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Abstract— In this paper two model predictive control (MPC)
approaches, an on-line and an off-line MPC approach, for
constrained uncertain continuous-time systems with piecewise
constant control input are presented. Both MPC approaches
guarantee robust asymptotic stability by taking into account the
hybrid dynamics of the closed-loop system, resulting from the
continuous-time system dynamics and the discrete-time model
predictive controller dynamics. Examples are presented to
demonstrate the applicability of the proposed MPC approaches.

I. INTRODUCTION

In the last decades many model predictive control (MPC)

approaches have been developed for continuous-time or

discrete-time systems, see e.g. [6, 7, 9, 10]. However, in many

practical applications a continuous-time system is controlled

via a model predictive controller that operates in a discrete-

time environment, i.e. the control signal is piecewise constant

and generated by a digital computer. In this paper two

new MPC approaches are proposed that account for the

hybrid nature of the closed-loop system resulting from the

continuous-time system dynamics and from the discrete-time

controller dynamics. In the on-line MPC approach, that is

based on [6], the piecewise constant control signal of the

model predictive controller is obtained, at each sampling

instant, by minimizing an upper bound of a “worst-case”

objective function using convex optimization techniques. To

reduce the on-line computations, for example to apply MPC

to fast systems, an off-line MPC approach is proposed as

well. This model predictive controller, that is based on [9,

10], obtains a suboptimal piecewise constant control signal

from an off-line created look-up table. The stability prop-

erties of both proposed MPC approaches are studied via

the sampled-data control techniques of [8]. Note that unlike

existing model predictive controllers with piecewise constant

control signal for continuous-time systems, see e.g. [4, 5], the

proposed ones can cope with state and input constraints as

well as with time-varying sampling intervals.

The remainder of the paper is organized as follows: The

considered MPC design problem is described in Section II.

In Section III and IV the proposed on-line and off-line MPC

approaches are presented. Simulation results are shown in

Section V and Section VI concludes the paper.
A. Notation

The transpose of a matrix X is denoted by XT , X > 0 (or

X ≥ 0) is a symmetric positive definite (or positive semidef-

inite) matrix, and
[

X Y

⋆ Z

]

stands for
[

X Y

Y
T

Z

]

. Furthermore,

I (0) is the identity (zero) matrix of appropriate dimension.
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II. PROBLEM FORMULATION

Consider the continuous-time system

ẋ(t) = A(t)x(t) + B(t)u(t), x(t0) = x0 (1)

where x ∈ R
nx is the system state, u ∈ R

nu is the control

input, x0 ∈ R
nx is the initial condition at time instant

t0 ≥ 0, and S(t) := [A(t) B(t)] is the system matrix.

The system matrix S(t) belongs to a polytope described

by P := {
∑ns

l=1 αl(t)Sl,
∑ns

l=1 αl(t) = 1, 0 ≤ αl(t) ≤ 1},

where Sl = [Al Bl] and Al ∈ R
nx×nx , Bl ∈ R

nx×nu

are constant matrices. Hence, any system matrix S(t) can

be written as a convex combination of ns vertices Sl.

Furthermore, the system state and control input are restricted

to fulfill constraints described by the set

C :=

{[

x
u

]

∈ R
nx+nu : |zj(t)| ≤ 1, j = 1, . . . , nc

}

, (2)

where zj = cjx + dju with cj ∈ R
1×nx and dj ∈ R

1×nu .

Note that one can describe the state constraints by dj = 0
and the input constraints by cj = 0. The control task is to

robustly stabilize the origin of system (1) with a piecewise

constant control input in an optimal way while satisfying the

constraints. One approach to achieve this is MPC. In MPC

an optimization problem is solved at the sampling instants

tk, where tk is a sequence satisfying 0 ≤ t0 < . . . < tk <
tk+1 < . . . with limk→∞ tk = ∞, δk = tk+1 − tk, and

