
Abstract—Thermal power plant is required to ensure a fast 
load change without violating thermal constraints. While model 
predictive control has been widely used in power plant, 
incorporating of constraints is a major problem. Two alternative 
methods of exploiting the nonlinear predictive control are 
described. One is the input-output feedback linearization 
technique. The other is the neuro-fuzzy networks(NFNs). 
Steam-boiler generation control using the two nonlinear 
predictive methods show satisfactory results and improved 
performance compared with conventional predictive method. 
Comparing results considering both the integral absolute value 
and the relative optimization time needed for completing the 
simulation have also been addressed in detail. 

I. INTRODUCTION 
N modern power plant, the coordinated control (CC) 
scheme is responsible for driving the 

boiler-turbine-generator set as a single entity, harmonising the 
slow response of the boiler with the faster response of the 
turbine-generator, to achieve fast and stable unit response 
during load tracking manoeuvres and load disturbances. The 
CC scheme is also crucial to load frequency control(LFC), 
which is one of the most important issues in power system 
design and operation, because the objective of the  LFC in an 
interconnected power system is to maintain the frequency of 
each area and to keep tie-line power near to the scheduled 
values by adjusting the MW outputs of the LFC generators so 
as to accommodate fluctuating load demands.  

Model predictive control(MPC) has been widely used in 
power plant in recent years[1][2]. However, due to the 
nonlinearity and complexity, constraint handling has seldom 
been incorporated in power plant real-time control 
application. In using MPC, if the process is linear, the 
optimum predicted control trajectory is defined through the 
on-line solution of a quadratic programming problem. For 
nonlinear system, since the on-line optimization problem is 
generally nonconvex, the on-line computation demand is high 
for any reasonably nontrivial systems. Thus, practical 
implementation of the exact optimization approach is 
difficult, if not impossible.  

One approach for solving this problem is to linearise the 
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nonlinear system via input/output linearization. For certain 
class of nonlinear systems, such transformation yields a linear 
dynamic system but with state-dependent(and, in general, 
nonlinear) constraints which need to be approximated in order 
to generate a computationally simpler optimization problem. 
An attractive feature of this approach is that only a quadratic 
program needs to be solved on-line in real time. However, the 
design may be overly conservative in some cases: linear 
approximation is only valid when both state and input do not 
deviate too much from where they are linearised. This implies 
that the control actions have to be close to their linearised 
values in order to preserve stability.  

Using a neuro-fuzzy network to learn the plant model from 
operational process data is another solution[3]. Associate 
memory network (AMN) is one of the earliest attempts to use 
neural networks to implement the desired mapping for fuzzy 
systems. These networks therefore, by embodying both the 
qualitative and the quantitative approaches, enable heuristic 
information to be incorporated into and inferred from the 
network, and allow fuzzy learning rules to be derived. 

Considering power plant coordinate system, this article 
describes how constraint handling can be incorporated in the 
nonlinear control scheme while ensuring the highest possible 
rate of load change. Two methods are proposed for nonlinear 
MPC. In the first one, a solution based on the input-output 
feedback linearization(IOFL) of the power plant multivariable 
system is proposed. The main advantage of this approximate 
IOFL scheme is that it leads to a linear input mapping which 
helps a further integration of input constraints in the MPC 
framework. In the second approach, it is shown how the 
nonlinear neurofuzzy modelling technique, which retains 
some of the insights obtained from linear systems, can be 
integrated within an MPC framework. Coordinated control in 
steam-boiler generation is presented to illustrate the 
implementation and the performance of the proposed 
nonlinear constraints MPC. Further, comparing results 
considering both the integral absolute value and the relative 
optimization time needed for completing the simulation have 
also been addressed.  

