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Abstract—An omnidirectional mobile manipulator, due to its 
large-scale mobility and dexterous manipulability, has attracted 
lots of attention in the last decades. However, modeling and 
control of such a system are very challenging because of its 
complicated mechanism.  In this paper, we achieve the 
kinematics of the mobile platform according to its mechanical 
structure firstly, and then deduce its unified dynamic model by 
Lagrangian formalism. By applying the unified model to 
calculate the coupling torque vector between the mobile 
platform and the robot arm, an adaptive hybrid controller is 
proposed subsequently. This controller consists of two parts: 
one is responsible for the tracking control of the mobile 
platform in kinematics. The other part is for the robot arm in 
dynamics. For further consideration of unmodeled dynamics 
and external disturbances, a Radial Basis Function 
Neural-Network (RBFNN) is adopted in the adaptive controller. 
Simulation results show the correctness of the presented model 
and the effectiveness of the control scheme. 

I. INTRODUCTION 
m
m

obile manipulator, which generally consists of a 
obile platform and a robot arm, provides a new 

direction in robot researches and applications due to its 
large-scale mobility and dexterous manipulability. The 
mobility of the mobile platform substantially increases the 
size of workspace, and enables the end-effector of the 
manipulator to reach a relatively better position to operate 
dexterously. Meanwhile, the manipulability of the robot arm 
greatly improves the functionality of the mobile manipulator. 
Because of these distinct advantages, mobile manipulators 
have been applied more and more extensively. 

Compared to the differential-driven mobile platform，the 
omnidirectional mobile platform has all three degrees of 
freedom (DOFs) in the horizontal motion plane. Therefore, it 
can completely use the null space motions to improve the 
workspace and overall dynamic endpoint properties. A 
number of related works have been developed in this field in 
the last decades. In literatures [1, 2, 3], modeling and control 
of omnidirectional mobile robots were analyzed in details. 
The dynamic model and kinematic model of an 

omnidirectional mobile robot with three castor wheels were 
presented in [4, 5]. Tan and Xi [6] proposed a unified 
dynamic model for a mobile manipulator consisting of a 
Nomadic XR4000 mobile platform and a Puma 560 robot arm. 
Holmberg and Khatib [7, 8, 9] developed a holonomic mobile 
robot and presented a dynamic control scheme for a parallel 
redundant system. Liu and Lewis presented a decentralized 
robust controller for mobile manipulators in [10, 12], and 
Chung and Velinsky [11] also derived the dynamic model of 
the holonomic mobile platform and the manipulators 
separately.  
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On the whole, existing works can be approximately 
divided into two groups: One is modeling and controlling of 
the mobile platform and the robot arm separately [10, 11], i.e., 
the mobile manipulator is regarded as two subsystems. The 
other is the integrated modeling and control approach, that is, 
the mobile platform is regarded as a multiple-DOFs joint [6]. 
For the former strategy, although it is relatively easy to get the 
dynamic models of the mobile platform and the robot arm 
respectively, its difficulty lies in the calculation of the 
coupling torque vector between the mobile platform and the 
robot arm. For the latter strategy, the difficulty lies in the 
computational complexity. In addition, control of such 
systems is very challenging even if we have derived the 
overall dynamic model. Many intelligent control schemes are 
unable to be applied online due to the computational 
complexity of the model. Furthermore, the difference of the 
dynamic response between the mobile platform and the robot 
arm is significant in practical applications. This characteristic 
leads to some difficulties for designing the controller as a 
whole.  

Computed Torque Control method (CTC) is applied widely 
in mechanical systems. However, requirements of precise 
model are very rigor in practical applications. Furthermore, 
this kind of controllers becomes unstable when the 
unmodeled dynamics or the external disturbance is significant. 
Song and Yi [13] adopted a fuzzy approach to compensate the 
uncertainties.  

