a simulation 

environment. The experimental results show that our 

Tabu-search-based approach can provide an effective path 

planning by which a robot can be guaranteed to stay alive and 

finish all tasks with the minimum energy.  

The rest of the paper is organized as follows. Motivational 

examples are given in Section II. In Section III, we introduce 

the basic concepts. In Section IV, we provide our approaches. 

The experimental results are provided in Section V, and the 

conclusion is shown in Section VI. 

II. MOTIVATING EXAMPLES 

In this section, we motivate the staying-alive and 

energy-efficient path planning problem by showing the 

different path planning with different energy consumption 

from different method. 

Given an environment shown in figure 1 in which there are 

eleven tasks in (A to K) locations, each tasks with a value 

which denotes energy require for a robot doing the task. The 

robot needs to traverse all tasks starting from and back to the 

docking station. The distance between tasks can be obtained 

by Dijistra algorithm [21]. We assume that robot consumes 1 

unit of energy on 1 unit distance, and robot has 1 thousand 

units of energy after recharged. These assumptions are only 

for demonstration purpose. Our technique is general enough 

to deal general energy models as discussed in later sections. 

Figures 1, 2, 3 show the different routes with different path 

planning methods. 

  In Figure 1, the route is obtained based on the TSP greedy 

approach [22], in which the robot traverses all tasks by 

picking and going to a task that is the closest to him. When 

robot finished task at I, energy left is 26.20 units, and robot 

energy exhausted after arrived at J. 

This problem can not be solved very well with a static 

manner. For example, using the method with a static 

energy-evaluation scheme [7], suppose that a robot is required 

to return to the docking station if his energy level is reach to a 

threshold such as 10% of robot battery capacity. As figure 2 

shows the robot reaches to H’ and find that his energy level 

reaches to the threshold. So he returns to the docking station, 

and then continues to finish all tasks after battery changing or 

recharging. As we can see, H’ is far from the docking station, 

the routes from H’ to the docking station and from the docking 

station to I is very long, so more energy is consumed. 

Figure 3 shows the route obtained by our method based on 

the dynamic energy-evaluation scheme. In our method, we 

combine the path planning and staying alive together. When 

we do path planning, we will consider if the robot has enough 

energy to go to next location, finish the task and return to the 

docking station. Therefore, at H, the robot will return to the 

docking station and then continue. In this way, the robot can 

finish all tasks with the minimum energy and staying alive. 

From these examples, we can see that neither 

energy-efficient path planning methods without considering 

staying alive nor static energy lower bound methods can solve  

 
Figure.1 Path planning without the consideration of staying alive, robot 

exhausts when doing task in location J. 

 
Figure.2 Path planning using static energy-evaluation scheme. 

 
Figure.3 Path planning using dynamic energy-evaluation scheme. 

 

this problem very well. Therefore, we propose a dynamic 

energy-evaluation method to solve this problem. 

III. BASIC CONCEPTS AND PROBLEM  

In this section, we introduce the basic concepts and 

formally define the problem in Section III-A and Section III-B, 

respectively. 
 

A. Graph Model 

We use a node-weighted edge-weighted directed graph to 

model the staying-alive and energy-efficient path planning 

problem.  

Let G= (V, A, W, E) be a directed graph where V= {v0, v1,…, 

vn} is the vertex set, A={a(vi Æ vj):i ≠ j} is the edge set, W= 

{ ci,j : vi Æ vj ∈ A} is the weight of each edge, E={Ev1 ,…, Evn} 

is the energy cost for finishing the task. In the node set V, v0 

denotes the docking station and vi ∈ {v1,…, vn} represents the 

location where Task i occurs in the environment. In the set of 
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W, ci,j  is a positive number to represent the energy cost when 

the robot moves from vi  to vj. 

B. Problem Definition 

The staying-alive and energy-efficient path planning 

problem for mobile robots is formally defined as follows:  

1) The robot needs to traverse all task nodes {v1… vn} 

starting from and back to v0 (the docking station); 

2) Each node in {v1… vn} needs to be visited once, and the 

corresponding task is finished after the node has been visited; 

3) When the robot returns back to the docking station, the 

remaining energy must be greater than Edocking which is the 

energy required to finish operations for battery changing or 

recharging [5-6].  

C. The Tabu-Search Method 

The defined problem is a variation of the traveling salesman 

problem, a well-known NP-complete problem [22]. In 

particular, our problem is close to the VRP (Vehicle Routing 

Problem) problem what can be solved by the Tabu-search 

method [14, 17, 18]. The Tabu-search method is a generic 

method, in this paper, we define our tabu candidate selection 

strategies, the objective function with penalty factor for 

staying-alive and tabu properties to solve our problem.  

