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Robust Output Feedback Model Predictive Control for Linear
Systems via Moving Horizon Estimation

D. Sui, L. Feng, M. Hovd

Abstract— This paper provides a simple approach to the
problem of robust output feedback model predictive control
(MPC) for linear systems with state and input constraints,
subject to bounded state disturbances and output measure-
ment errors. The problem of estimating the state is addressed
by using moving horizon estimation (MHE). For such an
MHE estimator, it is shown that the state estimation error
converges and stays in some set, which is taken into account
in the design of the output feedback MPC controllers. In the
MPC formulation where the nominal system is considered, the
constraints are tightened in a monotonic sequence such that
satisfaction of the input and state constraints is guaranteed.
Robust stability of an invariant set for the closed-loop original
system is ensured. The performance of the approach is assessed
via a numerical example.

Index Terms— Model predictive control; Moving horizon
estimation; Constrained linear systems with bounded distur-
bances.

I. INTRODUCTION

Model predictive control (MPC) is a feedback scheme
in which an optimal control problem is solved at each time
step and only the first step of the control sequence is applied
[1]. Since MPC has the ability to handle hard constraints,
it has received great attention in the literature. In most
MPC formulations, the state feedback is assumed, which
requires full knowledge of the state [2], [3]. In practice, the
measurements contain noise, and often internal states are
not measurable. Ignoring measurement errors may result in
degradation in performance or even cause the instability.

This paper considers the problem of robust output feed-
back MPC for linear systems with state and input con-
straints, subject to bounded state disturbances and output
measurement errors. The motivation of this paper is to
provide an approach for computing output feedback MPC
controllers that ensure the satisfaction of state and input
constraints and the robust stability of the closed-loop orig-
inal system.

For robust output feedback MPC, a common approach is
to combine an observer with a standard predictive scheme,
where the state estimate substitutes for the true system
state. When the system dynamics is linear, a fixed linear
observer (e.g. Luenberger observer, see [4], [5], [6]) is
often employed. The equation for the Luenberger observer
contains a term that corrects the current state estimates by an
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amount proportional to the prediction error: the estimation
of the current output minus the actual measurement. Inclu-
sion of this correction ensures stability and convergence
of the observer. The design of the Luenberger observer
is an important part in the output feedback controller
design, which determines not only the performance of the
observer, but also the size of the estimation error bound.
However, few discussions about it are mentioned in the
recent contributions [4], [5], [6]. The Kalman filter (optimal
prediction) is the other most popular method of output
feedback in practical implementations. The Kalman filter
is the optimum estimator when the corrupting noise has
a Gaussian probability distribution. Like the Luenberger
observer, the Kalman filter also includes a correction factor
to insure stability and convergence. However, the Kalman
filter is known to lack robustness to modeling errors [7].
A promising approach is using moving horizon estimator
(MHE). The ideas of MHE date bake to the early 1990s,
see [8]. In MHE, the estimates of the states are obtained
by solving an optimization problem, which penalizes the
deviation between measurements and predicted outputs of
a system. The basic strategy is to estimate the state using
a moving and fixed-size window of data. When a new
measurement becomes available, the oldest measurement is
removed from the data window and the newest measurement
is added. The problem size of the estimation is bounded,
therefore, by looking at only a subset of the available
information [9]. MHE approach is based on a batch of the
most recent information, which results in a higher degree of
robustness and so makes MHE well-suited in the presence
of modeling uncertainties and/or numerical errors, see [10].
The design of output feedback MPC can be tackled by
two approaches. One approach is to pursue the “certainty
equivalence” principle and try to separate the estimation
error from the state feedback by time scale separation and
therefore make the observer dynamics sufficiently faster
than controller dynamics. This may be achieved using
high-gain [11] or deadbeat observers [12]. However, such
approaches are not expected to be useful in the presence
of noise, and therefore of little practical value in low-level
control. Another approach is based on accounting for the
errors in the state estimate by robust MPC controller design.
With such an approach, a state estimator that provides
estimation error bounds is typically required [4], [13], [14],
[15]. In [5], state estimates with bounded error within an
invariant set are provided by a simple Luenberger observer,
and a tube-based robust predictive controller design is used,
while the control paradigm is shifted from control of true
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process states to control of nominal estimator states.

