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Abstract— A problem of stabilization about uncertain Net-
worked Control Systems (NCSs) with random but bounded
delays is discussed in this paper. By using augmented state-space
method, this class of problem can be modeled as discrete-time
jump linear system governed by a finite-state Markov chains.
A new switched model based on probability is proposed to
research problems of reliable control when actuators become
ageing or partial disable. Using improved V-K iteration algo-
rithm, a class of reliable controller is designed to make system
asymptotically mean square stable under several stochastic
disturbance such as random time-delay and stochastic actuator
failure and have the maximal redundancy degree.

I. INTRODUCTION

Feedback control systems wherein the control loops are

connected with a real-time network are called networked

control systems (NCSs).The main feature of NCSs is that,

instead of hardwiring the control devices with point to

point connections, sensor, actuators, and controllers are all

connected to the network as nodes. The primary advantages

of NCSs are low cost, reduced system wiring, simple installa-

tion and maintenance, high reliability and ease of system di-

agnosis and maintenances[1-3].As a result, NCSs have been

widely applied to many complicated control systems, such as

aviation and aerospace fields, airplane manufacture[4]. The

insertion of the communication network in feedback control

loop makes the analysis and design of a NCSs complicate

because it introduces some problem existing in network into

control systems such as limited communication band width

, so network-induced delay, wrong order of data packets and

data packets dropout often happen inevitably happen during

information transmission. Because problems of wrong order

and lost of data packets can be converted into problems of

time-delay, the basic problem of NCSs is how to treat time-

delay.

As to stochastic network-induced delay, many researchers

have paid attention on the study of the stability controller

design for stabilization and performance achievement in

NCSs. A stabilization problem of NCSs was investigated by
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[5] when the network-induced delay is less than one sampling

time. [6] analyzed several important problems specifically

that exist in network control systems such as time-delay,

dropping network packets and multiple-packet transmission

and apply methods of hybrid control system to research

stabilization of network control systems when systems has

determinate network-induced delay. By using augmented

state-space method, [7] converted a stabilization problem of

NCSs with random delays into a stabilization problem of

jump linear system governed by Markov chains such that

the closed-loop system is a jump linear system with one

mode, further more, mode-dependent and mode-independent

controllers which satisfied mean square stability of system

were given.

In practical application, the required standard of NCSs

to security and reliability is very high. Regretfully, both

stochastic perturbation and other failures usually exist in

NCSs. For example, partial sensors and actuators inactivate

because of aging phenomenon. These stochastic faults always

lead systems deviate expected dynamic and state characters

or even make systems become instable. So, how to deal with

the problems of stochastic tolerable fault control of NCSs is

becoming more and more important.

Problems of partial sensors inactivation are equal to

problems of package dropout which can be solved with

common technique, so we focus on problems of reliability

when actuators inactivate at certain probability in this paper.

Firstly, a switch mode of NCSs is constructed. Secondly,

a sufficient condition of tolerable controllers satisfied mean

square stability and its design method are given by using

LMI method when NCSs have uncertain controlled plant.

II. MODELING OF NCSS

Fig. 1. Network control system with random delay

Without loss general, consider linear uncertain systems

with stochastic delayed state described by the following
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differential equation:

x(k +1) = (A+△A(t))x(k)+(B+△B(t))u(k) (1)

where, x(k)∈ ℜn is the state vector, u(k)∈ ℜm is the control

input vector. Suppose the uncertain structures of the system

(1) are given by

△A(t) = DF(t)E,△B(t) = D1F1(t)E1

D,D1,E,E1 are constant matrices with appropriate dimen-

sions and F(t),F1(t)are Lebesgue measurable satisfied

F⊤(t)F(t) ≤ I,F1(t)
⊤F1(t) ≤ I

The mode-dependent state feedback control law considered

in this paper is:

u(k) = Krs(k)x(k− rs(k)) (2)

where, {rs(k)} is a bounded random integer sequence with

0 ≤ rs(k) ≤ ds < ∞ which expresses stochastic delays of

network, and ds is the finite delay bound. If we augment

the state variable

x̃(k) =
[

x⊤(k) x⊤(k−1) . . . x⊤(k−ds)
]⊤

where x̃(k) ∈ ℜ(ds+1)×n,then the closed-loop system is

x̃(k +1) = (Ã+ D̂F̂Êrs(k) + B̃rs(k)Krs(k))x̃(k) (3)

where

Ã =















A 0 · · · 0 0

I 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0















, B̃rs(k) =















B

0

0
...