IV. STAYING-ALIVE AND ENERGY-EFFICIENT PATH 

PLANNING 

In this section, we propose our dynamic-energy-evaluation 

–based method to solve the staying-alive and energy-efficient 

path planning problem. We first introduce our scheme in 

Section IV-A. Then we propose two algorithms for energy 

optimization based on this scheme in Sections IV-B and IV-C, 

respectively.  

A. Dynamic Energy-Evaluation Scheme  

As shown in Section II, the scheme of fixing an energy 

lower bound for robot to return cannot achieve big energy 

saving. Thus, we propose a dynamic energy-evaluation 

scheme to solve this problem. Our basic idea is to dynamically 

evaluate whether a robot needs to return back to the docking 

station before it finishes the current task or not. The lower 

bound energy is calculated as follows, 

1 0 ( , ) ( , )i i i ilower bound v v v v v dockingE E E E E
−

= + + +           (1) 

in which, E(vi-1,vi) is the energy requirement for going to the 

task position vi from current position vi-1 (for i�1); Evi is the 

energy cost for finishing the task at location vi.; E(vi-1,v0) is the 

energy requirement for returning to the docking station v0 

from task position vi;  Edocking is the energy required for  battery 

changing or recharging in the docking station.  

If the current energy of the robot is greater than the lower 

bound, the robot can finish the next job and return to the 

docking station. Otherwise, the robot should go back to the 

docking station for battery changing and recharging. 

B. The TSP-Greedy-Based Algorithm (GTSP) 

As our problem is a variation of the TSP problem, thus, we 

 

Algorithm 1. Algorithm GTSP_Generation 

Input: A graph G= (V, A, W, E) (defined in Section III-A). 

Output: Staying alive path PGTSP. 

1: Generate a greedy based path without energy consider- 

ation according to [22]. 

2:  Calculate the energy need of adjacent vertexes. 

3:  Route from docking station v0 with the dynamic energy- 

evaluation scheme. 
 

propose an algorithm that combines the TSP greedy algorithm 

[22] and our dynamic energy-evaluation scheme. The GTSP 

algorithm is shown in Algorithm 1. 

In GTSP, we first obtain a path planning based on the TSP 

greedy algorithm. And then we evaluate the path by 

calculating the lower bound energy, Elower bound. Starting from 

v0  (the docking station), for each node in the path, if the 

energy that the robot has is greater than Elower bound , then the 

robot goes ahead to the next node; otherwise, the robot goes 

back to the docking station and continues the unfinished tasks 

after battery changing or recharging.  

C. The Tabu-Search-Based Algorithm (TS) 

In this section, we first propose an algorithm that is based 

on the TS method. Then we introduce the details of its two key 

functions in Section IV-C-1 and Section IV-C-2, respectively. 

The TS algorithm is shown in Algorithm 2. 

The following notation is used in the presentation. Based on 

our initial solution, we get r sub routes. The energy 

consumption for routing the path is written as follows: 

1

( , )

( )
i j r

ij

r v v R

E P c
∈

=¦ ¦                                                           (2) 

The objective function, E2(P), is defined as follows, 

2 1 ( , ) ( )( ) ( )
i j r i rv v R v R docking capicity

r

E P E P E E E Eα
+

∈ ∈
ª º= + ⋅ + + −¬ ¼¦  (3) 

in which, 
( , )i j rv v R

E
∈

is the energy requirement for the route r; 

( )i rv RE
∈

 is the energy requirement for finishing the tasks in 

each sub route r; [x]+=max(0,x) and . is a penalty coefficient.  

From Equ (3), we can see that if the robot has enough 

energy to traverse the path and return to the docking station, 

then 
( , ) ( )i j r i rv v R v R docking capicityE E E E

+

∈ ∈
ª º+ + −¬ ¼ equals 

zero. Otherwise, it implies that the robot does not have enough 

energy to fulfill the path; thus, a positive value is added to 

E1(P) to denote the penalty.  

Based on this objective function, our Tabu-Search-Based 

algorithm is shown in Algorithm 2.  

Algorithm 2. Algorithm TS-STSP 

Input:    A graph G= (V, A, W, E). (defined in Section III-A) 

Output:  Tabu-search based staying alive path PTS,  

Energy consumption on path PTS: E1(PTS). 

/*Step 1: Generate the sequential-based initial solution */ 

1: Call function STSP_Generation (G) to generate the 

staying alive path PSTSP in sequential order of angle. 

/*Step 2: Tabu-search optimization */     
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2:  Call function TS_Optimization (G, PINITIAL) to optimize 

initial solution. 