In this paper, the proposed output feedback controller
consists of an MHE estimator and a robustly stabilizing,
tube-based, MPC controller. Under some conditions the
MHE estimation error dynamics is stable and errors con-
verge to the minimal disturbance invariant set, [, of such a
system. The errors are taken into account by introducing the
set E in the controller design. Like the approach proposed
in [5], the controller uses a tube, the center of which is
obtained by solving a nominal MPC problem and within
which the estimated state is guaranteed to remain. The
problem is addressed by steering the tube to the origin.
Due to considering the nominal system, the constraints in
the optimization are tightened such that the satisfaction of
the input and state constraints for the original system is
guaranteed. Unlike the work in [5], in our approach the
constraints are tightened in a monotonic sequence hence
relaxed. Robust stability of an invariant set for the closed-
loop original system is guaranteed. The computational
complexity of the resulting controller is similar to that
of the standard, nominal MPC controller. Furthermore, the
proposed output feedback MPC problem can be solved off-
line by using multi-parametric programming technique.

The paper is organized as follows. Section II discusses
the class of systems considered, states several assumptions
and reviews some definitions. Section III introduces the idea
of MHE and shows the estimation error is contained in a
disturbance invariant set. In Section IV, the framework of
the robust output feedback MPC is introduced and its prop-
erties are stated. The effectiveness of the proposed output
feedback controller is illustrated in Section V. Conclusions
are given in Section VI.

Notation and Basic Definitions: Positive definite (semi-
definite) square matrix A is denoted by A > 0 (A > 0) and
A = (=)B means A — B = (=)0. ||x[|3 = xTAx with A = 0.
I -] is the Euclidean norm. Let p(A) denote spectral radius
of a square matrix A. A set X CR" is a C set if it is a
compact, convex set that contains the origin in its (non-
empty) interior. Suppose X,Y C R”, the interior of X is
int(X); |X| is its cardinality; the P-difference of X and Y is
XeY={zeR":z+y€X,Vy Y} and the Minkowski sum
isX®Y={zeR":z=x+y,x€X,y €Y}. A polyhedron is
the (convex) intersection of a finite number of open and/or
closed half-spaces and a polytope is the closed and bounded
polyhedron.

II. PRELIMINARIES
The following discrete-time, linear time-invariant system
is considered,
x(t+1) =
) =
where ¢ is the discrete time index, x(-), u(-) and y(-) are the

state, input and measured output respectively and x € R™,
uecR™ ye R weR™ is an unknown state disturbance,

Ax(t) + Bu(t) + Dw(t), ¥t >0
Cx(t)+Ev(t), Vt>0,

(1a)
(1b)

v € R™ is a measurement noise and disturbances w,v are
known only to the extent that they lie, respectively, in the
C sets W and V.

System (1) is subject to the following sets of hard state
and input constraints:

x(r)eX, u(t)eU, vt>0. (2)

It is assumed in this paper that:

(A1) the couple (A, B) is controllable and (A,C) is observ-
able;

(A2) X and U are polyheral and polytopic sets respectively,
and both contain the origin as an interior point.

To make the results in the subsequent sections explicit, one

definition is reviewed below.

Definition 1: (d-invariant set) A set 7 C R™ is dis-
turbance invariant (d-invariant) for the system x(r +1) =
Ax(t) + Dw(t) and the constraint set (X, W) if T C X and
x(t+1) €T for all w(t) € W and x(r) €T.

In most control problems, state feedback is assumed.
In practice, the measurements contain noise, and perfect
knowledge of the state is not realistic. A common approach
is therefore to employ an observer and substitute the result-
ing state estimate for the true system state in the controller
design. Denote the state estimate at time z as £(¢) where
%(r) € R™ and let the state estimation error be

e(t) = x(t) — (t), V> 0. 3)

Using a stable observer (e.g. Luenberger observer), the error
e(t) can be bounded by an invariant set, E, see [5], or if
e(0)eE, e(r) €E, Vr > 0.

Proposition 1: [5] If the initial system and observer
states, x(0) and £(0), respectively, satisfy ¢(0) € E, then
x(t) € X(r) ®E for all # > 0 and all admissible disturbances
w(t),v(t), Vt > 0.

