
 
 

 

  

Abstract—In this paper, we propose a new design of 
spatial-based repetitive control for rotational motion systems 
required to operate at varying speeds and subject to spatially 
periodic disturbances. The system has known model structure 
with uncertain parameters. To synthesize a repetitive controller 
in spatial domain, a linear time-invariant system is 
reformulated with respect to a spatial coordinate (e.g., angular 
displacement), which results in a nonlinear system. A nonlinear 
state observer is then established for the system. Adaptive 
backstepping is applied to the system with the state observer so 
as to stabilize the system and reduce the tacking error. 
Moreover, a spatial-based repetitive controller is added and 
operates in parallel with the adaptively backstepped system, 
which further reduces the tracking error. The overall output 
feedback adaptive backstepping repetitive control system is 
robust to structured parameter uncertainty, capable of rejecting 
spatially periodic disturbances under varying process speeds, 
and can be shown to be stable and produce bounded state 
estimated error and bounded tracking error under sensible 
assumptions. Finally, feasibility and effectiveness of the 
proposed scheme is verified by simulation. 

I. INTRODUCTION 
OTATIONAL motion systems have found their 
application in many industry products. For most 

application, the systems are required to operate at varying 
speeds while following repetitive trajectories and/or rejecting 
disturbances with sinusoidal/periodic components. For 
example, the brushless dc motor in a typical laser printer may 
need to operate at different speed when driving the 
photosensitive drum for printing tasks of different media or 
resolution. Also, laser printing systems often suffer from a 
type of print artifacts (known as banding), which is mostly 
due to periodic disturbances affecting the angular velocity of 
the photosensitive drum (see [3]). Repetitive control systems 
have been shown to work well for tracking periodic reference 
commands or for rejecting periodic disturbances in regulation 
applications. Typical repetitive controllers are time-based 
controllers since they are synthesized and operate in temporal 
or time domain. For example, to synthesize the repetitive 
controller proposed by [15], one of the key steps is to 
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determine the temporal period or frequency of the tracking or 
disturbance signal. To ensure effectiveness of the design, an 
underlying assumption is that the tracking or disturbance 
signal is stationary, i.e., the frequency/period of the tracking 
or disturbance signal does not vary with time. This 
assumption can easily be satisfied for many cases where the 
objective of the design is to track pre-specified repetitive 
trajectory.  However, it might be violated for disturbance 
rejection problems where periods or frequencies of the 
disturbances are mostly time-varying. 

Recent researches started studying control problems of 
rejecting/tracking spatially periodic disturbances/references 
for rotational motion systems using spatial-based repetitive 
controllers. A spatial-based repetitive controller has its 
repetitive kernel (i.e. Lse−  with positive feedback) 
synthesized and operate with respect to a spatial coordinate, 
e.g., angular position or displacement. Hence its capability 
for rejecting or tracking spatially periodic disturbances or 
references will not degrade when the controlled system 
operates at varying speed. Note that a typical repetitive 
controller consists of repetitive (i.e., a repetitive kernel) and 
non-repetitive (e.g., a stabilizing controller) portions. With 
the repetitive kernel synthesized in spatial domain and given a 
time-domain open-loop system, design of the non-repetitive 
portion that properly interfaces the repetitive kernel and the 
open-loop system actually poses a challenge. For rejection of 
spatially periodic disturbances, Nakano et al. [10] 
reformulated a given open-loop linear time-invariant (LTI)  
system with respect to angular position, and linearized the 
resulting nonlinear system with respect to a constant 
operating speed. A stabilizing controller with built-in 
repetitive kernel was then synthesized for the obtained linear 
model using coprime factorization. A more recent and 
advanced design based on linearization using   robust control 
was proposed by Chen et al. [4]. Although design methods 
for the linearized system are simple and straightforward, it is 
unclear whether the overall control system (which is 
nonlinear) will operate at varying speed or could sustain large 
velocity fluctuation without stability concern. For tracking of 
spatially periodic references, Mahawan and Luo [1] proposed 
and proved the feasibility of operating the repetitive kernel in 
spatial domain and the stabilizing controller in time domain. 
Thus, no reformulation of the open-loop system is required. 
For practical implementation, however, the proposed method 
requires solving an optimization problem in real-time to 
synchronize the hardware and software interrupts 
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corresponding to time and angular position, respectively. 
Also, the function between time and angular position needs to 
be known a priori, which further limits the applicability of 
the proposed method. Both Nakano [10] and Mahawan [1] 
assumed the simplest scenario when making problem 
formulation. Namely, the open-loop system was assumed to 
be free of modeling uncertainty and nonlinearity. Chen and 
Chiu [5] showed that the nonlinear plant model can be 
formulated into a quasi-linear parameter varying (quasi-LPV) 
system. Then, an LPV gain-scheduling controller was 
obtained which addresses unstructured/bounded modeling 
uncertainties, actuator saturation and spatially periodic 
disturbances. The proposed approach, however, could lead to 
conservative design if the number of varying parameters 
increases, the varying parameter space is nonconvex, or the 
size of the modeling uncertainties becomes significant. To 
relieve the constraint and conservatism of modeling 
uncertainties imposed on controller design and control 
performance, Chen and Yang [6] formulated a spatial-based 
repetitive control system which combines adaptive 
backstepping [8] and repetitive control. However, this 
method requires full-state feedback and is thus not applicable 
to systems of which measurements of states are not available 
in real-time. 