In order to overcome these difficulties referred above, an 
adaptive hybrid control scheme, combining the kinematics of 
the mobile platform and the unified dynamic model of the 
mobile manipulator, is proposed in this paper. The proposed 
controller consists of two parts: one is responsible for the 
tracking control of the mobile platform in kinematics. The 
other part, which is capable of compensating the coupling 
force between the mobile platform and the robot arm, is for 
the robot arm in dynamics. Because neural network provides 
a fast method of autonomously learning the relation between 
a set of output states and a set of input states, we introduce a 
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RBFNN into the controller to approximate the unstructured or 
structured uncertainties of the proposed model.  

In the following section, we apply Lagrangian formalism to 
obtain the unified model of an omnidirectional mobile 
manipulator. In addition, we also introduce the structure of 
the mobile manipulator and deduce the kinematics of its 
mobile platform. Section III is devoted to controller design 
based on the presented kinematic model and the dynamic 
model using the computed torque control method (CTC) and 
a RBFNN. Section IV includes simulation results to validate 
feasibility and efficiency of the proposed method. Some 
conclusions and remarks are finally included in Section V.  

II.  SYSTEM DESCRIPTIONS 
A mobile manipulator generally consists of a mobile 

platform and a robot arm. Fig.1 shows the omnidirectional 
mobile manipulator and the mechanical structure of its mobile 
platform in our lab. In this experimental setup, we adopt an 
omnidirectional mobile platform driven by three identical 
castor wheels, and these three identical castor wheels are 
fixed symmetrically on the bottom of the mobile platform, as 
is shown in Fig.1 (right). The angle between two neighboring 
wheels is 2

3
π . Wheel 1, 2, 3 are assigned clockwise to 

indicate the three wheels. The center of the mobile platform is 
indicated by C. Each identical castor wheel consists of a 
rolling motor and a steering motor. Therefore, the mobile 
platform has all three DOFs (degrees of freedom) 
[ ], , bx y θ for moving on the horizontal plane, and isn’t subject 
to nonholonomic constraint. The robot arm, mounted on the 
omnidirectional platform, is similar to a SCARA 
manipulator. 

The side-view of the identical castor wheels is shown in 
Fig.2 (1). The radius of each wheel is r, and the horizontal 
distance between C and the center Fi of the vertical axis of 
each wheel is D. The offset d is the horizontal distance 
between the center of each wheel Oi and Fi. The angle 
displacements for wheel rolling and steering are iϕ  and iη , 
respectively. Fig.2 (2) shows the top view of a wheel, 
and i i i bβ η α θ= + + is the orientation of Wheel i (i=1,2,3)in 
the global frame OXY, and , , . 1 0α = 3/22 πα −= 3/23 πα =

Based on the above description, we first define the 
following variables for easy reference: 

 [1 , , T
bq x y ]θ= :   The pose of the mobile platform. 

 [2 1 2 3, , Tq ]θ θ θ= : The angle displacements of the 
robot arm.  

 [ 1 1 2 2 3 3, , , , , T]ζ ϕ η ϕ η ϕ η= : The drive variables of the 
platform. 

 n nI × : The n  identity matrix.  0 : The m nn× m n× ×  
zero matrix. 

 [ 1 2 3, , , , , T
bq x y

X

Y

bXbY

C
bθ

1θ

2θ 3θ

1Wheel

 2Wheel

 3Wheel

 
Fig.1   The omnidirectional manipulator and its top view  

 

]θ θ θ θ= : The pose of the mobile 

manipulator. Obviously, . 1 2,
TT Tq q q⎡ ⎤= ⎣ ⎦

 
                        (1)                                             (2) 
Fig.2  Side view and top view of Wheel i 

 
As shown in Fig.4, we also define the relative coordinates. 