III. MOVING HORIZON ESTIMATION

MHE estimates the state by considering only a fixed
amount of information data. It is assumed that the data is
measured in the recent past. The basic strategy of MHE is
to estimate the state using a moving and fixed-size window
of data. The information vector is

INEO) :COl(y(t_Ne)a"' 7y(t)’ M(I_Ne)a'“ ,M(f— 1))7 (4)
t=Ng,N.+1,...,

where N, + 1 is the number of measurements made at
sliding-window stages from # — N, to ¢ (t > N,). When a new
measurement becomes available, the oldest measurement is
removed from the data window and the newest measure-
ment is added. The problem size of MHE is bounded by
considering a subset of the available information.

In [10], the objective of MHE is to compute the estimated
state at time ¢ on the basis of the information vector I (z)
and of a prediction x(¢ — N, ). The MHE estimator is derived
by minimizing a quadratic function, the first term of which
is the usual prediction error computed on the basis of the
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last measures, the second of which is a weighted term
penalizing the distance of the current estimated state from

its prediction. At any stage t = N,,N, + 1,..., the MHE
problem is formulated, i.e.
min V (£(7 — Ne[t); 1™ (¢),x Iy (k) — C(k|t)||>
H-Nelr) ; tzNe
FU[E(E = Nelr) =5t = N[ (52)
s.t.X(k+ 1]t) = AR(k|t) + Bu(k), k=1t—N,,...,t —1, (5b)

where £(k|¢) denotes the estimated value of x at time point
k derived using (5b); u is a nonnegative scalar to tune a
trade-off between the two components of the cost. Prob-
lem (5) is just a simple quadratic programming problem.
Without the inequality constraints, a single explicit solution
can be found. The solution to problem (5) is defined as
(¢t =N, |t ) and it yields the sequence of the state estimates
{27 (k[t) }}—, _y, - At the current time 7, the state estimated by
MHE is denoted as X(t) = &*(¢|t). The optimal predictions
are determined as

x(t—N,) =A%*(t —N,— 1|t — 1)+ Bu(t—N,—1),  (6)

t=N.+1,N.+2,...,

where x(0) is given. The estimation error defined in [10]
differs from the one defined in (3), i.e.

— £ (et + N), )

ét+1)=Aér)+Gw(t) + Hv(t), (8)
where w(t) = [wl(z),--- ,wl (t + N)IT, v(z) = pT(t +
D, vt +N,+1)]7 and w(t) € W, := Wx---x W,
~ Ne+1
v(t) €V, :=V x --- x V; the matrixes A = (ul +0)~'uA,
Nt
G = (ul + 0) '[uD| — S§ Tv,Dy,] and H = (ul +
0)~'[- SNeENeH] with
[ C CA
CA CA?
Sn,= . , SN, = . )
| CANe CANe
[0 0 0 0
o lc 0 00 )
In=| . : o : I, =[Sn,—11Tw,],
| cANe—2 cANe3 CA C
O=S.Sn,,Dn, = diag(D,....D),Ey, = diag(E,...,E).
—— ——
Ne Ne

If suitable conditions on the scalar parameter u are satisfied,
we have p(A) < 1 (more details are referred to [16]). In this
paper, following the definition of the estimation error made

in (3) and the definition of &(¢), it is easy to derive the

following relation
e(t) = AN&(t —N,) + AY 'Dw(t —N,) +---+ Dw(t —1).
©))

From (8) and (9), the explicit error dynamics of MHE can
be easily generated,

e(t+1) = Ae(t) + Gw(t — N,) + Hv(t — N,), (10)
where A = ANe AANe | G = ANG — AA1 + A; and
H = AYH with Ay = [AN"1D, ... D, 0] and A, =
[0, ANe=1D, D]. Let o(t) = Gw(t — N,) + Hv(t — N,).
Thus o () lies in a C set Q defined by

Q=GW,®HV,. (11)
Equation (10) can be rewritten, i.e.
e(t+1)=Ae(t) + at). (12)

The fact p(A) < 1 implies p(A ) < 1. Thus there exists a C
set E such that it is d-invariant for system (12). It follows

AE®QCE, (13)

which implies that if ¢(0) € E, e(¢) € E, Vr > 0. Since the
set £ is the upper set of the error, it is desired to be as small
as possible. In this paper the set IE is chosen as the outer
bound of the minimal d-invariant set of system (12). Efforts
to compute such a set for linear systems have appeared in
the literature, see for example [17], [18].