II. LINEAR MPC BASED ON IOFL 
For MPC, input-output feedback linearization(IOFL) is a 

method to find a static state feedback control law Ψዊ�such 
that the resulting closed loop system has a desired linear 
input-output behavior[4]. In Fig.1, the relation between the 
power plant output y and the input u is nonlinear while y is 
linearly related with the newly created external singal v. The 
input-output feedback linearising control law describes a 

Feasible Constrained Nonlinear Predictive Control on Power Plant  
X.J. Liu and L.X. Niu 

I

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeC13.6

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 1691



nonlinear and state-dependent relation between the process 
input u and the external input v: 

),,( vxxu lΨ=

where x and lx represent the state vector information from 
the process and from the desired resulting linear system, 
respectively. For a square discrete-time affine nonlinear 
input-output system with p inputs T

kp1,kk ,u,u )( ,L=u and p 

outputs T
kpkk yy ),,( ,,1 L=y , with relative degree r equal to 

1 for all outputs: 
kkk1k )uG(x)f(xy +=+ (1)  

where T
kpkk yy ),,( 1,1,11 +++ = Ly , the state consists of 

delayed process inputs and outputs defined as 
T

mkpknkpnkkk ppl
uuyyy ),,,,,,,( ,1,1,,1,1 −−−−= LLLx , and 

with matrix G invertible for X∈∀x . Then it is obvious that 
choosing the control action as: 

kkkk )vQ(x)xp(xu += l
k, (2)  

with )xp(xk
l
k, and )Q(xk known at time instant k, and 

given by:  
}{, 1 l

k
l
k CAx)f(x)(xG)xp(x kkk +−= − (3) 

)CB(xG)Q(x kk
1−= (4) 

results in the MIMO ( pp× ) linear system described by  

k
l
kk CBvCAxy +=+1 (5) 

A , B and C are properly chosen state-space matrix.  

Fig.1. Linear model-based predictive control based on IOFL 
 

From the overall control scheme depicted in Fig.1, the 
criterion function to be minimized on every sampling instant k 
is a quadratic criterion on T)(~

1Hkk p
v,,vv −+= L , with pH

being the prediction horizon, given by : 
v∆Wv∆ryry)v( ~~~~~~~

v
TT )()(J +−−= (6) 

where Tl
Hk

l
k p

),,(~
1 ++= yyy L , represents the vector with 

the predicted linear system outputs over pH ,
T

Hkk p
),,(~

1 ++= rrr L is the vector with the differences 

between the future reference signals and the modeling errors, 
vW is a square positive definite diagonal weighting matrix of 

the controller outputs, and 
T

HkHkkk pp
vvvv ),,(~

211 −+−+− −−= Lv∆ is the vector which 

contains the changes in the future control signal. An expansion 
of the linear system outputs over pH results in: 

T
u

l
kx vRxRy ~~ += (7) 

with  xR and uR being expansion matrices of the linear 
state-space description matrices A, B and C. The 
incorporation of eqn.7 in eqn.6 enables the optimization 
routine of the linear MPC to find the optimal v~ by solving a 
simple analytical expression. In the presence of level and rate 
inequality constraints acting on the power plant process 
inputs , e.g,: 

maxmin
~ uuu << (8) 

 maxmin uuu ∆<∆<∆ (9) 

with   T
Hkk p

),,(~
1−+= uuu L

and   T
HkHkkk pp

),,(~
211 −+−+− −−= uuuuu∆ L

the minimization of equation (6) subjected to equations (8) 
and (9) can only be efficiently expressed in terms of the 
optimization variable v~ . In this case, fast and reliable QP 
optimization routines can be used to find the solution of the 
adopted nonlinear feedback linearising control law Ψ .

The introduction of an extended version of equation (2) 
over the prediction horizon pH results in the following 
nonlinear and state-dependent mapping:  

v)Ru(xGxR)uf(x)u(xGu kkk
~~,~}~,{~,~~ 11

u
l
kx ′++′−′=′ −− (10) 

with T
Hkk p

,, )(~
2−+= uuu L . Since u ′~ contains the 

optimal process inputs over future time steps, the knowledge 
of this sequence depends on the computation of the optimal 
control sequence v~ , which in turn, depends on the knowledge 
of constraints on future time steps. Therefore, in order to use 
QP, an adaptive procedure for correcting the constraints 
linearization error is adopted to guarantee a feasible control 
sequence for the complete prediction horizon. This technique 
is fully developed in [4], where the control of a nonlinear 
chemical reactor was tested.  