In this paper, we propose a new design of spatial-based 
repetitive control system which evolves from our previous 
work [6]. The proposed design resolves the major 
shortcoming in our former design, i.e., which requires 
full-state feedback, by incorporation of a nonlinear state 
observer known as the K-filters [2][7][9][12][13][17]. The 
proposed output feedback adaptive backstepping repetitive 
control (ABRC) system is robust to structured uncertainty of 
system parameters and capable of rejecting spatially periodic 
disturbances under variable process speed. Also, the overall 
system can be shown to be stable under bounded disturbance 
and parameter uncertainty. Furthermore, addition of the 
repetitive controller further improves the tracking error.  A 
brushless dc motor of second-order is used for demonstration 
and derivation of the control algorithm. Simulation is 
performed to verify the feasibility and effectiveness of the 
proposed scheme. 

This paper is organized as follows: Reformulation of an 
LTI rotational motion system with respect to angular 
displacement will be presented in Section II. Design of the 
state estimator is described in Section III. Section IV will 
cover derivation and stability analysis of the proposed output 
feedback ABRC scheme. Simulation verification for the 
proposed scheme will be presented in Section V. Conclusion 
and future work are given in Section VI. 

II. PROBLEM STATEMENT 
Suppose that a 2nd order LTI model for a rotational motion 

system is expressed as 
 ( ) ( )2

1 0 1 0( ) ( ) ( )Y s b s b U s s a s a d s= + + + + , (1) 

where 1a , 0a , 1b  and 0b  are coefficients whose values 
depend on system parameters and are unknown (but might 
have known upper/lower bounds). ( )U s  and ( )Y s  
correspond to control input and measured output angular 
velocity of the system, respectively. ( )d s  represents a class 
of bounded output disturbances which are spatially periodic. 
The only available information of the disturbances is the 
number of distinctive spatial frequencies which need to be 
rejected. If no pole/zero cancellation occurs, a possible state 
space realization of (1) is 

 ( ) ( ) ( ),  ( ) ( ) ( ),dx t Ax t Bu t y t x t d t
dt

= + = Ψ +  (2) 

where 

[ ]1 2( ) ( ) ( ) Tx t x t x t= , [ ] 1 1

0 0

1
0

a b
A B

a b
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, [ ]1 0Ψ = . 

Following the same procedure as described in our previous 
work [6], we may rewrite (2) as 

 
ˆ( )ˆ ˆ ˆ( ) ( ) ( ),

ˆˆ ˆ( ) ( ) ( ).

dx Ax Bu
d

y x d

θω θ θ θ
θ

θ θ θ

= +

= Ψ +
 (3) 

Equation (3) can be viewed as a nonlinear position-invariant 
(as opposed to the definition of time-invariant) system with 
the angular displacement θ as the independent variable. Note 
that the concept of transfer function is still valid for linear 
position-invariant systems if we define the Laplace transform 
of a signal ˆ( )g θ   in the angular displacement domain as 

 
0

ˆ ˆ( ) ( ) sG s g e dθθ θ
∞ −= ∫ �� . 