It is easy to show that the estimated state yielded by the
MHE estimator satisfies the following uncertain equation,
le.

#(t+1) = A%(t) + Bu(t) + Le(t) — Gw(t —N,) — Hv(t — N,),

_ _ (14)

where L=A—-A, G = G — G, with G| = diag(0,...,0,D)
and A = H. Let B(t) = Le(t) — Gw(t — N,) — Hv(t — N,).
Suppose ¢(0) € E, then ((¢ ) lies in a C set T defined by

T=LE® (-GW,)® (-HV,). (15)

Equation (14) can be also rewritten as a linear system dy-
namics with a uncertainty 3, i.e. £(t + 1) = A%(¢) + Bu(t) +
B(z). Hence, if the initial error can be chosen appropriately
such that e(0) € E, the estimated state dynamics (14) can
be regard as a nominal system of (la) with an additional,
unknown but bounded uncertainty.

Remark 1: In the literature of output feedback linear
MPC, a common approach, see [5], [4], [15] is to employ
a fixed linear observer, e.g. the Luenberger observer to
estimate the state, i.e. £(r + 1) = A%(¢) + Bu(t) + L(y(¢) —
$()), where the observer matrix L € R™*" is designed to
satisfy p(AL) <1 (AL = A — LC). Then the estimated state
satisfies the following equation

X(t+1) = A%(t) + Bu(t) + LCe(t) + LEv(t).

If e(r) € Y (like E, Y is a d-invariant set of error dynamics),
dynamics (16) follows that £(z + 1) = A%(z) + Bu(t) + 8(¢),

(16)
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where the uncertainty 6 € © := LCY@® LEYV is bounded. The
result about state estimation dynamics obtained by using
Luenberger observer is similar as that obtained by MHE.
The design of the observer matrix L is a key aspect when
employing the Luenberger observer in the output feedback
controller design, which affects the performance of the
observer, the error bound Y and the size of the set ©.
However, many papers, e.g. [5], [4], [15], have a lack of
the consideration of the design of L.

IV. OUTPUT FEEDBACK MPC
A. Problem formulation

The output feedback MPC controller u(-) takes the form
following [19], [20], which is parameterized by c¢(:) € R™

u(t) = Kx(t)+c(t) (17)

for some given K € R™*"x guch that ® := A + BK is
asymptotically stable (p(®) < 1). The motivation of the
proposed approach is to find ¢(z) such that robust constraint
satisfaction can be guaranteed for all # > 0 and robust
closed-loop stability can be ensured. To achieve it, the state
estimation error should be taken into account by introducing
its associated estimation error set E. Given an initial state
estimate and bounded on the estimation error such that
¢(0) € E, the estimated state satisfies

£(r41) = AR(t) +Bu(t) + B (1), (18)

where f3(z) € T. To design the robust output feedback MPC
controller, the constraint tightening approach is used, which
is introduced by [21] and extended by [20]. Recently, its
most modifications are developed, see [22], [23], [24], [25].
This approach avoids huge complexity by using only a
nominal prediction model and modifying the constraints
to achieve robustness. The key idea is that the effect of
the persistent disturbance f is taken into account by using
the strengthened input/output constraints. Moreover, like the
approach proposed in [5], the controller uses a tube, and
within which the estimated state is guaranteed to remain.
The disturbance-free system is

x(t+1) = Ax(¢) + Bu(t), vVt > 0. (19)
At time 7 with the given £(¢), the finite horizon MPC
problem over ¢(t) = [¢T (0]¢),cT (1]t),- -+ ,eT (N —1]¢)]"

min J(e(e), 50/): 5 2 le®nlf 20
st X(t) €X0)@T, (20b)
X(k+ 1]r) = AZ(K|t) + Bii(k|t), ¥k > 0, (20c)
u(klt) = Kx(k|t) + c(k|t),k=0,1,....,N—1,  (20d)
u(klt) = Kx(k|t), Yk > N, (20e)
X(k|t) € Xy, u(klt) e Uy, k=0,1,...,N—1, (20f)
X(N|r) € Xf» (20g)

where W > 0; N is the prediction horizon; the notations
X(k|t) and u(k|r) denote the state and input at time 7+ k

derived by using (20c)-(20e) based on the estimated state
£(¢). The sets Xy, Uy and X are appropriately strengthened,
given by

