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Abstract— This paper presents uniformly ultimate bound-
edness (UUB) control design for switched linear systems
with parametric uncertainties. Only the possible bound of
the uncertainty is needed. Under arbitrary switching laws, a
continuous state feedback control scheme is proposed in order
to guarantee uniformly ultimate boundedness of every system
response within an arbitrary small neighborhood of the zero
state. The design techniques are based on common Lyapunov
functions and Lyapunov minimax approach.

I. INTRODUCTION

A switched system is a particular kind of hybrid system

that consists of several subsystems and a switching law deter-

mining at any time instant which subsystem is active. There

are indeed many switched systems that occur naturally or

by design, in the fields of control, communication, computer

and signal processes. System analysis of switching dynamics,

such as stability, reachability, and controllability has been

studied extensively in the recent years. The reader is referred

to [1], [2], [3], [4], and [5] for more information. Most of the

existing work on control design for switched linear systems is

developed without uncertainty. In this paper, we shall extend

the scope to address the parametric uncertainty issue.

Consider a switched linear systems represented by the

differential equations of the form

ẋ(t) = Aσ(t)(ω)x(t) + Bσ(t)(ω)u(t),
σ(t) : R+ → S = {1, · · · , N},

(1)

where state x(t) ∈ Rn, input u(t) ∈ Rm and R+ denotes

non-negative real numbers. Piecewise constant function σ(t)
is the switching law indicating the active subsystem at each

instant. Assume Ai(ω), Bi(ω), i = 1, · · · , N , are continuous

functions of ω ∈ Ω, where ω is an unknown and possibly

fast time-varying vector, and Ω ⊂ Rq is a prescribed compact

set. The uncertainty is nonlinear and time-varying, and only

the possible bound of the set of uncertainty is known.

For this uncertain switched linear system (1), we are

interested in seeking a continuous state feedback control

such that the closed-loop switched system response x(t)
under arbitrary switching laws, enters a neighborhood of

the equilibrium xe = 0 in finite time and remains within it
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thereafter; that is, we desire system performance uniformly

ultimate boundedness (UUB) or practical stability.

Definition 1.1: The uncertain switched system (1) under

arbitrary switching law σ(t) is Uniform Ultimate Bounded

(UUB) with ultimate bound b if there exist positive constants

b and c, for every a ∈ (0, c), there is T = T (a, b), such that

‖x(0)‖ ≤ a ⇒ ‖x(t)‖ ≤ b,∀t ≥ T.

Uniform stability properties of the switched systems are

intimately related to the existence of a common Lyapunov

function for all individual subsystems. Various constructive

approaches have been presented [4], [5], [6], [12] to find a

common quadratic Lyapunov function ensuring the asymp-

totic stability of switched systems for any switching law. In

[4] and [7], Lie algebra conditions are given, which imply

the existence of a common quadratic Lyapunov function. In

[12], by means of an elegant iterative procedure, a common

quadratic Lyapunov function is constructed for switched

linear systems with commuting Hurwitz system matrices.

In this paper, we propose to relax the conclusion [12] by

utilizing the technique developed in [13]. In [13], necessary

and sufficient conditions of quadratic stability of uncertain

linear systems are proposed. For the uncertain switched

linear systems, if the uncertainty is matched, a robust control

scheme is proposed, which renders the switched system

UUB, and if the uncertainty is mismatched, we show that

a mismatched threshold is needed to ensure stability.

II. STABILITY ANALYSIS OF SWITCHED LINEAR

SYSTEMS

Consider the nominal switched linear systems with control

input u(t) = 0,

ẋ(t) = Aσ(t)x(t),
σ(t) : R+ → S = {1, · · · , N}.

(2)

For all i ∈ S, if Ai is Hurwitz, and

AiAj = AjAi, j ∈ S,

then a stability condition for (2) is given below [12].

Theorem 2.1: If {Ai : i ∈ S} is a finite set of commuting

Hurwitz matrices, then the corresponding switched linear

systems (2) is globally uniform asymptotic stability.

An elegant iterative procedure also given to construct a

common quadratic Lyapunov function.

Theorem 2.2: For a given positive definite matrix Q, let

P1, P2, · · · , PN > 0 be the unique solutions of the following

Lyapunov equations:

AT
1 P1 + P1A1 = −Q,

AT
i Pi + PiAi = −Pi−1, i = 2, · · · , N,

(3)
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with the condition of Theorem 1, the function V (x) =
xT PNx is a common Lyapunov function for the switched

linear system (2).