0 < δmin ≤ δk ≤ δmax, to compute a piecewise constant

control input. The MPC optimization problem considered in

this paper is the following one:

min
K(tk)

max
S̄(·)∈P

J(tk) (3)

subject to

˙̄x(τ) = Ā(τ)x̄(τ) + B̄(τ)ū(τ), x̄(τk0
) = x(tk), (4a)

ū(τ) = K(tk)x̄(τki
), τ ∈ [τki

, τki+1
), i = 0, 1, . . . ,∞, (4b)

1 ≥ |z̄j(τ)|, j = 1, . . . , nc, (4c)

where the bar denotes predicted variables, e.g. ū(·) is the

predicted piecewise constant control input based on the mea-

sured state x(tk), and τki
is an arbitrary sequence of “pre-

dicted” sampling instants satisfying τk0
= tk, limi→∞ τki

=
∞, and 0 < τki+1

−τki
≤ δmax. Furthermore, the performace

objective in (3) is given by

J(tk) =

∫ ∞

tk

(x̄(s)T Qx̄(s) + ū(s)T Rū(s))ds, (5)

where Q ∈ R
nx×nx and R ∈ R

nu×nu are symmetric positive

definite matrices. Hence, the goal of the MPC optimization
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problem is to compute, at time instant tk, the feedback

matrix K(tk) such that the robust performance objective

maxS̄(·)∈P J(tk) is minimized subject to constraints and

time-varying sampling intervals. As usual in MPC, the

solution of the optimization problem is used only in one

sampling interval, i.e. u(t) = K(tk)x(tk) for t ∈ [tk, tk+1).
At the next sampling instant tk+1 a new feedback matrix

K(tk+1) is computed based on the new measured system

state x(tk+1). Thus, the piecewise constant control signal of

the proposed model predictive controller is

u(t) = K(tk)x(tk), t ∈ [tk, tk+1), k = 0, . . . ,∞. (6)

However, the optimization problem (3)-(4c) is not attractive

from a computational point of view because it is a min-

max optimization problem. Therefore, the problem is relaxed

by minimizing an upper bound of the robust performance

objective maxS̄(·)∈P J(tk), that is derived in the next section.

A. An upper bound of the robust performance objective

In the following an upper bound of the robust performance

objective is derived that can be minimized via the feedback

control law (4b). Consider the closed-loop system consisting

of system (4a) and feedback control law (4b). This closed-

loop system, that is of hybrid nature because the system state

is described in continuous-time while the feedback control

law (4b) is only updated at sampling instants τki
, is described

via the hybrid (impulsive) system

˙̄x(τ) = Ā(τ)x̄(τ) + B̄(τ)K(tk)χ̄(τ),

˙̄χ(τ) = 0, τki
≤ τ < τki+1

,

x̄(τki+1
) = x̄(τ−

ki+1
), τ = τki+1

,

χ̄(τki+1
) = x̄(τ−

ki+1
), i = 0, 1, . . . ,∞,

(7)

where system state χ̄ ∈ R
nx describes the hybrid behavior

of (4b). For system (7), an upper bound of the robust

performance objective can be derived via the function [8]

V̄ (τ) = x̄(τ)T P (tk)x̄(τ)

+

∫ τ

τ−µ(τ)

(δmax − τ + s) ˙̄x(s)T P (tk) ˙̄x(s) ds (8)

+ (δmax − µ(τ))(x̄(τ) − χ̄(τ))T P (tk)(x̄(τ) − χ̄(τ)),

where P (tk) is a symmetric positive definite matrix and

µ(τ) = τ − τki
, τ ∈ [τki

, τki+1
), for i = 0, 1, . . . ,∞.