In addition, we will make the following assumptions for 
subsequent derivations: (1) The model structure (order, 
relative degree, and the sign of the high frequency gain) of the 
system (1) is known. Also, the system is assumed to be of 
minimum phase. (2) The disturbance d̂  and the reference 
command ˆry  are smooth enough. (3) The uncertain 
parameters of the system have known bounds. 

III. STATE ESTIMATOR 
In this section, we will establish a state estimator for (3). To 

allow us to present the proposed design in a simpler context, 
we will focus on the case in which (2) has relative degree 
equal to two, i.e., 1 0b = . 

As first step, drop the θ  notation and rewrite (3) in the 
form 

1 1 2 1 2 0 0 1 1
ˆ ˆˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,  ,  ,x a x x x a b u x y d x dω= − + = − + = + = +� �  (4) 

where the state variables have been specified such that the 
angular velocity ω̂  is equal to 1̂x , i.e., the undisturbed output. 
Suppose that both states in (4) cannot be measured in real 
time. To design a state estimator or the K-filters [13], we 
proceed as follows. First, rewrite the state equations in (4) as 
 ( ) ( ) [ ] ( )0 1 1 1 0 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 Tx A x kx x a x b x uη ϕ σ= + + + +� , (5) 
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where 

 
( )

( ) ( ) ( )

1 1 1 1
0 1

2 2 2

1 1 1
1 1

0 1

ˆ ˆ1 0
ˆ ˆ, , , ,

ˆ 0 0 1

ˆ ˆ 11ˆ ˆ, , .
ˆ0

x k k x
x A k x

x k k

a x xa x x
a x

η

ϕ σ

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ − +
= = =⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

�  

By properly choosing 1k  and 2k , the matrix 0A , which 
determines the properties of the K-filters, can be made 
Hurwitz. Thus, a symmetric positive definite matrix P  exists, 
i.e., 0P > , TP P= , such that 
 0 0

TPA A P I+ = − , (6) 
where I  is an identity matrix. Next, we decide on the 
following observer structure: 
 ( ) ( ) [ ] ( )0 0ˆ ˆ ˆ ˆ ˆ0 Tx A x ky y a y b y uη ϕ σ= + + + +� , (7) 

where [ ]1 2
Tx x x=  is the state estimates of x̂ ,  

 ( ) ( ) ( ) ( )
ˆ 0 ˆ ˆ 11ˆ ˆ ˆ, ,

ˆ0 1 0
y y yy y y

y
η ϕ σ

⎡ ⎤−⎡ ⎤ − +
= = =⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦

�
. 

Equation (7) can be further expressed as 
 ( )0 ˆ ˆ ˆ ˆ( , )Tx A x ky y F y uϕ= + + + Θ� , (8) 

where 3
0

TTb a⎡ ⎤Θ = ∈⎣ ⎦ \  is a parameter vector and  

 ( ) ( ) 2 30
ˆ ˆ ˆ( , )

ˆ ˆ
TF y u y

y u
η

σ
×⎡ ⎤

= ∈⎢ ⎥
⎣ ⎦

\ . 

Define the state estimated error as 
1 2ˆ ˆ ˆ

T

x x x xε ε ε⎡ ⎤ −⎣ ⎦� � . 

Then the state space description of the estimated error can be 
obtained by subtracting (8) from (5), i.e., 
 0Aε ε= + Δ� , (9) 
where 

( )
( )0

ˆ ˆ ˆ ˆ ˆˆ 0ˆ0ˆ ˆ
ˆ0 0 ˆ ˆ0

dd dd dy ddkd a ud
b y y d

θ
⎡ ⎤⎡ ⎤ − − + ⎡ ⎤⎢ ⎥Δ = − + + +⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

�
 

Define the state estimate  Tx ξ + Ω Θ�  such that 

[ ] 2
11 12

Tξ ξ ξ= ∈\  and 2 3×Ω ∈\ . Substituting this 
definition into (8) gives 
 ( ) ( )0 0ˆ ˆ ˆ ˆ( , ) .T T TA ky y A F y uξ ξ ϕ+ Ω Θ = + + + Ω + Θ� �  