III. NEURO-FUZZY NETWORK  PREDICTIVE CONTROL 

A. Structure of the Neuro-fuzzy Network 

Fig.2. B-spline neuro-fuzzy network 
 
For the MIMO nonlinear dynamic system (1), let the local 

linear model at the operating point O(t) be given by: 
 kk1k BuAxx +=+

kk Cxy = (11) 
Note that the matrix A , B and C are a function of the 
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operating point O(t).  The nonlinear system (1) is partitioned 
into several operating regions, such that each region can be 
approximated by a local linear model. Since NFNs is a class of 
associative memory networks with knowledge stored locally 
[3], they can be applied to model this class of nonlinear 
systems. A schematic diagram of the NFN is shown in Fig. 2, 
where the membership functions are given by B-spline basis 
functions. The input of the network is the antecedent variable 

],[ 21 nxxx L , and the output, )(ˆ ty , is a weighted sum of the 
output of the local linear models )(ˆ tiy . B-spline functions are 
used as the membership functions in the NFNs for the 
following reasons [3]: 

1) B-spine functions can be readily specified by the order of 
the basis function and the number of inner knots.  

2) They are defined on a bounded support, and the output of 
the basis function is always positive, i.e., 

],[,0)( jkj
j

k xx λλµ −∉= and 0)( >xj
kµ , ),( jkjx λλ −∈ .

3) The basis functions form a partition of unity, i.e., 
],[,1)( maxmin xxxx

j

j
k ∈≡∑µ .

4) The output of the basis functions can be obtained by a 
recurrence equation.  

The NFN shown in Fig. 2 consists of the following fuzzy 
rules: 

IF operating condition i ( 1x is positive small, ,L and nx is 
negative large) 

THEN the output is given by the local discrete-time state 
space model i :

kk1k uBxAx ii +=+

kk xCy ii = (12) 
where iA , iB and iC are the linear state-space matrices. 

The multivariate basis function ai(x), is obtained by the tensor 
products of the univariate basis functions )( kA

xi
k

µ ,

)()(
1

k

n

k
Ai xxa i

k
∏

=

= µ ; for  pi ,,2,1 L= (13) 

where n is the dimension of the input vector x, and p, the 
total number of weights in the NFN, is given by, 

∏
=

+=
n

i
ii kRp

1

)( (14) 

where ik and iR are the order of the basis function and the 
number of inner knots respectively. The properties of the 
univariate B-spline basis functions described previously also 
apply to the multivariate basis functions. The output of the 
NFN with p fuzzy rules is, 
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∑

∑
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B. Neurofuzzy predictive control 

Fig.3. Neuro-fuzzy MPC 

The control structure here consists of the family of 
controllers and the scheduler. At each sample instant the latter 
decides which controller, or combination of controllers, to 
apply to the process. Generally, the controllers are tuned about 
a model obtained from experiments at a particular equilibrium 
point, since linear model and controllers are quite well 
understood. They are constructed by interpolating between the 
members of a family of linear controllers. In this article, these 
interpolating functions are realized by B-spline neuro-fuzzy 
networks. 

As already described, the neurofuzzy network consists of a 
set of locally valid submodels together with an appropriate 
interpolation function. A controller is then designed about 
each of the local models. The interpolated outputs are then 
summed and used to supply the control commands to the 
process. The resultant neuro-fuzzy MPC structure is shown in 
Fig.3. The interpolation function effectively smoothes the 
transition between each of the local controllers. In addition, 
the transparency of the nonlinear control algorithm is 
improved as the operating space is covered using controllers 
rather than models.  