0















C̃rs(k),

D̃ =















D

0

0
...

0















, D̃1 =















D1

0

0
...

0















, Ẽ =















E

0

0
...

0















⊤

,

Ẽrs(k) = E1C̃rs(k)Krs(k), D̂ =
[

D̃ D̃1

]

,

Êrs(k) =

[

Ẽ

Ẽrs(k)

]

, F̂(k) =

[

F(k)
F1(k)

]

,

C̃rs(k) =
[

0 · · · 0 I 0 · · · 0
]

and C̃rs(k) has all elements being zero except for the rs(k)th
block being an identity matrix. For simplicity, (3) can be

rewritten as the following form
{

x̂(k) = Ârs(k)x(k)
x(0) = x0 ∈ ℜn (4)

the state of Â is decided by rs(k) , the jumping rules of

random integer sequence rs(k) can be modeled as a finite

state Markov chains, that is

Prob{rs(k +1) = j|rs(k) = i} = Pi j (5)

where 0 ≤ i, j ≤ ds . that means, the dynamic characters

of bounded random time-delay can be expressed by a step

transition probability matrix P. Here, we assume that P

is given. More details about the selection of the transition

probability matrix P can be seen in [7] and [14].

III. STABILITY ANALYSIS OF NETWORK

CONTROL SYSTEM

In this section, a problem of stability of linear jump system

is discussed. Some relative definitions and lemmas are as

follows

Definition 1 For system (4), let zero point is equilibrium

point

1) Asymptotically mean square stable , if for any x0 ∈ ℜn

and any initial probability distribution (p1, . . . , ps) ∈ rs(k)

lim
k→∞

E{‖xk(x0,ω)‖2} = 0

2) Stochastic stable, if for any x0 ∈ ℜn and any initial

probability distribution (p1, . . . , ps) ∈ rs(k)

E(
∞

∑
k=0

{‖xk(x0,ω)‖2}) < ∞

Lemma 1 Let A,D,E and F be real matrices of appropriate

dimensions with ‖F‖ < 1 . Then we have the following

1) For any scalar ε > 0

DFE +E⊤F⊤D⊤ ≤ ε−1D⊤D+ εE⊤E

2) For any matrix P > 0 and scalar ε > 0 satisfying εI −
EPE⊤ > 0

A(t)PA⊤(t) ≤ APA⊤ +APE⊤(εI −EPE⊤)−1EPA⊤ + εDD⊤

3) For any matrix P > 0 and scalar ε > 0 satisfying εI −
D⊤PD > 0

A⊤(t)PA(t) ≤ A⊤PA+A⊤PD(εI −D⊤PD)−1D⊤PA+ εE⊤E

Theorem 1 The closed system (3) is stochastic stability, if

there have symmetric positive definite matrixes Q(i) > 0, i ∈
{0, · · · ,ds} , satisfying

L(i) = Â⊤
i Q̄(i)Âi −Q(i) < 0 (6)

where

Q̄(i) =
ds

∑
j=0

pi jQ j (7)

and pi j ∈ P.

Proof As to closed system (3), choose a Lyapunov func-

tion candidate as

V (x̃(k),k) = x̃(k)⊤Q(τk)x̃(k)
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then we have

E{∆(x̃(k),k)}

= E{x̃(k +1)⊤Q(τk+1)x̃(k +1) | x̃(k),τk = i)}

−x̃(k)⊤Q(τk)x̃(k)

= x̃(k)⊤(Ã+ D̂F̂(k)Êi + B̃iKi)
⊤

ds

∑
j=0

pi jQ( j)(Ã+ D̂F̂(k)Êi

+B̃iKi)x̃(k)− x̃(k)⊤Q(i)x̃(k)

= x̃(k)⊤[(Ã+ D̂F̂(k)Êi + B̃iKi)
⊤

ds

∑
j=0

pi jQ( j)(Ã+ D̂F̂(k)Êi

+B̃iKi)−Q(i)]x̃(k) < 0

let

L(i) = (Ã+ D̂F̂(k)Êi + B̃iKi)
⊤

ds

∑
j=0

pi jQ( j)×

(Ã+ D̂F̂(k)Êi + B̃iKi)−Q(i) < 0

and Âi = (Ã+ D̂F̂(k)Êi + B̃iK) , then compared with defini-

tion 1, we can get (8).