Thus the following two filters may be employed 
 ( )0 0ˆ ˆ ˆ ˆ,  ( , ) .T T TA ky y A F y uξ ξ ϕ= + + Ω = Ω +� �  (10) 

Define [ ]0
T vΩ = Ξ , i.e., the first column 

[ ] 2
0 01 02

Tv v v ∈� \  and the rest as 2 2×Ξ ∈\ . The second 
equation in (10) can be split into two filters: 
 ( ) ( )0 0 0 2 0ˆ ˆ ˆ,  v A v e y u A yσ η= + Ξ = Ξ +��  (11) 

where [ ]2 0 1 Te =  denotes one of the basis vector for 2\ . 

Expressing [ ]1 2
TΞ = Ξ Ξ , where 2

1Ξ ∈\  and 2
2Ξ ∈\ , 

and with the definition of the state estimates, we obtain 
 1 11 01 0 1 2 12 02 0 2,  .T Tx v b a x v b aξ ξ= + + Ξ = + + Ξ  (12) 

Equation (11) and (12) will be used in the subsequent design. 

IV. OUTPUT FEEDBACK ADAPTIVE BACKSTEPPING 
REPETITIVE CONTROL SYSTEM 

With the definition of the state estimated error ε , the 
output equation in (4) can be expressed as 
 

1̂1 1
ˆ ˆˆ ˆ xy x d x dε= + = + + . (13) 

Substituting the first equation of (12) into (13), we have 
 

1̂11 01 0 1
ˆˆ T

xy v b a dξ ε= + + Ξ + + . (14) 

In accordance with the controller design procedure with 
K-filters [13], adaptive backstepping is applied to the 
following system 

 ( )
1̂11 1 01 02 0 1 02 2 01

ˆˆ ˆ,  .T
xy k v v b a d v k v uξ ε σ= + − + + Ξ + + = − +�� � � � �

 (15) 
Define [ ]1 0

Ta a a=� � � , where 1a�  and 0a�  are the estimates of 

1a  and 0a , and 0b�  is the estimate of 0b . Introduce a new pair 
of coordinates 
 1 2 02 1ˆ ˆ ,  ,rz y y z v α= − = −  (16) 
where ˆry  is the reference command and 1α  is a virtual input. 
With respect to the new coordinates, (15) can be expressed as 

 ( )
1̂1 11 1 01 02 0 1

2 2 01 1

ˆ ˆ ,
ˆ .

T
x rz k v v b a d y

z k v u

ξ ε

σ α

= + − + + Ξ + + −

= − + −

� �� � ��
��

 (17) 

Regard 02v  as an input to stabilize the first state equation in 
(17). To design 02v , consider a Lyapunov function 

( ) 2
1 11 2V z=  and calculate its derivative 

 ( )( )1̂1 1 11 1 01 02 0 1
ˆ ˆ .T

x rV z k v v b a d yξ ε= + − + + Ξ + + −� ��� � �  

Specify  02 1 1 0v bα α= = � , where  

 2
1 11 1 01 0 1 1 1 1 1 1 1 1ˆT

rk v b a y c z d z d k zα ξ= − + − Ξ + − − −��� � � . 
Define the parameter error vector as 

 
0

T

b a⎡ ⎤Φ Θ − Θ = Φ Φ⎣ ⎦
�� , 

where 
0 0 0b b bΦ = − �  and [ ]1 1 0 0

T
a a a a aΦ = − −� � . The first 

state equation in (17) becomes 

 ( )0 0 0 1̂1 1 01 2 0 1 1

2
1 1 1 1 1 1 1

ˆ

,

T
b b b a xz k v z b d

c z d z d k z

α ε= − Φ + + Φ + Φ + Ξ Φ + +

− − −

�� � ��
 

where 1c  and 1d  are two positive adjustable parameter. The 
derivative of 1V  now becomes 

 ( )
0 0 0

1

1 1 1 01 1 2 0 1 2 1 1 1 1

2 2 2 2
ˆ1 1 1 1 1 1 1 1

ˆ    .