C. Constraint handling 
One of the main application benefits of using a linear 

predictive controller is its ability to handle process constraints 
directly within the control law. While the quadratic 
programming is applied to the neuro-fuzzy MPC, a problem 
arises, as there is no way of knowing that the summation of all 
of the controller outputs will not in fact violate a process 
constraint. Notice that a B-spline neuro-fuzzy network is used, 
in which the third property signifies that the basis functions 
form a partition of unity. In such a way, the summation of all 
of the controller outputs will not in fact violate a process 
constraint, since they are weighted sum by the normalized 
B-spline neuro-fuzzy network. Taking consideration of a 
second order B-spline neuro-fuzzy network. At any time 
instant, if one variable account for 80% of the total output, 
another variable will surely account for 20% of the total 
output.  This may be the main attracting factor of the B-spline 
neuro-fuzzy network while applying to constraint MPC. 

IV. STEAM-BOILER GENERATION CONTROL 
The essential dynamics of a power plant have been 

remarkably captured for a 160MW oil fired drum-type 
boiler-turbine-generator unit in a third order MIMO nonlinear 
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model for overall widerange simulations in [5]. The inputs are 
the position of valve actuators that control the mass flow rates 
of fuel, steam to the turbine, and feedwater to the drum. The 
three outputs are electric power, drum steam pressure, and 
drum water level deviation. The three state variables are 
electric power, drum steam pressure, and fluid density. The 
state equations are: 

3
8/9

21 15.00018.09.0 uPuu
dt
dP

−−=

10/))16.073.0(( 8/9
2 EPu

dt
dE

−−=

85/))19.01.1141( 23 Puu
dt

d f −−=
ρ

(16) 
The drum water level output is calculated using the 

following algebraic equations: 
09.251.259.45)18.085.0 312 −−−−= uuPuqe

0015.0)6.258.0/(1)0015.09.01( 1 −−−= Pufs ρα (17) 

A. Modelling Phase 
A feedforward neural network is used for modeling the 

dynamics of the system. The networks are trained based on 
measured input-output data taken from the process simulation, 
the identification data set, and validated on a “fresh” 
validation data set. After completing the learning phase, the 
following affine neural network model resulted: 

k
a
ka

a
ka1k )u(xg)(xfy +=+ˆ (18) 

Where the state vector is given by 
],,,,[ 12 −−−= kkk1kk

a
k uuyyyx . The best structure found for 

each af and ag consists of one hidden layer feedforward 
neural network having three neurons with tangent hyperbolic 
activation function. The resulting IOFL linear model are 
obtained through a Jacobian linearisation of the neural 
network around a stable equilibrium point, and given by:  
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Fig.4 Steam-boiler system(solid line) and IOFL model (dotted line) 
 
The validation results on the fresh data is shown in Fig.4. 

The IOFL model can only give good approximation over fixed, 
but not the full operating range, illustrating that the plant is 

highly nonlinear.  
A valid neurofuzzy model of the plant, which is an essential 

tool for the developing of the neuro-fuzzy MPC, could also be 
derived. A method to handle the nonlinearity in the plant is to 
divide the full operating range into a number of local 
operating regions, where linear models with a good 
approximation are used. These models are incorporated into 
the neurofuzzy model for modelling the nonlinear plant. Load 
is used to select the division between the local regions in the 
NFN. Based on this approach, the load is divided into five 
regions, using also the experience of the operators, who regard 
a load of 160MW as high, 140MW as medium high, 120MW 
as medium, 100MW as medium low and 80MW as low. This 
type of partitioning ensures that any change in the real-valued 
input signal will be reflected by a change in the degree of 
membership. After training, the neurofuzzy models are: 
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if LOAD is medium high: 
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if LOAD is medium: 
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if LOAD is medium low: 
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if LOAD is low: 

1694



kkk uxx
















−

−−
+

















−
−−

−
=+

66.104.10
0073.00

15.009.0

000075.0
01.00280.0
000023.0

1

kk xy















=

0065.0000040.0
010
001

Fig.5 shows comparison of boiler system and neurofuzzy 
model while load fluctuates within a 40MW range. Good 
generalization result of the drum steam pressure over the full 
operating range is obtained from the neurofuzzy model. 

Fig.5 Steam-boiler system(solid line) and neurofuzzy model (dashed line)  

B. Control results 
In the neuro-fuzzy MPC, the nonlinear controller consists 

of five local controllers, each one of which is designed about 
one of the local models, and thus each with a set of tuning 
parameters. At each sample instant the load signal was fed to 
the interpolation membership function of the B-spline NFNs, 
which in turn generates the activation weights for each of the 
local controllers. Notice that, since the B-spline membership 
function was chosen to be second order, there are two 
controllers working at any time instant.  