 World frame (XOY )∑ : the inertial frame. 
 Moving frame ( b bX CY )∑ : the frame attached on the 

mobile platform. 
To facilitate modeling, it is assumed that the mobile 

manipulator has the following characteristics. 
 The mobile platform is uniform, and its barycenter is 

the center of the platform, which is denoted as C . 
 The joints between links are rigid and massless, and 

all links are uniform. 

A. Kinematic model 
According to the above description, the kinematics of the 

mobile platform can be described as follow: 
              0 ( , ) 1J qζ β η= ⋅                                      (1) 

where 0 1 2( , ) [ ]T
3J J J Jβ η = , and  

1 1cos sin sin
  ( 1, 2, 3)

1 1sin cos cos 1

Di i ir r rJ ii Di i id d d

β β η

β β η

⎡ ⎤− − −⎢ ⎥
= =⎢ ⎥

− − −⎢ ⎥⎣ ⎦
       (2) 

Property 1: For 0 ( , )J β η , if 1
2

d
D

γ = ≤ , rank 0 ( , ) 3J β η =  

holds [14].  
 To avoid the wheels colliding each other, 1/ 2γ ≤ can be 
always guaranteed in practical application. Based on the 
Property 1, the pseudoinverse matrix of the 0 ( , )J β η always 
exists, and its Moore-Penrose pseudoinverse matrix can be 
depicted by 

1
0 0 0 0( , ) [ ( , ) ( , )] ( , )T TJ J J Jβ η β η β η β η++ −=             (3) 

Therefore, the kinematics of the mobile platform also can be 
written as  

 1 0 ( , )q J β η ζ++= ⋅                               (4) 
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B. Dynamic model 
For the sake of simplicity, we only consider six DOFs as 

shown in Fig.1（2） in this unified dynamic model. According 
to Lagrange Formalism, in the absence of friction and other 
external disturbance, the unified dynamic model can be 
written as: 

τ=++ )(),()( qGqqqCqqM                       (5)  
where ( ) n nM q R ×∈  is the inertia matrix, ( , ) n nC q q R ×∈  is the 
centripetal and Coriolis matrix, and  is the 
gravitational vector.  is the input torques vector. 
Especially, n=6 and  in this model.  

( ) nG q R∈
nRτ ∈

( ) 0G q =
Considering the external disturbance d  and the 

unmodeled dynamics , the dynamic model of the 
mobile manipulator can be depicted by  

( , )q qΔ

( ) ( , ) ( ) ( , )M q q C q q q G q q q d τ+ + + Δ + =             (6) 
Obviously, the above dynamic models satisfy the 

following three properties. 
Property 2: The inertia matrix  is symmetric and 
positive definite, and satisfies: 

)(qM

0 ( )m MI M q Iλ λ< ⋅ ≤ ≤ ⋅                (7) nq R∀ ∈

where mλ , Mλ  are positive scalar constants, and .  denotes 
the Euclidean vector norm. 
Property 3: The centripetal and Coriolis matrix  is 
bounded as a function of , i.e., 

),( qqC
q

( , ) cC q q k q≤ ,                    (8) , nq q R∀ ∈

where is a positive constant. ck
Property 4: ( ) 2 ( , )M q C q− ⋅ q

− ⋅ =⎣
nRx ∈

is a skew-symmetric matrix, 
i.e., satisfies the following relationship: 

( ) 2 ( , ) 0Tx M q C q q x⎡ ⎤⎦ , ∀                  (9) 

III. CONTROLLER DESIGN AND STABILITY ANALYSIS 

1pk 0J 0J ++ 1
S

1u1dq

1dq

+ +
+−

•1q
1q

1q

2 2p dk k s+2dq

2dq

+ +
+

22M 1
S

1
S

22C

+
+

2q 2q 2q

21 21M s C⋅ +

•

+

−

2( )G q

Manipulator

+ +

cτ

La

e

S

 Neural
Network

cpτ

• ••

e

 
Fig.3 block diagram of the adaptive hybrid control system 

In order to control the mobile manipulator effectively, an 
adaptive hybrid controller, based on the kinematics of the 
mobile platform and the unified dynamic model of the whole 
system, is proposed in this section. As shown in Fig.3, the 
upper part denotes a tracking controller based on the 
kinematics of the mobile platform, and the lower part is an 
adaptive controller for the robot arm in dynamics. In addition, 

, represents the desired trajectories of the mobile 

platform and the robot arm respectively, and 

1dq 2dq

La  is  the 
learning algorithm of the RBFNN.  