T
b b b a

x

V z k v z z b z z z z

c z d z d k z z d

α

ε

= − Φ + + Φ + Φ + Ξ Φ

− − − + +

�� �

��
(18) 

Before we proceed, calculation of 1α�  needs to be performed, 
i.e., 

 ( )( )1̂1 1 2 11 1 01 02 0 1 3
ˆ ,T

xF F k v v b a d Fα ξ ε= + + − + + Ξ + + −�� �� � (19) 
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where 
 

(
( ) ) ( )

1 11 1 01 0 1 01 0 1 1
0

2 2
1 1 1 1 2 1 1 1 1 3 1 0

0 0

1 ˆ

1 1ˆ ,  ,  .

T T
r

r

F k v b k v b a a y
b

c d d k y F c d d k F b
b b

ξ

α

= − + + − Ξ − Ξ +

+ + + = − + + =

� ��� ��� ��� �� � ��

�� �
� �

 
Consider another Lyapunov function 

  
2

2 1
2 1 2

1

1 1 1
2 2 2

T T

i i

V V z P
d

ε ε −

=

= + + + Φ Γ Φ∑ , 

where Γ  is a symmetric positive definite matrix, i.e., 
0TΓ = Γ >  and id  is an adjustable positive constant. With 

(6), (9), (18) and (19), we obtain the derivative of 2V , i.e., 

( )

( )( )
( ) ( ) ( )

1

2 1 2 2 01

ˆ2 1 2 11 1 01 02 0 1 3

2 2
1

1 1

ˆ

ˆ

2 2 .

T
x

T T T T
i i

i i

V V z k v u

z F F k v v b a d F

d P P d

σ

ξ ε

ε ε ε ε −

= =

= + − +

⎡ ⎤− + + − + + Ξ + + −⎢ ⎥⎣ ⎦

− + Δ + Δ + Φ Γ Φ∑ ∑

� �

�� � �

�

 

Now we can specify 

( )( )1 0 2 01 1 2 11 1 01 02 0 1

2 2 2 2
ˆ3 2 2 2 2 2 2 1 2 2 3 2 2 0

ˆ

ˆˆ ˆ( ) ,

T

rR

u z b k v F F k v v b a

F c z d F z d k F z u c z l z y b

ξ

θ σ

⎡= − + + + + − + + Ξ⎣
⎤− − − − + − − + ⎦

� �� � �

�� �

 (20) 
where 2c  and 3c  are adjustable positive constants, ˆˆ

Ru  is a 
designable input used to focus on reduction of periodic output 
disturbance and the estimated error

1̂x
ε , and ( )l̂ θ  is a 

designable function to be used to ensure stability of the 
overall system. Substituting (20) back into 2V�  and defining 

[ ]1 1 0 Te � , i.e., the other basis vector for 2\ , we obtain 

( )( ) ( )( )
( )( ) ( )( )

2 1

2 1

2 22 2
ˆ ˆ2 1 1 2 2 1 1 1 1 1 1 1

2 2

ˆ ˆ2 2 2 2 2 1 2 2 2

2 2

 2 2

x x

x x

V c z c z d z d d k z d

d F z d d k F z d

ε ε

ε ε

= − − − − − +

− + − −

�

 

( ) ( ) ( )( )
( )

2

1 2 2 1
1

1 2 2 2
ˆ2 0 2 3 2

ˆ2

ˆˆ ˆ ( ) ,

T T T
i

i

T T
r R

P P d z z F e d

W z y b u l z c z

ε ε

θ

=

−

+ Δ + Δ + − Δ +

+ −Θ Γ + Φ + + − −

∑ �

� �� ��
 

where 

 1 1 01 1 2 1 1 2 2 01 1 1 2 2 1

TT TW z k v z z z z F v z z Fα⎡ ⎤= − + + − Ξ − Ξ⎣ ⎦
� ��  

and 1−Γ  can be usually specified as  

 
0

1

0

1

1 1

1

0 0

0 0

0 0

b

a

a

γ

γ

γ

−

− −

−

⎡ ⎤
⎢ ⎥

Γ = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

in which 
0 1 0
, ,b a aγ γ γ  are three adjustable positive constants. 