This completes the proof of the theorem.

From [10] we know, stochastic stability of the linear

jump system of (4) is equivalent to asymptotic mean square

stability. The four equivalent conditions which make the

linear jump system asymptotic mean square stability are

given in [11], so we have Theorem 2 .

Theorem 2 The closed system (4) is asymptotic mean

square stability, if there exist positive-definite symmetric ma-

trices Qi > 0 and constants ni > 0, i ∈ {0, · · · ,ds} , satisfying

the following matrix inequality:








Q j Σ Θ Λ

∗ Ω 0 0

∗ ∗ Ξ 0

∗ ∗ ∗ Π









> 0 (8)

where,

Σ = [(Ã+ B̃0K0)
⊤Q0, · · · ,(Ã+ B̃ds

Kds
)⊤Qds

],

Θ = [(Ã+ B̃0K0)
⊤Q0D̂, · · · ,(Ã+ B̃ds

Kds
)⊤Qds

D̂],

Λ = [n0Ê⊤
0 , · · · ,nds

Ê⊤
ds

],Ω = diag{p−1
j0 Q0 · · · p−1

jds
Qds

},

Ξ = diag{p−1
j0 (n0I − D̂⊤Q0D̂) · · · p−1

jds
(nds

I − D̂⊤Qds
D̂)},

Π = diag{p−1
j0 n0 · · · p−1

jds
nds

}, j ∈ {0,1, · · · ,ds}

and niI − D̂⊤QiD̂ > 0, i ∈ {0,1, · · · ,ds}.

Proof From [11], we choose one of four conditions that

make system asymptotic mean square stability as follows:

ds

∑
i=0

p jiÂ
⊤
i QiÂi < Q j, j ∈ {0, · · · ,ds} (9)

Let Â⊤
i = {(Ã + BiKi)+ D̂F̂(k)Êi} , then from lemma 1 we

get

Â⊤
i QiÂi ≤ (Ã+ B̃iKi)

⊤Qi(Ã+ B̃iKi)

+ (Ã+ B̃iKi)
⊤QiD̂(niI − D̂⊤QiD̂)D̂⊤Qi(Ã+ B̃iKi)

+ niÊ
⊤
i Ei, i ∈ {0, · · · ,ds}.

Together with (9) we obtain

ds

∑
i=0

p jiÂ
⊤
i QiÂi −Q j ≤

ds

∑
i=0

p ji[(Ã+ B̃iKi)
⊤

QiD̂(niI − D̂⊤QiD̂)D̂⊤Qi(Ã+ B̃iKi)+niÊ
⊤
i Ei]−Q j < 0

and then applying Schur complement to the results, we can

obtain(8).

Because (8) has several nonlinear items such as (Ã +
B̃0K0)

⊤Q0 which can not be resolved by LMI tools directly,

the V-K iteration algorithm of [7] is improved to resolve this

problem.

For guaranteeing a certain convergent speed, condition (9)

becomes

ds

∑
i=0

p jiÂ
⊤
i QiÂi < αQ j, j ∈ {0, · · · ,ds} (10)

where, 0 < α < 1.

1) Request for initial value. Using V-K iteration Design

a LQR controller K for the system (1) without considering

random delays τsc in the loop. This controller should satisfy
















−X (AX +BY )⊤ XE⊤ Y⊤E⊤
1 X Y⊤

∗ ϒ 0 0 0 0

∗ ∗ −ε 0 0 0

∗ ∗ ∗ −ε 0 0

∗ ∗ ∗ ∗ −T−1 0

∗ ∗ ∗ ∗ ∗ −R−1

















< 0

(11)

where ϒ = −(X − ε(DD⊤ + D1D⊤
1 )), positive-definite sym-

metric matrix X > 0, constant ε > 0,Kini = Y X−1. Matrices

T,R > 0 are corresponding matrices of cost function

J =
∞

∑
k=0

(x⊤k T xk +u⊤k Ruk).

2) V iteration. Given K0 = K1 = · · ·= Kds
= Kini,α = 1, and

a step transition probability matrix P0, solve LMI feasibility

problem (10) to find Qi, i ∈ {0, · · · ,ds}.