A. Tracking controller for the omnidirectional mobile 
platform 

As for the mobile platform, we assume the given trajectory 
is .Based on the kinematics, we design the 
control law as 

1 [ , , ]T
d d d bdq x y θ=

1 0 1 1 1 1( , )( ( ))d p du J q k q qβ η= + −            (10) 

where 3 3
1pk R ×∈  is a symmetric and positive definite matrix. 

Define 1 1de q q1= − . By submitting (10) into (4), we can 
obtain the following relation easily: 

1 1 1 0pe k e+ =                     (11) 
From (11), we can conclude that if we choose a proper 1pk  
and , the tracking error  will decay to zero. t → ∞ 1e
Remark 1: Because this controller is based on the kinematics 
of the mobile platform, the reaction from the robot arm is also 
involved in this controller.  

B. Adaptive controller for the robot arm 

B.1. Problem formulation  
To obtain the coupling torque vector, we can rewrite the 

unified dynamic model as 
1 11 1

2 2 2 2

11 12 11 12 1 1
21 22 21 22 2 2

dq qM M C C G
q qM M C C G d

τ
τ

Δ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
+ + + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢Δ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎦
   (12) 

where 11M , 12M , 21M , 22M , , , ,  are 11C 12C 21C 22C
3 3× block matrixes, and , , [ ]1 2 31 TG G G G= [ ]4 5 62 TG G G G=

1
T

x y bF F θτ τ⎡ ⎤= ⎣ ⎦ denotes the equivalent drive torque 

vector of the mobile platform, is the 
drive torque vector of the robot arm.  

[ ]1 2 32 T
θ θ θτ τ τ τ=

 Choose the second row of (12).  We can easily obtain the 
following relations: 

2 2 2 222 22 2 ( , ) 2CM q C q G q q d τ τ⋅ + ⋅ + + Δ + + =       (13) 
where 121 21C 1M q C qτ = ⋅ + ⋅  denotes the coupling torque 
vector due to the movement of the mobile platform. Because 
the velocity of the mobile platform  can be obtained by the 
kinematic controller mentioned above, then the acceleration 

 could be derived by calculating the derivative of the .  

1q

1q 1q
Without the compensating torque of the unmodeled 

dynamics and external disturbance, we get the control law 
based on CTC as  

2 0 2 2 2 2 2 222( ) 22 2p d du M k e k e q C q G Cτ τ= = + + + ⋅ + +    (14) 
where 2pk  and  are proportional and derivative matrixes, 
and 

2dk

2 2de q q2= − . 
Substitute (14) into (13) yields 

     2 2 2 2 2d pe k e k e ρ+ + = −                           (15) 

where 1
2 222 ( )[ ( , ) ]M q q q dρ −= − Δ + .  

It is obvious that errors will asymptotically converge to 
zero when ρ =0 and 2pk ,  are chosen appropriately.  On 2dk
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the other hand, the existence of ρ  influences the 
performance of CTC and makes the closed-loop system 
unstable. Therefore, RBFNN can be used to compensate the 
system uncertainties. Then, the overall control law becomes 

2 0 cpu τ τ= +                                   (16) 
where 0τ  is the output torque of the CTC defined like (14), 

cpτ  is the compensating torque generated by RBFNN.   