The parameter update law is specified in order to cancel Φ  
related terms in 2V� , i.e., 

 
( )

( )1

0

1 1 2 2 1

,

0
,

0

R

Ta T T

a

b P

a z z F
γ

γ

⎧ =
⎪⎪

⎡ ⎤⎨
= Ξ − Ξ⎢ ⎥⎪

⎢ ⎥⎪ ⎣ ⎦⎩

�� i

� � ��
 (21) 

where ( )
0 1 1 01 1 2 1 1 2 2 01b z k v z z z z F vγ α= − + + − �i  and 

 ( )
0 0 _ min 0

0 0 _ max 0

0 if  and 0,

0 if  and 0,
otherwise.

R

b b b

P b b b

⎧ = <
⎪
⎪= = >⎨
⎪
⎪⎩

�� � �
�� � �i

i
 

The projection function ( )RP i  is imposed in order to prevent 
the estimated parameters from leaving the allowable variation 
set [11][16]. With the control input and the parameter update 
law specified as (20) and (21), 2V�  is reduced to 

 

( )( )
( )( ) ( )( )

( )( ) ( ) ( )

( )( )

2

1 2

1

22 2
ˆ2 1 1 2 2 1 1 1

2 2

ˆ ˆ1 1 1 1 2 2 2 2

22

ˆ2 1 2 2 2
1

2 2 2
ˆ1 2 2 1 2 0 2 3 2

2

2 2

2 2

ˆ ˆˆ ˆ ( ) .

x

x x

T T
x i

i

T
r R

V c z c z d z d

d k z d d F z d

d k F z d P P d

z z F e d z y b u l z c z

ε

ε ε

ε ε ε

θ

=

= − − − −

− + − +

− − + Δ + Δ

+ − Δ + + + − −

∑

�

� �� �

(22) 

Note that all terms in (22) are minus complete squares except 
those in the last two lines. 

In this paper, we consider a reduced-order and attenuated 
repetitive controller [14] whose continuous-position (as 
opposed to the definition of continuous-time) version can be 
expressed as 

 
2 2

2 2
1

2ˆ( )
2

k
i ni ni

i i ni ni

s s
R s

s s
ζ ω ω
ξ ω ω=

+ +
=

+ +Π
� ��
� �

, 

where k is the number of periodic frequencies to be rejected,   
niω  is determined based on the ith disturbance frequency in 

rad/rev, and iξ  and iζ  are two damping ratios that satisfy 
0 1i iξ ζ< < < . As shown in Figure 1, the tracking error 1z  
and the control input ˆˆ

Ru  is related by 

 ( ) ( )ˆ 1
ˆˆˆ

Ru R s C s z= − � � , (23) 

where ˆ ( )C s�  is another controller which can be designed to 
reduce the effect of 

1̂x
ε  on the output. Differentiate (14) until 

the term involving control input û  appears, namely, 

 ( ) ( )
1̂11 1 01 2 01 0 0 1

ˆˆ ˆ ˆ .T
xy k v k v b b y u a dξ σ ε= − + + + Ξ + + ���� �� �� ��� (24) 

Substituting (20) into (24), we have 

 ( )
1ˆ ˆ0

ˆˆ ˆ ˆ. r xRy P u b y dε= + + + + ���� �� �� , (25) 

where 
( ) ( )

( )( )
0

11 1 01 2 01 0 0 1 0 2 01 1

2 11 1 01 02 0 1 3 2 2

2 2 2
2 2 2 2 1 2 2 3 2 2 1 0

.

ˆ ˆ( ) .

T

T
b r

P k v k v b b z b k v F

F k v v b a F c z

d F z d k F z c z l z a y b

ξ

ξ

θ

⎡= − + + − + +⎣

+ + − + + Ξ − −

⎤− − − − + Ξ + Φ⎦

��� �

�� � �

�� ���
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Substituting (23) into (25) and taking Laplace transform, we 
arrive at 
 ( ) ( ) ( ) ( )1

2
ˆ1

ˆ. xz M s P M s s dε= + +� � � , 

where 
 ( ) ( ) ( )2

0
ˆˆ1M s s b R s C s⎡ ⎤+⎣ ⎦� � � �� . 