At sampling instants τki
, the function (8) does not increase

because the second and third term are non-negative before

the sampling instants τki
and they are zero right afterwards,

i.e. function (8) satisfies

V̄ (τki
) ≤ lim

τ↑τki

V̄ (τ), i = 0, 1, . . . ,∞. (9)

Furthermore, assume that function (8) satisfies

˙̄V (τ) < −x̄(τ)T Qx̄(τ) − ū(τ)T Rū(τ) (10)

for τ ∈ [τki
, τki+1

), i = 0, 1, . . . ,∞, and for any S̄(·) ∈ P
and that x̄(∞) = 0. Then, from (9) and (10), one obtains the

following upper bound on the robust performance objective:

max
S̄(·)∈P

J(tk) ≤ V̄ (τk0
) = x(tk)T P (tk)x(tk). (11)

III. MPC WITH ON-LINE OPTIMIZATION

In this section a model predictive controller with piecewise

constant control signal for uncertain continuous-time

systems is proposed. This model predictive controller

computes at each sampling instant tk the control input, i.e.

it computes the feedback matrix K(tk), by solving on-line

a convex optimization problem such that the upper bound of

the robust performance objective is minimized and system

(1) is stabilized. This is summarized in the next theorem.

Theorem 1: Consider system (1), the state and input con-

straints described by (2), a time sequence tk with time-

varying sampling intervals δk = tk+1 − tk, 0 < δk ≤ δmax,

δmax > 0, and a model predictive controller that computes

the feedback matrix K(tk) of its control signal (6) for the

sampling interval δk via the following optimization problem:

min
ǫ,L,M,N

ǫ (12)

subject to
[

−1 −x(tk)T

⋆ −M

]

≤ 0 (13a)

[

−1 −cjM − djL
⋆ −M

]

≤ 0 (13b)













Vl + δmaxWl δmaxU
T
l

[

M
0

] [

0
LT

]

⋆ −δmaxM 0 0
⋆ ⋆ −Q−1ǫ 0
⋆ ⋆ ⋆ −R−1ǫ













< 0 (13c)

















Vl δmaxU
T
l

[

M
0

] [

0
LT

]

δmaxN

⋆ −δmaxM 0 0 0
⋆ ⋆ −Q−1ǫ 0 0
⋆ ⋆ ⋆ −R−1ǫ 0
⋆ ⋆ ⋆ ⋆ −δmaxM

















< 0 (13d)

l = 1, . . . , ns, j = 1, . . . nc
with

Ul =
[

AlM BlL
]

,

Vl =

[

I
0

]

Ul + UT
l

[

I 0
]

− N
[

I −I
]

−

[

I
−I

]

NT

−

[

I
−I

]

M
[

I −I
]

,

Wl = UT
l

[

I −I
]

+

[

I
−I

]

Ul,

where M ∈ R
nx×nx , N = [NT

1 NT
2 ]T with N1, N2 ∈

R
nx×nx , L ∈ R

nu×nx , ǫ ∈ R. Furthermore, x(tk) is the

measured system state at sampling instant tk and cj , dj ,

j = 1, . . . , nc are vectors that describe the constraints (2).

Then system (1) is robustly asymptotically stabilized with-

out violating the constraints (2) via the piecewise constant

control signal (6) with feedback matrix K(tk) = LM−1, if

the optimization problem (12), (13) is feasible at time instant

t0. The upper bound of the robust performance objective is

minimized, i.e. it is bounded by x(tk)T P (tk)x(tk) ≤ γ(tk)
with P (tk) = ǫ−1M−1 and γ(tk) = ǫ.
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Proof. The proof is divided into five parts. In the first part

of the proof it is shown that the upper bound of the robust

performance objective is minimized. In the second part it is

shown that the predicted system (4a) is stabilized via the

feedback control law (4b) with the feedback matrix K(tk)
computed at sampling instant tk. This can be interpreted in

terms of invariant ellipsoids [1], that is used in the other

parts of the proof. Then, in the third part of the proof, it

is shown that the predicted system (4a) satisfies the state

and input constraints. In the fourth part it is proven that

feasibility of the optimization problem at time instant tk,

e.g. at the beginning, implies feasibility afterwards. Finally,

in the fifth part, the asymptotic stability of the time-varying

hybrid (impulsive) closed-loop system is proven.

Minimization of the upper bound: In the following it

is shown that the upper bound of the robust performance

index is minimized via the feedback control law (4a), that

feedback matrix K(tk) is computed at time instant tk.