B.2. Radial basis function neural network 

1a

2a

ma

11w

knw

∑

∑

∑

1φ

2φ

nφ

1y

2y

ky

 Input layer  hidden layer  output layer  
Fig.4 Three-Layer Neural Network 

Fig.4 shows the structure of the three-layer NN, which 
includes an input layer, a hidden layer, and an output layer. 
Assume that there are  nodes in the input layer,  nodes in 
the hidden layer,  nodes in the output layer.   represents 
the input of the node i  in layer , and  represents the 
output of the node i  in layer l . The relationships among 
these layers can be described as follows: 

m n
k l

iu
l l

io

 Input Layer: signals input to the RBFNN via this layer 
1 1            ( 1,2,3, , )i i io u a i m= = =                       (17) 

 Hidden Layer: produce nonlinearity 
2 1

1

         ( 1, 2, , )
m

j i
i

u o j
=

= =∑ n                           (18) 

22
2

2exp[ ]         ( 1, 2, , )     
2
j j

j j
j

u c
o jφ

σ

−
= = − = n    (19) 

1 2[ , , , ]T
nCe c c c=  denotes the centre vector of Gaussian 

function. represents the width vector of 
Gaussian function. 

1 2[ , , , ]T
nσ σ σ σ=

 Output Layer 
3 3 2

1
    ( 1, 2, , )

n

h h h hj j
j

y o u w o h k
=

= = = ⋅ =∑          (20) 

Let 
11 12 1 1 1

21 22 2 2 2

1 2

, , ,
, , ,

,  ,  
                 

, , ,

n

n

n kk k kn

w w w y
w w w y

W Y

yw w w

φ
φ

φ

φ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

=         (21) 

In this way, the relationship of the output layer can be 
written as: 

Y W φ= ⋅                                      (22) 
where  is the weight matrix of the RBFNN,W φ  is the 

excitation function vector . 

B.3. RBFNN adaptive controller 

As for these reasons referred above, we adopt a RBFNN to 
approximate ρ . Assume that the ideal output of the neural 
network is  

*( ) ( ) ( )z W z zρ φ ε= +                              (23) 
where ( )zφ is the excitation function vector of the RBFNN, 

( )zε  is the reconstruction error of the RBFNN, and 
 denotes the input of the RBFNN, 2 2 2[ , , ]Tz q q q=

* [ ] k n
ijW w R ×= ∈  is the optimal weight matrix satisfying 

* ˆˆarg min sup ( | ) ( )
zW z D

W z Wρ ρ
∈

z⎧ ⎫= −⎨ ⎬
⎩ ⎭

                   (24) 

ZD  is the bounds of the input z , which represents the 
limitation of position, velocity and acceleration.  

ˆˆ ( | )z Wρ  is an estimation of ( )zρ , and we define it as 
ˆˆ ( | )z Wρ =                                      (25) ˆ ( )W zφ

Let compensative control law cpτ  in (16) be 
ˆˆ22 ( | )cp M z Wτ ρ= − ⋅                                 (26) 

Combining (13), (14), (26), we write the closed-loop 
system as 

2 2 2 2 2 ( )d pe k e k e zρ+ + =                              (27) 
where ( )zρ denotes 

ˆˆ( ) ( | ) ( ) ( ) ( )z z W z W z zρ ρ ρ φ ε= − = +               (28) 

with * ˆW W W= − representing the error between the 
adjustable weight matrix and the optimal matrix. 

Define the state vector as . The state-space 
equation of (27) has the form as 

2 2[ , ]T T Tx e e=

( )x Ax B zρ= +                                   (29) 

where 
2 2

0n n n n

p d

I
A

k k
× ×⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, . 

0n n

n n

B
I

×

×

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
Then, the learning algorithm of W is designed as 

1ˆ TW B Px Tφ−= Λ                                         (30) 
where 1 2( , , , )ndiag λ λ λΛ = , >0 ( 1, 2, , )i i nλ = is gain 
matrix and P is positive definite solution of the following 
Riccati equation: 

0T T TA P PA P BB P Q+ + + =                           (31) 
where Q is a constant matrix with appropriate dimensions. 