3) K iteration. Given P0 and Qi, i ∈ {0, · · · ,ds} that have

solved in V iteration, solve the eigenvalue problem (10) to

find K0,K1, · · · ,Kds
guaranteeing variable α be minimum

within 0 < α < 1. That is

minα

0 < α < 1 (12)








αQ j Σ Θ Λ

∗ Ω 0 0

∗ ∗ Ξ 0

∗ ∗ ∗ Π









> 0 (13)

Others signals of (13) are the same as corresponding signals

of (8).

4) Adjust initial matrix P0. Perturb the transition probabil-

ity matrix P0 by adding a small perturbation matrix △P so

that P0 +△P → P0 .In other words, through adjusting initial

matrix P0, let the new transition probability matrix P0 tend

to expected transition probability matrix PE .It is notice that
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sums of every rows of the perturbation matrix △P must equal

zero.

Then back to step 2), repeat the cycle from step 2) to

step 4), until the desired transition probability matrix PE is

reached or the V iteration is not feasible.

IV. STABILITY ANALYSIS OF SWITCHED

NETWORK CONTROL SYSTEMS WITH

UNCERTAINTY

The state equation of this switched control system models

as
{

x̂(k +1) = (A+△A)x(k)+(B+△B)u(ik,rs(k))(k)
u(ik,rs(k))(k) = K(ik,rs(k))x(k− rs(k))

(14)

where i ∈ {1,2},rs(k) ∈ {0, · · · ,ds}.

From (14), this system has 2 group controllers, ik in-

dicate the number of controllers groups acting in time k.

Because the maximal delay is ds, every group of time-

dependent controllers has ds + 1 controllers. The general

structure of switched control system is shown in Fig. 2.

where P∈ℜ(ds+1)×(ds+1) denotes one step probability matrix

Fig. 2. Stochastic network system under switched control

of stochastic delay of present network, K10 ∼ K1ds
are mode-

dependent controllers satisfied to transition probability ma-

trix P (if controllers K10 = K11 = · · ·= K1ds
, they are mode-

dependent controllers and if K10 6= K11 6= · · · 6= K1ds
, they

are mode-independent controllers.). K20 ∼ K2ds
are testing

controllers which are used to checkout reliable ability of

designed controllers. As to every group of control loop, this

system can be seen as an independent jump linear system

governed by Markov chains and these two Markov process

are irrelative each other. After inserting a switch, these two

Markov process becomes relative. Through regulate different

switched probability of switch and set suitable gain values of

testing controllers, stabilization span and stable performances

of system are obtained when actuators of system suffer

different fault probability. Firstly, the mean square stability

of system theorem is given as follows:

Theorem 3 Assume (14) has switched rules matrix Pt

,the jump rules of jump linear control system governed by

a step transition probability matrix P, then the mean square

stability of system is equivalent to the existence of symmetric

positive definite matrices Q0,Q1, · · · ,Q(ds+1)×2 and constants

ni > 0,niI − D̂⊤QiD̂ > 0, i ∈ {0,1, · · · ,(2ds +2)} , satisfying




















Q j Σ Σ1 Θ Θ1 Λ Λ1

∗ Ω 0 0 0 0 0

∗ ∗ Ω1 0 0 0 0

∗ ∗ ∗ Ξ 0 0 0

∗ ∗ ∗ ∗ Ξ1 0 0

∗ ∗ ∗ ∗ ∗ Π 0

∗ ∗ ∗ ∗ ∗ ∗ Π1





















> 0 (15)