The Tabu-Search-Based algorithm consists of 2 steps. The 

first phase is to call function STSP_Generation () to obtain a 

good initial solution. The second phase is to call function 

TS_Optimization () to perform tabu-search optimization. 

STSP_Generation () and TS_Optimization () are shown in 

Algorithm 3 and Algorithm 4, respectively, which are 

presented below.  

 

1) Initial Solution Generation 

Initial solution selection can influence the performance and 

convergence rate of tabu search [18]. We have two initial 

solutions for tabu search; one is for improved greedy based 

method (GTSP), the other is a sequential method (STSP) 

which we will introduce in this section.  

The sequential staying-alive method is shown in Algorithm 

3 with the following steps:  

Step 1 Let the docking station be the origin. All tasks are 

labeled according to the angle. For example, as shown in 

Figure 4, v1 is first task from the horizon line with angle θ. 

Step 2 Calculate the energy consumption between two 

adjacent vertexes with the sequence obtained in Step 1. 
 

Algorithm 3. Algorithm STSP_Generation 

Input:   A graph G= (V, A, W, E). 

Output: Staying alive path PSTSP. 

1:   Label vertex set {v1,…, vn}according to the angle. 

2:   Calculate the energy need of adjacent vertexes in Step 1. 

3:   Find two vertexes (vi, vi+1) that form the maximum angle. 

4:  Route from the vi and vi+1 respectively, with the dynamic 

energy-evaluation scheme. 

5:   Compare the energy consumption of two routes and pick 

up the less energy consumption one as PSTSP. 

 

Step 3 Find two vertexes (vi, vi+1) which form the maximum 

angle in the plane. As shown in figure 5, nodes (v1, v2) have the 

maximum angle. 

Step 4 The route follows the vertex sequence clockwise (vi, 

vi-1,…, v1, vn, vn-1,…, vi+1) and anticlockwise (vi+1, vi+2,…,vn, v1, 

v2,…, vi), respectively, with the dynamic energy-evaluation 

scheme. As shown in figure 5, route the vertex sequence 

clockwise {v1, v12,…, v3, v2} and anticlockwise {v2, v3,…, v11, v12, 

v1}, respectively. 

Step 5 Compare the energy for two routes, and pick up the 

route with less energy. 

    
Figure.4 Labels of task locations according to the angle in anticlockwise 

      
Figure.5 Adjacent nodes (v1, v2) have the maximum angle. 

 

2) Tabu Search Optimization 

In this section, we propose a Tabu-search optimization 

method based on the initial solutions we obtained from the 

above steps. The algorithm is shown in Algorithm 4.  

 

Algorithm 4. Algorithm TS_Optimization 

Input:      A graph G= (V, A, W, E) and initial staying alive path 

PINITIAL. 

Output: Tabu-search based staying alive path PTS, energy 

consumption on the path E1(PTS). 

0:  Take PINITIAL as the input solution, set iter to 1. 

1:  while iter is less than MAX_ITERATION_NUM 

2:      Generate the candidates according to input solution. 

3:   Calculate the objective function in Equ (3) for candidates. 

4:      /* Aspiration criterion */ 

5:      if the best candidate better than the best solution so far. 

6:         Select the candidate as next input solution. 

7:      else 

8:         Select the best candidate which is not tabooed in the 

                tabu list as next input solution. 

9:      end if 

10:    Update tabu list 

11:    /* Stop criterion: break from circulation */ 

12:    if iter is larger than MAX_ITERATION_NUM  and 

the change of ten latest best so far solution is less than 

          0.1% 

13:        break 

14:    end if  

15:  end while 
 

Our Tabu-search optimization algorithm consists of 

following steps: 

Step 1. (Candidates generation) Generate the candidates 

according to input solution. Candidates consist of the 

solutions obtained by performing all possible moves 

according to input solution. The swapping and insertion are 

used as moving strategy, and swapping is shown in figure 6. 

The swapping strategy is implemented on the tasks. We 

prohibit the swapping between a task and the docking station 

that is part of insertion strategy. The insertion strategy is 

implemented on the locations of tasks between inner and inter 

sub routes as well. 
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(a)                                                                     (b) 

Figure.6 Swapping strategy is used to generate the neighbor space for tabu 

search. 

Step 2. (Objective function calculation) Calculate the 

objective function in Equ (3) for candidates generated in the 

former step. Sort candidates with the ascending order based 

on the values are obtained from the objective function. 

Step 3. (Aspiration criterion) If the best candidate can 

achieve a better solution, then we update the best solution no 

matter whether the candidate is tabooed. And then we select 

the solution as the next input. Otherwise, we select the best 

candidate which is not tabooed in the tabu list as the next input 

solution. 