X, =X,0F, Uy=UCKF, X;,=X;0F (1)
where

F=ToOT®-- HOT (22)

and X; = XOE. The terminal set Xy is chosen to be the

maximal d-invariant set of system

x(t+1)=0x(t) + B (1), (23a)
st. x(t) €Xy, Kx(t) €U, B(r) €T, (23b)

in the sense that ®X @ T C X. In problem (20), the ’tube’
T is computed by (15) and the center of the tube at the initial
time is treated as a decision variable. The MPC controller
applied to system (1) at time ¢ is

W (1) == K2(t) + ¢ (0)

where ¢*(0]¢) is the first control of the optimal solution of
problem (20). Let

Xy :={£(¢) Fc(z),x(0]¢) such that (20b)20g) are feasible}

be the domain of attraction of system (18) under (24).

Remark 2: The proposed MPC problem (20) is also suit-
able for the system combined with a fixed linear observer,
e.g. Luenberger observer. In that case, compared with the
work of [5], in our approach the constraints are tightened
in a monotonic sequence and relaxedly.

(24)

B. Feasibility and stability

To show the feasibility and robust stability of the pro-
posed output feedback MPC, we first define the following
set sequence

ct+1) =T ),-- T (N =1]r),0]T

which is obtained by the concatenation of the optimal "tail”
at time ¢, with a terminal zero element.

(25)

Lemma 1: Suppose Assumptions (A1)-(A2) hold and
e(t) € E. For system (1) under the output feedback MPC
controller (24), if there exists a feasible solution of problem
(20) for %(¢), then there also exists a feasible solution for

2 +1).
Proof: At time ¢+ 1, the estimated state £(¢ + 1) is
£(t+1) = ®L(r) + B (0t) + B(1). (26)
Since £(r) € x*(0]t) ® T and B(¢) € T, we have
£(r+1) € ®x*(0|t) +Bc*(0ft) @ PT BT, (27)
or X(r+1) € x(1|r) ®®T ¢ T. Hence,
(t+1)eXO+1)aT, (28)

where X(0]z + 1) € x(1|r) ® ®T. Employing the control
sequence c(f + 1), we have
Xklt+1) € X(k+1)@@dT, k=0,1,....N
u(klt+1) € w(k+1lt) KO !T k=0,1,...,N.
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Due to the fact that X(N|¢) € §~§f, we have X(N|r)+y € X for
all y € Fy. Thus Kx(N|t) + Ky € U, which implies u(N|t) =
Kx(N|t) € Uo KFy = Uy. The fact Xy C X; means Xy C
Xy. It implies X(N|r) € Xy. From equation (20f) and the
above discussion, we know that X(k|r) € Xy, u(k|t) € Uy, k=
0,1,...,N, which implies that

Xke4+1) € X @, k=0,1,....N—1,
aklt+1) € U @KOIT k=0,1,...,N—1.

This, together with (22), show that

X(klt+1) € Xy, u(k+1Jt) € U, k=0,1,...,N—1.
Since Xy is a d-invariant set, X(N|t)+y € Xy, Vy € Fy =
(Dkv(N|t)+q)y@T € Xf ékv(Nﬁ’ 1|t) € Xf@']l“@CDFN =
X;© Fy41. Hence,

X(N[t+1) € FN+1|t) @@V T'T C Xy © Fyg @ @VH'T
- Xf@FN:gf.

From the above, the set sequence [c( + 1),x(0]r + 1)] is
feasible for x(r + 1). [ |

We can now establish the main result:

Theorem 1: Suppose Assumptions (A1)-(A2) hold, sys-
tem (1) with the proposed output feedback MPC controller
(24) has the following properties, for any £(0) € Xy and
e(0) € E: (i) x(tr) € X and u*(t) € U for all r > 0; (ii)
limy e c(t) = 0, where c(¢) = ¢*(0]¢); (iii) £(¢) — Fw, as
t — oo, where Foo = limy_oo Fi; (iv) x(t) = F B E, as t — oo.