Suppose that there are no constraints, i.e. the LMIs (13b)

are neglected. In a first step it is shown that the function

(8) satisfies condition (10) if the LMIs (13c) and (13d) are

feasible. To show this, consider the derivative of V̄ (τ) along

the system (7) for τki
∈ [τki

, τki+1
), i = 0, . . . ,∞, i.e.

˙̄V (τ) = 2x̄(τ)T P (tk) ˙̄x(τ)

+ 2(δmax − µ(τ))(x̄(τ) − χ̄(τ))T P (tk) ˙̄x(τ)

− (x̄(τ) − χ̄(τ))T P (tk)(x̄(τ) − χ̄(τ)) (14)

+ δmax ˙̄x(τ)T P (tk) ˙̄x(τ)

−

∫ τ

τ−µ(τ)

˙̄x(s)T P (tk) ˙̄x(s)ds.

Using the fact that x̄(τ) − χ̄(τ) equals x̄(τ) − x̄(τ − µ(τ))
and that the last term in (14) can be overestimated by

−

∫ τ

τ−µ(τ)

˙̄x(s)T P (tk) ˙̄x(s)ds ≤ µ(τ)ξ̄(τ)T Y P (tk)−1Y T ξ̄(τ)

− 2ξ̄(τ)T Y (x̄(τ) − χ̄(τ)),

where Y = [Y T
1 Y T

2 ]T with Y1, Y2 ∈ R
nx×nx and ξ̄ =

[x̄T χ̄T ]T , an upper bound of (14) is

˙̄V (τ) ≤ ξ̄(τ)T (X1(τ) + (δmax − µ(τ))X2(τ))ξ̄(τ)

+ µ(τ)ξ̄(τ)T X3ξ̄(τ)
(15)

with

Z(τ) = [Ā(τ) B̄(τ)K(tk)],

X1(τ) =

[

I
0

]

P (tk)Z(τ) + Z(τ)T P (tk)
[

I 0
]

−

[

I
−I

]

P (tk)
[

I −I
]

+ δmaxZ(τ)T P (tk)Z(τ)

− Y
[

I −I
]

−

[

I
−I

]

Y T ,

X2(τ) =

[

I
−I

]

P (tk)Z(τ) + Z(τ)T P (tk)
[

I −I
]

,

X3 = Y P (tk)−1Y T .

Hence, the function V̄ (τ) satisfies

˙̄V (τ) + x̄(τ)T Qx̄(τ) + χ̄(τ)T K(tk)T RK(tk)χ̄(τ)<0 (16)

for τ ∈ [τki
, τki+1

), i = 0, 1, . . . ,∞, if

X1(τ) + (δmax − µ(τ))X2(τ) + µ(τ)X3 + X4 < 0 (17)

with X4 = −diag([Q,K(tk)T RK(tk)]) holds for all µ(τ) ∈
[0, δmax]. Inequality (17) is a convex combination of X1(τ)+
δmaxX2(τ) + X4 and X1(τ) + X4 + δmaxX3(τ) + X4 and

thus it is satisfied if and only if the following inequalities

hold:

X1(τ) + δmaxX2(τ) + X4 < 0, (18a)

X1(τ) + δmaxX3 + X4 < 0. (18b)

By pre- and post-multiplying inequalities (18a) and (18b)

with diag([P (tk)−1, P (tk)−1]), defining the variables

N = ǫdiag([P (tk)−1, P (tk)−1])Y P (tk)−1, M = ǫP (tk)−1

L = K(tk)M , using Schur complement operations, and

taking into account that (18a) and (18b) are affine in

S̄(τ) ∈ P , one can conclude that inequalities (18a) and

(18b) are satisfied if and only if inequalities (13c) and (13d)

are feasible. Thus, inequality (16), i.e. condition (10), is

satisfied if inequalities (13c) and (13d) are feasible for some

M,L, and ǫ.