Step 4. (Update tabu list) Record the executed move as tabu 

moves in the tabu list with tabu length, and we reduce 1 tabu 

length of tasks tabooed before. When it becomes zero, the 

tabooed move can take place freely. 

Step 5 (Stop criterion) Check the stop criterion. If the 

variation of the objective function for scheme “best so far” is 

less than a given value in several times, then we stop the 

search. Otherwise, the algorithm returns to Step 2 and 

continues the tabu search procedure. As shown in figure 7, we 

achieve significant improvement on the optimal solution 

according to the initial solution. The scheme “best solution so 

far” holds the optimal solution in the input solutions, and 

terminates the tabu-search when it satisfies the stop criterion.  

Figure 8 is the best solution according to our tabu-search 

method. For this example, our algorithm achieves 19% 

improvement as compared with the initial STSP solution. 

 

 
Figure.7 Tabu-search processes in finding the optimal solution, the search 

process stopped when the change of ten successive best so far solution is less 

than 0.1%. 

 
Figure.8 Tabu-search result. 

V.  SIMULATIONS AND RESULTS 

In this section, we report the experimental results. We 

implement our algorithms in matlab, and test them on a 

Pentium PC (2.4GHz) with Windows XP and 1.5GB RAM. 

The results show that our algorithms achieve significant 

energy saving. 

In the experiments, we construct benchmark programs with 

general consideration before subsequent experiment on 

mobile robot. We assume the maximum energy that a robot 

can have is 1000 energy units, and the robot consumes one 

unit of energy for traveling 1 unit distance. The energy of each 

task is randomly generated, and the value is in the range of 

50~150 units.  

In our experiments, we generate 8 groups of tasks (the 

number of tasks varies from 5 to 40) in 200*100 units’ area.  

The energy required for finishing battery changing or 

recharging at the docking station is 50 units. 

We compare the energy consumption of four algorithms, 

the TSP-Greedy-Based algorithm (GTSP), the sequential 

staying-alive method (STSP), the Tabu-Search-Based 

algorithm with the initial solution from GTSP (TS-GTSP) and 

the Tabu-Search-based algorithm with the initial solution 

from the sequential staying-alive method (TS-STSP). The 

experimental results are shown in Figure 9 and Table 1. 

From the results, we can see that the quality of the tabu 

search method is good. For the instances with 10 tasks 

TS-STSP achieves 19.18% reduction as compared with GTSP 

method. For instances with 40 tasks TS-STSP contributes to 

16.25% reduction. On average, our TS- GTSP and TS-STSP 

algorithms achieve 14.10% and 15.45% reduction on the 

energy consumption, respectively.  

When the number of tasks is small, the results are almost the 

same among the four algorithms. The reason is that the path 

planning is relatively simple, and usually the robot has enough 

energy to directly go back to the docking station. With the 

increasing task number, we can see TS-STSP becomes better 

with its ability to deal with the complicated cases.  

For the number of tasks equals to 30 and 35, we find that 

STSP consumes more energy than GTSP method. TS-STSP is 

more energy efficient than TS-GTSP. The reason is that 

sequential based path planning method consumes much 

energy in the inner of the sub route, seen in figure 6. Thus, 

using tabu-search method, energy can be greatly reduced.  
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Figure.9 Energy comparison for four algorithms. 

 

Nub 

of 

Tasks 

GTSP TS-GTSP TS-GTSP 

Reduction 

(%) 

TS-STSP TS-STSP 

Reduction 

(%) 

5 186.16 186.16 0 183.69 1.33 
10 427.03 326.74    23.48 345.11 19.18 
15 508.10 363.92    28.38 364.28 28.30 
20 526.06 463.55    11.88 455.62 13.39 
25 581.23 463.42    20.27 479.95 17.43 
30 624.12 575.44     7.79 551.55 11.63 
35 633.39 573.07     9.52 531.63 16.07 
40 774.99 685.63    11.53 649.04 16.25 

Table.1 Energy consumption comparison of TS-GTSP with GTSP 

and TS-STSP with GTSP 

VI. CONCLUSION 

To minimize energy consumption and keep mobile robots 

to stay alive becomes an important problem as most mobile 

robots are powered by batteries. In this paper, we proposed a 

dynamic energy-evaluation scheme to solve this problem. 

Combining our dynamic scheme with path planning, we 

proposed two staying-alive and energy-efficient path planning 

approaches based on the greedy TSP and Tabu-search 

methods, respectively. The experimental results show that our 

Tabu-search-based approach can provide an effective path 

planning and achieve significant energy saving. 
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