where,

Σ = [(Ã+ B̃0K10)
⊤Q0, · · · ,(Ã+ B̃ds

K1ds
)⊤Qds

],

Σ1 = [(Ã+ B̃0K20)
⊤Qds+1, · · · ,(Ã+ B̃ds

K2ds
)⊤Q2ds+2],

Θ = [(Ã+ B̃0K10)
⊤Q0D̂, · · · ,(Ã+ B̃ds

K1ds
)⊤Qds

D̂],

Θ1 = [(Ã+ B̃0K20)
⊤Qds+1D̂, · · · ,(Ã+ B̃ds

K2ds
)⊤Q2ds+2D̂],

Λ = [n0Ê⊤
0 , · · · ,nds

Ê⊤
ds

],

Λ1 = [nds+1Ê⊤
0 , · · · ,n2ds+2Ê⊤

ds
],

Ω = diag{p−1
j0 Q0 · · · p−1

jds
Qds

},

Ω1 = diag{p−1
j(ds+1)Q(ds+1) · · · p−1

j(2ds+2)Q(2ds+2)},

Ξ = diag{p−1
j0 (n0I − D̂⊤Q0D̂) · · · p−1

jds
(nds

I − D̂⊤Qds
D̂)},

Ξ1 = diag{p−1
j(ds+1)(n(ds+1)I − D̂⊤Q(ds+1)D̂) · · ·

p−1
j(2ds+2)(n(2ds+2)I − D̂⊤Q(2ds+2)D̂)},

Π = diag{p−1
j0 n0 · · · p−1

jds
nds

},

Π1 = diag{p−1
j(ds+1)n(ds+1) · · · p−1

j(2ds+2)n(2ds+2)},

j ∈ {0,1, · · · ,2ds +2}.

and pi j ∈ Pt

⊗

P, signal
⊗

denotes the matrices Kronecker

product.

Proof As to a switched control system which has two

groups of controllers, any of these two groups of controllers

has ds +1 jump states. So this switched control system has

2(ds +1) jump states. The switched rules of this system is

Pt =

[

pt11 pt12

pt21 pt22

]

=

[

pt11 1− pt11

pt11 1− pt11

]

where all elements of matrix Pt are constant within [0,1]. pt11

expresses the jump probability from first group jump states

to first group jump states at sampling time, pt21 expresses the

jump probability from second group jump states to second

group jump states, pt12, pt21 and express the jump probability

from first group jump states to second group jump states and

the jump probability from second group jump states to first

group jump states respectively.

If transition probability matrix of NCSs is denoted by P,

the general switched rules of the whole switched control

system is described as follows

PG = Pt

⊗

P =

[

pt11 ×P (1− pt11)×P

pt11 ×P (1− pt11)×P

]
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where PG ∈ ℜ2(ds+1)×2(ds+1) and sums of every row equals

to 1.

The matrix PG expresses the jump probability between

any two states among 2(ds +1) states at sampling time and

this theorem can be proved through theorem 2 and Schur

complement.

V. RELIABLE ANALYSIS OF NCSS AND DESIGN

OF TOLERABLE FAULT CONTROLLERS

A. Reliable analysis of NCSs

Applying the model building in section IV, we obtain steps

of reliable analysis of NCSs as follows:

1) Assuming transition probability matrix P is given,

request delay-dependent and delay-independent controllers

which make system asymptotic mean square stability using

theorem 2.

2) Construction the first group controllers using delay-

independent controllers solved in step 1) and setting gains K

of the second testing controllers equal to zero. we can simu-

late actuator damage with varying damage degree through

selecting different switched probability Pt and then using

theorem 3, the maximum redundancy of controllers requested

in step 1) which make system asymptotic mean square

stability is obtained.

3) Construction the first group controllers using delay-

dependent controllers solved in step 1), redundancy degree

of these controllers under the condition of part actuators of

NCSs are stochastic inactivation is obtain through setting all

gains K of testing controllers equal to zero.

B. Design of Tolerable Fault Controllers

1) Let all gains of second group controllers are equation to

zero, that is setting gains of testing controllers K20 = K21 =
· · · = K2ds

= 0, and delay-dependent or delay-independent

controllers obtained in 1) of V.A subsection as first group

controllers. Set initial switched probability value pt11 (for

simplicity, we substitute pt11 with pt). In common, let pt =
0.9 .

2) Applying theorem 3 and improved V-K iteration

algorithm, request controllers K10,K11, · · · ,K1ds
satisfying

asymptotic mean square stability of systems when fault

probability of actuators is (1− pt)% .

3) Analysis redundant degree of controllers solved in step

2), using reliable analysis method mentioned in section IV .

4) Let controllers solved in step 2) as first group con-

trollers, and adjust switched probability pt, that is pt =
pt −△pt . Generally, let △pt = 0.1; Let all gains of testing

controllers equals to zero, and then back to step 2), repeat

the cycle from step 2) to step 4), until the redundant degree

of system does not increase any more or controllers do not

existed. Though this method, a group of controllers with the

highest redundant degree is obtained.

Remark 1: If we choose time-dependent controllers as

controllers of jump linear system, then we can design a

group of tolerable fault controllers which can make system

mean square stability when partial controllers of a group

of controllers damage entirely through set partial testing

controllers’ gains and corresponding controllers’ gains in first

group controllers to 0.