In order to prove the stability of the closed-loop system, the 
following assumptions are made: 
Assumption 1: The reconstruction error ( )zε is bounded, i.e., 

bεε ≤  for zz D∀ ∈ . 
Assumption 2: The norm of the optimal weight matrix is 
bounded, that is, *

wW b≤ . 

Theorem: Consider the manipulator with the structured 
uncertainty involved by mobile platform and external 
disturbance; we apply the whole controller as (16) and the 
learning algorithm (30) for the compensating controller part. 
Based on the Riccati equation (31) and Assumption 1 and 
Assumption 2, we can get following result: 
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The state vector x  for the manipulator is uniformly 
ultimately bounded. Then, if reconstruction error of the 
neural network , i.e., , trajectory tracking 

errors of the manipulator tend to zero as time goes to infinity. 
2Lε∈ ∫

∞
∞<

0
2 (t)dtε

Proof：Consider the following Lyapunov function [13]: 
(TV x Px Tr W W= + Λ )

)

)

                              (32) 
By applying the properties of matrix theory, we can obtain the 
time derivative of V  as 

T T T T

T T T T

T T T T T T T

T

T T T T

T T T

T T T T

T

( ) (

ˆ( ) ( )
( ) 2 2 (

ˆ2T ( )
( ) 2

ˆ2 ( )

( )

T TV x A P PA x ρ B Px x PBρ 2Tr W W

x A P PA x 2x PBρ 2Tr W W
x P BB P Q x x PBε Tr W B Px

r W W
x P BB P Q x x PBε

Tr W B Px W

x P BB P Q x 2x PBε
x Q

φ

φ

= + + + + Λ

= + + − Λ

= − + + +

− Λ

= − + +

⎡ ⎤+ − Λ⎢ ⎥⎣ ⎦
= − + +

= − T T T

T T

( ) ( )Tx B Px ε B Px ε ε ε
x Qx ε ε

− − − +

≤ − +

   (33) 

It is easy to obtain 22 εx(Q)λV min +−≤ , and )( W~x,V  is 

negative outside the following compact set : xΣ

0
( )x

min

1Σ  x   x ε  
λ Q

⎧ ⎫⎪ ⎪= ≤ ≤⎨ ⎬
⎪⎩ ⎪⎭

                (34) 

Assumption 2 ensures that W  is bounded, i.e., W  is 
bounded. Thus 

~

x  is uniformly ultimately bounded. 
Integrating both sides of equation (33) from 0=t  to ∞=t  
gives 

)((0)dtdt
0

T
0

T ∞−+≤ ∫∫
∞∞ VVεεQxx                      (35) 

Then, we can easily get )(/dt
0

2 Qλkx min≤∫
∞ , where 

. Noting that  is a 

non-increasing function of time and has low bounded, this 

implies . if ∫ , we know k

∫
∞

∞−+=
0

T )((0)dt VVεεk )(tV

∞<∞− )((0) VV
∞

∞<
0

2 dt)t(ε < ∞  

and . In addition, the boundedness of 2Lx ∈ x  above 
denotes . From closed-loop dynamic equation (29) and 

boundedness of
∞∈ Lx

( )x t ,  and , we can get . 
Then, , . Thus,  is achieved 

according to Barbalat’s lemma.  

( )W t )(tε ∞∈ Lx

∞∩∈ LLx 2 ∞∈ Lx 0)(lim =
∞→

tx
t

Therefore, the whole closed-loop system is asymptotically 
stable, i.e., the position tracking error  and velocity 
tracking error  will asymptotically tend to zero as time 
goes to infinity. 