In the IOFL predictive control, the global optimization 
problem was transformed by quadratic programming(QP) 
techniques. In order to guarantee a feasible solution without 
constraints violation over the complete prediction horizon, a 
convergent algorithm integrates the QP problem on an 
iterative scheme is incorporated. This approximate method is 
proposed which simultaneously guarantees a feasible solution 
without constraints violation over the complete prediction 
horizon within a finite number of steps.  

The linear MPC in neuro-fuzzy controller is obtained by 
minimizing the following cost function [2], 

2

1

2

1

)]1([})]()(ˆ[{ −+∆++−+= ∑∑
==

jtujtyjtyEJ
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j
jr
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j

λ (20) 

subject to    007.0007.0 1 <<−
dt

du
, 02.00.2 2 <<−

dt
du

 

05.005.0 3 <<−
dt

du
 

Where Ij ×= 1.0λ . The same constraint applies to the I-O 

linearization controller where in equation (6) IWv ×= 1.0 to 
guarantee an equal comparison. The sampling interval in both 
controllers is chosen to be 5s.  

(a) 

(b) 

(c) 

Fig.6 Steam pressure and water level transient processes 
 

Fig.6 shows steam pressure and water level transient 
processes under planned load changes. The control efforts are 
shown in Fig.7. The neuro-fuzzy constraints optimal 
controller exhibits superior action, since it is based on a more 
exact model of the plant. The control signal seems to be better 
in anticipating the effect of the rate actuator limit. This is 
followed by the IOFL constraints optimal controller, due to its 
ability to cope with constraint. The constraints limited 
controller offers the worst result, due to the lack of constraint 
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handling ability. The maximum deviation of drum steam 
pressure for these three methods are 4.64kg/cm2, 5.64kg/cm2

and 7.50kg/cm2 respectively. The maximum deviation of 
drum water level for these three method are 3.55cm, 4.55cm 
and 7.50cm respectively.   

 

(a) 

(b) 
Fig.7 The control efforts 
 

One of the most concerning problem in power plant 
real-time control is the computing burden. For MPC, choosing 
of larger predictive horizon can get better performance, 
nevertheless, resulting in increment of computing burden. For 
further comparison, the close-loop performance of each 
controller is analysed with respect to two variables: the 
integral absolute value and the relative optimization time 
needed for completing the simulation. The comparison 
between the two configurations which guarantee a feasible 
control solution over the complete prediction horizon show a 
similar trend performance in terms of the closed-loop tracking 
error, although the constraints optimal neuro-fuzzy MPC is 
less computational time demanding, as shown in Fig.8. This 
can be attributable to the accurate off-line neuro-fuzzy model, 
while IOFL optimization infers to an iterative process, which 
is time consuming. The trade-off between the total 
computational demands and the gain in optimality is clearly 
favourable to the constraints optimal neuro-fuzzy MPC. 

Fig.8 Comparison of controller performance for different prediction horizon. 
10,,2 L=pH for I-O linearization; 10,,2 L=N for neuro-fuzzy. 

V. CONCLUSION 
Constraint handling is the major advantage of using a linear 

predictive controller in power plant. For nonlinear process, 
this can usually lead to large differences between the actual 
and predicted output values when the current output is 
relatively far away from the operating point at which the linear 
control model was generated. This paper introduces IOFL and 
NFNs to formulate feasible solution.  

The IOFL-MPC requires a constraints handling 
approximation procedure to guarantee the feasibility of the 
iterative QP optimization. In the neuro-fuzzy MPC, a set of 
local controllers were combined through NFNs to form a local 
controller network. The proposed nonlinear MPCs were 
applied in the simulation of the power plant control. Better 
results are obtained when compared with the constraint 
limited MPC. The proposed nonlinear controllers therefore 
offer a feasible and reliable solution for optimization of the 
control moves.  
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