We see that ( )R̂ s�  and ( )Ĉ s�  in ( )M s�  can be suitably 

designed to reduce the effect of the disturbance d̂  and the 
state estimated error 

1̂x
ε  on the output. Substituting (23) into 

(22), we obtain 
 ( ) ( ) 2 2 2

2 1 2 3 2
ˆˆˆ( ) ( )V R s C s z l z c zθ= Γ − − −� � �i , 

where 

( )( ) ( )( )
( )( ) ( )( )

( ) ( ) ( )( )

2 1

2 1

2 22 2
ˆ ˆ1 1 2 2 1 1 1 1 1 1 1

2 2

ˆ ˆ2 2 2 2 2 1 2 2 2

2

1 2 2 1 2 0
1

( ) 2 2

 2 2

ˆ ˆ 2 .

x x

x x

T T T
i r

i

c z c z d z d d k z d

d F z d d k F z d

P P d z z F e d z y b

ε ε

ε ε

ε ε
=

Γ = − − − − − +

− + − −

+ Δ + Δ + − Δ + +∑

i

� �� �

( )Γ i  can be shown to be negative semidefinite, i.e., ( ) 0Γ ≤i  
by following the steps proposed in [2]. The remaining three 
terms in 2V�  can be made negative semidefinite by properly 

choosing the constant 3c  and the function ˆ( )l θ . 

V. SIMULATION RESULTS 
The proposed output feedback ABRC scheme is applied to 

a brushless dc motor system. The actual system is assumed to 
be a 2nd order system as described in (1) with 0 5155a = , 

1 1138a = , 0 140368b = , and 1 0b = . The parameters are 
specified in accordance with the system identification results 
for an actual motor system from Shinano Kenshi Corp. For 
verification purpose, the output disturbance is assumed to be 
a rectangular periodic signal (with amplitude switching 
between -1 and 1), i.e., 

 ( ) ( ) ( )3ˆ 0.1 20 1 1 1l

l

d s lθ
∞

=−∞

⎡ ⎤
= + − Π − −⎢ ⎥

⎣ ⎦
∑� , 

where 

 
1 1,

( ) 0.5 1,
0 otherwise.

θ
θ θ

⎧ <
⎪Π = =⎨
⎪
⎩

 

Note that the disturbance has been low-pass filtered so that it 
is continuously differentiable. Parameters of repetitive 
controller are specified to target the fundamental frequency 
and the first three harmonic frequencies of the periodic 
disturbance, i.e., 

 
2 24

2 2
1

2ˆ( )
2

i ni ni

i i ni ni

s s
R s

s s
ζ ω ω
ξ ω ω=

+ +
=

+ +Π
� ��
� �

, 

where  1 20.9,  0.00009,  , 3 ,i i n nς ξ ω π ω π= = = = ×  

3 45 , 7n nω π ω π= × = × . Suppose that a motion control task 

demands the system to initially run at 40 rev/s and then speed 
up to 45 rev/s and finally speed down to 35 rev/s. To avoid 
getting infinite value when taking derivative, the reference 
command is specified to have smooth (instead of instant) 
change. Figure 2 compares the tracking performance of two 
scenarios. The figures on the left are for the pure output 
feedback adaptive backstepping design. The ones on the right 
are for the proposed output feedback ABRC design. Without 
repetitive control, the adaptive backstepping design has 
already shown superb tracking performance. We see that 
adding the repetitive control further reduces the magnitude of 
the tracking error (from 510−  to 710− ) without noticeable 
increase in the control input. 

VI. CONCLUSION AND FUTURE WORK 
This paper presents the design of a new spatial-based 

repetitive control system, which can be applied to rotational 
motion systems with uncertain parameters operating at 
varying speeds and subject to spatially periodic disturbances. 
The proposed design combines two control paradigms, i.e., 
adaptive backstepping and repetitive control. The overall 
output feedback ABRC system can be shown to be stable and 
have bounded state estimated error and output tracking error. 
Feasibility and effectiveness of the proposed design are 
further justified by simulation. Although this paper only 
presents the design method for a 2nd order system, the 
proposed design may be extended to higher order systems, 
which is currently under our investigation. 
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Figure 1: The control structure for the proposed adaptive robust repetitive control system. 
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Figure 2: Comparison of tracking performance. 
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