Proof: Since, by assumption, £(0) is feasible, £(¢) is
feasible for all # > 0 following Lemma 1. Due to the fact that
x(0r) e X, ©T, u(0]t) e USKT and £(t) € x(0|t) T, we
have £(r) € X;, u*(¢) € U, V¢t > 0. Following proposition 1,
x(t) € X(r) ®E for all 7 > 0 and all admissible disturbances
w(t),v(t), which implies x(¢) € X, V¢t > 0. Thus property
(i) holds. Suppose the optimal cost is defined by J*(z) =
SN lle* (k[)[|%. At time £+ 1, there exists a feasible cost
e+ 1) =25 e (ki3 Henee,

T +1) =T (1) < =" (0l 13 (29)
It is easy to see that {J*(z)} is non-increasing and bounded
by 0. As 1 — oo, it converges to J* (o) < +eo. Summing (29),
we have oo > J*(0) — J*(e0) > 357 ||c*(0]1)[|3 = 0 =
lim; .. c(t) = 0. Therefore, property (ii) is proven. Thanks
to Assumptions (A1)-(A2) and p(®) < 1,

[—o0

k=1
!

=lim [ Y @Bt k)],

—o0 =1

which, in turn, proves (iii). Property (iv) of the theorem
follows from the fact that x(¢) € £(t) DE forallz >0. ®

lim () = lim [®'£(0) + IZ O Be(t — k) + ﬁ OBt — k)]
k=1

C. Multi-parametric programming in output feedback MPC

For problem (20), constraints (20b)-(20g) can be ex-
pressed collectively as a matrix inequality

Gz(t) <V +Wx(),

where matrixes G,V,W can be easily obtained and #(¢) =
[e”(¢),%(0]t)T]T. From the above, the optimization prob-
lem (20) falls into a class of multi-parametric quadratic
programming (mp-QP) problems, see [26], [27]. Using the
algorithm described in [28], one can compute the explicit
solution of problem (20) off-line for all %(¢) € Xy, i.e.
75(X(r)) = Lx(0)+ 4, if X(t) € #;, Vi€ #, where each
%; and ¥; are associated with a convex polytope %; in R™
that forms a partition of Xy in the sense that Xy = U;c »%;
and int (Z%;) Nint(#;) = 0 for all i # j,i, j € . Thereby, the
explicit output feedback MPC control law can be expressed
as

u (%)) =Lik(t) + gi, if R(¢) €%, Yie s,  (30)

where L; € R and g; € R™. Clearly, the availability
of (30) means that (L;,g;),i € .# can be computed off-line
leaving the on-line computational effort to the identification
of %; when £ € Xy and the evaluation of u*.

V. EXAMPLE

The example is taken from [5]. The system is a double
integrator:

x(tJrl)[(l) i }x(t)Jr{ i ]wn“ ?]w(t),
y(t)=[1 1)x(r) +v(r)

with additive disturbances (w,v) € W x V where W= {w €
R?:|| w|j«<0.1} and V = {v € R:|| v|< 0.05}. The state
and control constraints are (x,u) € X x U where X = {x €
R?:x; €[50, 3], x, €[50, 3]} and U= {uc R:| u|<
3} (x; is the ith coordinate of a vector of x). K =[—1 —1].
The d-invariant sets £ is obtained using results in [17].
The horizon is N = 13. Figure 1 shows the responses of
the proposed controller starting from the initial state £(0) =
[—5,—10.89]. The domain of attraction X;3 is shown as dash
line. The domain of attraction for the true system is X;3 E,
shown as dash-dot line. From Figure 1, it is shown that the
estimate state £(¢) finally converges to the set Fe.

VI. CONCLUSION

The main contribution of this paper is to provide a simple
approach to the problem of robust output feedback MPC
for linear systems, subject to bounded state disturbances
and output measurement errors, which employs a combi-
nation of an MHE observer with a tube-based robust MPC
controller. The satisfaction of state and input constraints
are guaranteed and the closed-loop stability is ensured.
The proposed approach can be easily written as an multi-
parametric programming problem, thus be solved off-line
to relax the on-line computational burden.
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Fig. 1. Closed-loop responses of robust output-feedback MPC.
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