In the second step it is shown that the upper bound of the

robust performance index is minimized. Since condition (10)

is satisfied, it is known that x(tk)T P (tk)x(tk) is an upper

bound of the robust performance objective at sampling

instant tk. From (13a), one obtains x(tk)T M−1x(tk) ≤ 1.

Since ǫ = γ(tk) and M = ǫP (tk)−1, this is equivalent to

x(tk)T P (tk)x(tk) ≤ γ(tk). Hence, it follows from (12)

and (13a) that the upper bound of the robust performance

objective is minimized via the feedback control law (4a)

with feedback matrix K(tk) = LM−1.

Invariant ellipsoid: In this part of the proof an invariant

ellipsoid is introduced to incorporate the state and input

constraints as LMI constraints in the next part of the proof.

Suppose that there are no constraints, i.e. the LMIs (13b)

are neglected, and that the optimization problem of Theorem

1 is feasible at sampling instant tk. Then

E(tk) =
{

η ∈ R
n | ηT P (tk)η ≤ γ(tk)

}

(19)

is an invariant ellipsoid [1] for system (7), i.e. every tra-

jectory x̄(τ) of (7) with x(tk) ∈ E(tk) satisfies x̄(τ) ∈
E(tk) ∀τ ≥ τk0

. Of course, E(tk) is an invariant ellipsoid for

the unconstrained system (7) if V̄ (τ), that satisfies V̄ (τk0
) =

x(tk)T P (tk)x(tk) ≤ γ(tk), is a Lyapunov function for

system (7). As shown in [8], V̄ (τ) is a Lyapunov function for

system (7) if its time derivative satisfies ˙̄V (τ) ≤ −θ||ξ(τ)||2

for some θ > 0 and for any S̄(·) ∈ P . Here, the negative

definiteness of ˙̄V (τ) can be established from inequality (16)

because Q and R are positive definite matrices. Hence, E(tk)
is an invariant ellipsoid for the predicted system (7) if the

optimization problem of Theorem 1 is feasible at sampling

instant tk.
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Constraints: Suppose that the optimization problem of The-

orem 1 is feasible at sampling instant tk. Hence, E(tk) is an

invariant ellipsoid for system (4a) under the feedback control

law (4b), i.e. for system (7). Since the constraints (2) are

described by a polytope, i.e. a set of linear inequalities, the

ellipsoid E(tk) is contained in the polytope C if and only if

zj(P (tk)−1γ(tk))zT
j ≤ 1, j = 1, . . . , nc, (20)

where zj = cj + djK(tk), see e.g. [1]. Using the Schur

complement operation, (20) becomes
[

−1 −zjγ(tk)P (tk)−1 − zjK(tk)γ(tk)P (tk)−1

⋆ −γ(tk)P (tk)−1

]

≤ 0 (21)

and with ǫ = γ(tk), M = ǫP (tk)−1, L = ǫK(tk)P (tk)−1

one obtains (13b). Hence, if the optimization of Theorem 1

problem is feasible, the invariant ellipsoid E(tk) is contained

in the polytope C which implies that system (7) fulfills the

constraints (2) for all times, i.e. for τ ≥ τk0
.

Feasibility: Suppose that the optimization problem of

Theorem 1 is feasible at time instant tk. Therefore, there

exits a feedback matrix K(tk) of the feedback control law

(4a) such that E(tk) is an invariant ellipsoid for the predicted

system (7). Thus, one has x̄(τki+1
)T P (tk)x̄(τki+1

) ≤ γ(tk),
i = 0, . . . ,∞. Since the sampling instant tk+1 lies in the

time interval [τk0
, τk0

+ δmax) and since the system state

x(·), that is solution of system (1) for some S(·) ∈ P
driven by u(t) = K(tk)x(tk) for t ∈ [tk, tk+1), equals

some x̄(·) of the predicted system (7), x(tk+1) also

satisfies x(tk+1)
T P (tk)x(tk+1) ≤ γ(tk). Hence, if the

optimization problem of Theorem 1 is feasible at time

instant tk its feasibility is guaranteed, e.g. with matrices

K(tk) and P (tk), at all subsequent sampling instants tk+i,

i = 1, . . . ,∞.