2e

2e

IV.  SIMULATION RESULTS 
To illustrate the validity of the proposed method, the 

proposed model is simulated in this section. In addition, a 
computed torque controller without compensating is also 
applied to compare with the proposed method. Simulation 
parameters are shown in TABLE I, and r = 0.1m, d = 0.05m 
and D = 0.2m. In TABLE I, NV denotes nominal value and 
AV represents actual value. 

TABLE I  
SIMULATION PARAMETERS 

Mass(kg) Length(m) 
or radius(m) 

Inertial of 
moment(kgm2) 

 

NV AV NV AV NV AV 
Mobile 

Platform
60 100 0.32 0.32 3.0720 5.1200

Link1 5 5.5 0.25 0.25 0.1042 0.1146
Link2 3 3.5 0.35 0.35 0.1225 0.1429
Link3 2 2.5 0.21 0.21 0.0294 0.0367

The initial conditions are given as follow: 
[ ](0) 2 2 0.5 1 1 1 Tq =                             

[(0) 0 0 0 0 0 0 Tq = ]

3

                            
Let the desired trajectory be 

[ ]( ) 10sin(0.1 ) 8cos(0.05 ) sin(0.1 ) 3sin(0.1 ) 2sin(0.1 ) sin(0.1 ) T
dq t t t t t t t=

Parameters involved in the presented controller (11) and (15) 
are 1 35pk I ×= × , 2 319pk I ×3= × , 2 8dk 3 3I ×= × and

6 650Q I ×= × . The weights of the RBFNN are initialized to 
zero. 

In order to simulate the unmodeled dynamics caused by 
friction and other factors, we define the unmodeled dynamics 

2 ( , )q qΔ  as follows: 

1 1

2 2

3 3

0.5 ( )[0.5 exp( )]

( , ) 5 0.3 ( )[0.3 exp( )]

0.2 ( )[0.2 exp( )

sign

q q sign

sign

θ θ

θ

θ θ

2θ

⎡ ⎤+ −
⎢ ⎥
⎢ ⎥Δ = × + −
⎢ ⎥
⎢ ⎥+ −⎣ ⎦

t

                      

The external disturbance is 
2 [3sin( ) 2sin(t) sin( )]Td t=  Nm 

Fig.5 to Fig.8 show the position errors of x , ,y bθ , 1θ , 2θ  
and 3θ  respectively. AHC represents the adaptive hybrid 
controller we presented, and CTC denotes computed torque 
controller.  
Remark 2:  In the practical application, the kinematics is 
more precise than the dynamics. Thus we control the mobile 
platform with regardless of its unmodeled errors. In AHC and 
CTC, the control scheme and parameters are similar. 
Remark 3: When the model error and the external distur- 
bance is relatively small compared to the drive torque (<5%), 
CTC is able to track the given trajectory. However, Fig.6 to 
Fig.8 show CTC is not stable when the model error or the 
external disturbance is significant. Obviously, the proposed 
controller is capable of tracking the given trajectory even if 
the interference is very serious.  

From above, it is clear that the system quickly converges to 
the desired value, so the proposed controller is able to achieve 
trajectory tracking successfully. 
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V. CONCLUSIONS 
In this paper, an adaptive hybrid controller, based on the 

kinematics of the mobile platform and the unified dynamic 
model of the whole system, is proposed. The stability analysis 
is proved by Lyapunov approach. From the discussion and 
simulation results, the following conclusions can be reached: 

1. Using a RBFNN, the proposed controller is able to track 
the given trajectory even if the unmodeled error and the 
external disturbance are significant. 

2. Compared to the method presented in literature [10], an 
easy way to compute the coupling torque between the mobile 
platform and the robot arm has been found based on the 
unified model.  

Simulation results show the validity of the presented 
models and effectiveness of the developed controller, and this 
control scheme is also can be adopted in position and force 
control occasions in the future. 
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Fig.5 Position errors of the pose of the mobile platform in AHC 
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Fig.6 Position errors of 
1θ  
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Fig.7 Position errors of 2θ  
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