VI. NUMERICAL EXAMPLES

Example 1: Consider a continuous linear model in NCSs

as follow:

ẋ(t) =

[

−1.4605 3.6802

2.7613 −6.9299

]

x(t)+

[

0

1

]

u(t) (16)

If we set sampling period to T = 0.1 second, then discrete

model of this model is

x(k +1) =

[

0.9013 0.2491

0.1869 0.5311

]

x(k)+

[

0.0142

0.0733

]

u(k)

(17)

Let

F(k) = F1(k) =

[

sink 0

0 cosk

]

,D =

[

0.1 0

0 0.1

]

,

E =

[

0 0.1

0 0

]

,D1 =

[

0.2 0

0 0.1

]

,E1 =

[

0

0.2

]

.

and symmetric positive definite matrices of cost function are

T = I,R = 1 , then we design a LQR controller for the jump

system. That is

Kini =
[

−2.9855 −1.5997
]

when state transition probability matrix which describe net-

work stochastic delay governed by Markov is

P =





0.5 0.5 0

0.3 0.6 0.1

0.3 0.6 0.1



 ,

we can get mode-independent and mode-dependent con-

trollers satisfied asymptotic mean square stability of system

respectively. They are

K =
[

−2.0039 0.9584
]

and

K10 =
[

−18.3289 −9.7090
]

K11 =
[

0.0049 −0.0008
]

K12 =
[

0.6495 0.3295
]

Consider mode-independent controllers, using reliable

analysis method mentioned in subsection V. A we know that

system can not satisfy asymptotic mean square stability if

pt = 0.49, that is failure probability of actuators are 51%. If

we stabilize NCSs using mode-dependent controllers, system

can not satisfy mean square stability when pt = 0.34. That

is to say, failure probability of three actuators are K10 =
26.40%,K11 = 36.30%,K13 = 3.30% respectively.

If we set switched probability pt = 0.32, we get mode-

independent controllers with fault tolerant as follows:

K =
[

−5.5468 −1.9975
]

Through reliable analysis in subsection V. A we know, sys-

tem does not satisfy asymptotic mean square stability if we

1983



set switched probability pt = 0.21. That is to say, redundancy

degree of NCSs is 79%. Under the same switched probability,

we obtain mode-dependent controllers with fault tolerant

K10 =
[

−11.3736 −6.2142
]

K11 =
[

−2.5513 −1.3690
]

K12 =
[

−9.3596 −5.9244
]

Through reliable analysis method mentioned we know that

NCSs do not satisfy mean square stability if we set switched

probability pt = 0.21. So redundancy degree satisfied asymp-

totic mean square stability of NCSs is K10 = 29.63%,K11 =
44.44%,K13 = 4.94%. However, if we set switched proba-

bility pt = 0.21, we can not find mode-dependent or mode-

independent controllers which stabilize NCSs respectively.

So we think the maximal redundancy degree of NCSs are

K10 = 29.63%,K11 = 44.44%,K13 = 4.94% and 79%.
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Fig. 3. Results of simulation for mode-independent controller and mode-
independent failure tolerant controller

In Fig. 3, N.C. and F.C. denote controlled curves under

normal controller and under tolerable fault controller de-

signed at switched probability pt = 0.50 respectively, when

NCSs have not actuators fault; N.C.-50% and F.C.-50%

indicate controlled curves under normal controller and under

tolerable fault controller at switched probability pt = 0.50

respectively, when there exists 50% actuators fault in NCSs.

It is easily shown that constringency speed of NCSs with

tolerable fault controller is faster than normal controller

in the same condition. When there has 50% actuator fault

probability in NCSs, constringency speed of systems with

tolerable fault controller is not only faster than that with

normal controller but almost the same as the systems with

normal controller under the condition that actuators fault

probability of NCSs equals to zero. It is shown that tolerant

fault controllers has more robust performances compared

with non-fault tolerant controllers.

VII. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This paper presents a problem of stabilization about un-

certain Networked Control Systems (NCSs) with random

but bounded delays. A new switched model switching based

on probability is proposed to research problems of reliable

control. Using improved V-K iteration algorithm, a class of

reliable controllers is successfully designed to make system

asymptotically mean square stable under a serials of stochas-

tic disturbance such as random time-delay and stochastic

actuator failures and have the maximal redundancy degree.

An example is included to demonstrate the effectiveness of

the approach.

B. Future Works

Future work focus on how to make this method more

effective to find the maximal redundancy degree and simpler

to use.
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