Asymptotic stability of the closed-loop system: The

dynamics of the closed-loop system can be described by the

time-varying hybrid (impulsive) system

ẋ(t) = A(t)x(t) + B(t)K(tk)χ(t),

χ̇(t) = 0, tk ≤ t < tk+1,

x(tk+1) = x(t−k+1), t = tk+1,

χ(tk+1) = x(t−k+1), k = 0, 1, . . . ,∞,

(22)

where K(tk), K(tk+1), and so on are computed on-line. The

stability of (22) is analyzed via the function

V (t) = xT (t)P (tk)x(t)

+

∫ t

t−ν(t)

(δmax − t + s)ẋ(s)T P (tk)ẋ(s) ds (23)

+ (δmax − ν(t))(x(t) − χ(t))T P (tk)(x(t) − χ(t)),

where ν(t) = t − tk, t ∈ [tk, tk+1), for k =
0, 1, . . . ,∞. Note that, in contrast to function (8), the matrix

P (tk) of function (23) changes at the sampling instants

tk. Furthermore, as shown in [8], function (23) satisfies

α1(tk)||x(t)||2 ≤ V (t) ≤ α2(tk)||ξ(t)||2, where α1(tk) > 0,

α2(tk) > 0, and ξ = [xT χT ]T . First, suppose that the

optimization problem of Theorem 1 is feasible at sampling

instant t0. Therefore, the feasibility of the optimization

problem is guaranteed for all future sampling instants tk.

Next, consider the time interval [tk, tk+1) with corresponding

matrices K(tk) and P (tk). The time derivative of function

(23) satisfies V̇ (t) ≤ −α3(tk)||ξ(t)||2, α3(tk) > 0. This

can be established from equation (16) because it is satisfied

for any S̄(·) ∈ P and for any sampling instant τk1
∈ [τk0,

τk0
+ δmax), i.e. it also satisfied for S(·) ∈ P and for tk+1.

Hence, for t ∈ [tk, tk+1) the function (23) is bounded by

V (t) ≤ e
−

α3(tk)

α2(tk)
(t−tk)

V (tk). (24)

Furthermore, at time instant tk+1, the inequality

x(tk+1)
T P (tk+1)x(tk+1) ≤ x(tk+1)

T P (tk)x(tk+1) (25)

is fulfilled because P (tk+1) is the optimal solution of the

optimization problem of Theorem 1 whereas P (tk) is only a

feasible solution of this optimization problem (see fourth part

of the proof) at sampling instant tk+1. Hence, it follows that

function (23) does not increase at sampling instant tk+1. Now

suppose that closed-loop system (22) encounters s updates

of the feedback matrix K(tk) at t0 < t1 < . . . < ts < t on

the time interval [t0, t]. From (24) and (25), one obtains for

t ≥ ts the following upper bound:

V (t) ≤ e
−

α3(ts)

α2(ts)
(t−ts)

V (ts)

...

≤ e
−

α3(ts)

α2(ts)
(t−ts)

× . . . × e
−

α3(t0)

α2(t0)
δ0V (t0).

(26)

Consequently, ||x(t)|| ≤ (α4(t0)/α1(ts))
1
2 e

−
α3(ts)

2α2(ts)
(t−ts)

×

. . .×e
−

α3(t0)

2α2(t0)
δ0 ||x(t0)||, where α4(t0) = λmax(P (t0)) > 0,

and so the closed-loop system (22) is asymptotically stable,

i.e the proposed model predictive controller asymptotically

stabilizes system (1) if the optimization problem of Theorem

1 is feasible at time instant t0. This completes the proof. �

Summarizing, a robustly asymptotically stabilizing model

predictive controller for linear continuous-time systems

has been presented in this section. At each sampling

instant tk, the model predictive controller computes

the feedback control law on-line via solving a convex

optimization problem involving LMIs. Even though this

convex optimization problem can be efficiently solved using

semidefinite programming algorithms [2], the computation

time of the optimizer may still take too much time in order

to apply the MPC approach to processes with fast system

dynamics. Hence, an off-line MPC approach, that reduces

the on-line computations, is given in the next section.

IV. MPC WITH OFF-LINE OPTIMIZATION

The off-line MPC approach for systems of the form (1)

is described by Algorithm 1 and its stabilizing behavior is

stated in Theorem 2. Note that Algorithm 1 coincides, except

for the computations of the matrices, with the off-line MPC

approach for discrete-time systems [10].
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Algorithm 1:

1) Off-line: Compute, based on a given feasible sys-

tem state x1 ∈ R
nx , a sequence of ǫi, Li,Mi, Ni

for i = 1, . . . , ne as described below. Set i := 1.

a) Compute ǫi, Li,Mi, Ni for a given sys-

tem state xi ∈ R
nx via the optimization

problem of Theorem 1 with the additional

constraint Mi−1 > Mi, that is ignored for

i = 1, and store M−1
i ,Ki = LiM

−1
i in a

look-up table.

b) If i < ne, select a new system state xi+1 ∈
R

nx such that xT
i+1M

−1
i xi+1 < 1 holds.

Set i := i + 1 and go to step a).

2) On-line: Suppose that the initial condition x(t0)
of system (1) satisfies x(t0)

T M−1
1 x(t0) ≤ 1

and let x(tk) be the system state at sampling

instant tk. Search over M−1
i in the look-up

table to find the largest index i such that

x(tk)T M−1
i x(tk) ≤ 1 holds. Set K(tk) = Ki and

apply u(t) = K(tk)x(tk) for t ∈ [tk, tk+1) to

system (1) until the next sampling instant tk+1.

Theorem 2: Consider the continuous-time system (1) with

constraints (2). If the initial condition x(t0) of system

(1) satisfies x(t0)
T M−1

1 x(t0) ≤ 1, then the off-line MPC

approach described in Algorithm 1 asymptotically stabilizes

system (1).

Proof: The proof, that is based on the proof of [10], is

omitted due to limited space. �

Summarizing, in this section an off-line MPC approach to

for continuous-time systems with piecewise constant control

input has been presented. The advantage of this off-line

MPC approach is that the on-line computations are reduced

compared to the model predictive controller of Section III,

see also Section III.C in [10] for a more detailed discussion.

However, the drawback of the off-line MPC approach is that

it is only suboptimal because the feedback matrix K(tk)
is not necessarily recalculated at every sampling instant tk,

e.g. if x(tk) and x(tk+1) are in the same ellipsoid.

V. EXAMPLES

In this section the applicability of the proposed MPC ap-

proaches is demonstrated via two examples.

A. Spring-mass system

In the following the model predictive controllers of Section

III and IV with Q = diag([3, 3, 1, 1]), R = 0.1, and

δmax = 0.2, are applied to control the uncertain spring-mass

system [3], that is shown in Figure 1, with input constraint

|u| ≤ 2. Additionally, for the off-line MPC approach the

system state xi of Algorithm 1 is discretized into {[1 0]T ,
[0.8 0]T , [0.7 0]T , [0.6 0]T , [0.5 0]T , [0.4 0]T , [0.3 0]T ,
[0.2 0]T , [0.15 0]T , [0.1 0]T }, see also Remark 5 in [10]. The

simulation results in Figure 2 illustrate that the spring-mass

system is asymptotically stabilized via the MPC approaches.

B. Continuous stirred tank reactor

Consider the CSTR [10] shown in Figure 1. The dynamics

of the CSTR is described by a polytopic system with

matrices A1 =
[

−1.6576 −0.0094
6.5763 −6.2465

]

, A2 =
[

−1.6576 −0.0094
65.7625 −5.4048

]

,
A3 =

[

−7.5763 −0.0935
65.7625 −5.4048

]

, A4 =
[

−7.5763 −0.0935
657.6253 3.0115

]

and Bi

=
[

0.15 0
0 −0.912

]

, i = 1, . . . , 4. Furthermore, the parameters

of the MPC controllers are δmax = 0.1, |u1| ≤ 0.5, |u2| ≤ 1,

Q = diag([20, 20]), R = diag([0.2, 0.2]), and, only for the

off-line MPC approach, xi in Algorithm 1 is given by the set

{[0.14 0]T , [0.09 0]T , [0.07 0]T , [0.06 ]T , [0.05 0]T , [0.03 0]T ,

[0.02 0]T , [0.017 0]T , [0.01 0]T , [0.001 0]T }. Figure 3 shows

that the proposed MPC approaches robustly asymptotically

stabilize the CSTR with similar performance.

x1, x3

u

x2, x4

u2

u1

x1
x2

Fig. 1. Left: spring-mass system; x1, x2 are car positions, x3, x4 are
car velocities. Right: continuous stirred tank reactor; x1 represents reactor
concentration and x2 reactor temperature.

VI. SUMMARY

In this paper two new model predictive controllers with

piecewise constant control signal for uncertain continuous-

time system have been developed that can cope with state

and input constraints as well as with time-varying sampling

intervals. In particular, an on-line MPC approach and an off-

line MPC approach, that has reduced on-line computations,

have been presented. Finally, the proposed model predic-

tive controllers have been successfully applied to control a

spring-mass system and a CSTR.

REFERENCES

[1] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix

Inequalities in System and Control Theory. SIAM, 1994.
[2] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge

University Press, 2004.
[3] J.C. Geromel and M.C. de Oliveira. H2 and H∞ Robust Filtering for

Convex Bounded Uncertain Systems. IEEE Transactions on Automatic

Control, 46:100–107, 2001.
[4] L.S. Hu, B. Huang, and Y.Y. Cao. Robust Digital Model Predictive

Control for Linear Uncertain Systems with Saturations. IEEE Trans-

actions on Automatic Control, 49:792–796, 2004.
[5] L.S. Hu and H.H. Shao. An LMI Approach to Robust Model Predictive

Sampled-Data Control for Linear Uncertain Systems. In Proceedings

of the American Control Conference, pages 628 – 633, 2002.
[6] M.V. Kothare, V. Balakrishnan, and M. Morari. Robust Constrained

Model Predictive Control Using Linear Matrix Inequalities. Automat-

ica, 10:1361–1379, 1996.
[7] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Con-

strained Model Predictive Control: Stability and Optimality. Automat-

ica, 36:789–814, 2000.
[8] P. Naghshtabrizi, J.P. Hespanha, and A.R. Teel. Exponential Stability

of Impulsive Systems with Application to Uncertain Sampled-Data
Systems. Available from http://www.ccec.ece.ucsb.edu/ payam/, 2008.

[9] Z. Wan and M.V. Kothare. Robust Output Feedback Model Predictive
Control using Off-line Linear Matrix Inequalities. Journal of Process

Control, 12:763–774, 2002.
[10] Z. Wan and M.V. Kothare. An Efficient Off-line Formulation of

Robust Model Predictive Control Using Linear Matrix Inequalities.
Automatica, 39:837–846, 2003.

1113



0 2 4 6 8
−0.1

0

0.1

0.2

0.3

0.4

x
1

Time
0 2 4 6 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x
2

Time
0 2 4 6 8

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

x
3

Time

0 2 4 6 8
−0.25

−0.2

−0.15

−0.1

−0.05

0

x
4

Time
0 2 4 6 8

1

2

3

4

5

6

7

8

9

N
o
rm

o
f
K

(t
k
)

Time
0 2 4 6 8

−1

−0.8

−0.6

−0.4

−0.2

0

u

Time

Fig. 2. Closed-loop response of the mass-spring system: gray lines, on-line MPC approach; black lines, off-line MPC approach. The system initial
condition is x0 = [0.5 0.7 0 0]T , the input constraint is |u| ≤ 2, and the time-varying sampling intervals δk are modeled by an uniform probability
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of the off-line MPC approach.

1114