Theorem 2.2 shows a systematic way to find a common

positive definite matrix PN in (3). Next, we propose to relax

the condition by utilizing the technique developed in [13]. In

[13], necessary and sufficient conditions of quadratic stability

of uncertain linear systems are proposed.

First, we decompose Ai of (2) as follows:

Ai = Āi + ∆Ai, i = 1, · · · , N, (4)

where Āi satisfies commuting Hurwitz and ∆Ai is the extra

portion.

Substituting (4) into (2), we obtain

ẋ(t) = (Āi + ∆Ai)σ(t)x(t),

σ(t) : R+ → S = {1, · · · , N}.
(5)

From the definition of quadratic stability given in [13], we

conclude that system (5) is quadratically stable if there exists

a scalar αi such that

xT [(Āi + ∆Ai)
T PN + PN (Āi + ∆Ai)]x ≤ −αi‖x‖

2 (6)

for all x ∈ Rn.

Above conclusions indicate that stability can also be

determined even if uncertainties exist in the switched linear

systems (1).

III. UUB CONTROL DESIGN FOR SWITCHED

LINEAR SYSTEMS

Based on Theorem 2, we propose a robust control, which

renders the uncertain switched linear systems globally UUB

by utilizing the Lyapunov minimax approach [11].

Decompose Ai(ω) and Bi(ω) into

Ai(ω) = Āi + ∆Ai(ω), (7)

Bi(ω) = B̄ + ∆Bi(ω), (8)

i = 1, · · · , N , where Āi satisfies commuting Hurwitz.

Therefore, there exists a common positive definite matrix

PN satisfying (3). For the uncertainties term ∆Ai(ω) and

∆Bi(ω), we discuss the matched and mismatched cases

respectively.

A. ROBUST CONTROL DESIGN FOR MATCHED CASES

Parametric uncertainty of matched case means there exist

continuous function Di : Ω → Rm×n and Ei : Ω → Rm×m

and a scalar δ > 0 such that for all ω ∈ Ω, i = 1, · · · , N ,

∆Ai(ω) = B̄Di(ω), (9)

∆Bi(ω) = B̄Ei(ω), (10)

I +
1

2
(Ei(ω) + ET

i (ω)) ≥ δI. (11)

For any ǫ > 0, let the control scheme be

u(t) =

{

− µ(x,t)
‖µ(x,t)‖ρ(x, t) if ‖µ(x, t)‖ > ǫ

−µ(x,t)
ǫ

ρ(x, t) if ‖µ(x, t)‖ ≤ ǫ
,

(12)

where

µ(x, t) = B̄T PNxρ(x, t), (13)

ρ(x, t) =
1

δ
max

i
max
ω∈Ω

‖Di(ω)‖‖x‖. (14)

Theorem 3.1: Uncertain switched linear system (1) satis-

fying the matched conditions (9),(10) is UUB with the state

feedback control (12), and the sizes of the uniform ultimate

bounded region and the uniform stability region can be made

arbitrarily small by a suitable choice of ǫ.

Proof : Choose the Lyapunov function candidate to be

V (x) = xT PNx. (15)

The derivative of V (x) along the trajectory of system (1) is

given by

V̇ (x) = ẋT PNx + xT PN ẋ

= [xT (Āi
T

+ ∆AT
i ) + uT (B̄i

T
+ ∆BT

i )]PNx

+xT PN [(Āi + ∆Ai)x + (B̄i + ∆Bi)u]. (16)

Substituting (9) and (10) into (16) yields

V̇ (x) = xT [Āi
T
PN + PN Āi + (B̄Di)

T PN

+PN (B̄Di)]x + uT (I + ET
i )B̄T PNx

+xT PN B̄(I + Ei)u]. (17)

Applying the control scheme given by (12), we consider two

cases.

(1) if ‖µ(x, t)‖ > ǫ :

V̇ (x) = xT [Āi
T
PN + PN Āi

+(B̄Di)
T PN + PN (B̄Di)]x

−
ρ

‖µ‖
µT (I +ET

i )B̄T PNx−
ρ

‖µ‖
xT PN B̄(I +Ei)µ]

= xT [Āi
T
PN + PN Āi + (B̄Di)

T PN + PN (B̄Di)]x

−
ρ2

‖µ‖
xT PN B̄(2I + ET

i + Ei)B̄
T PNx

≤ xT (Āi
T
PN + PN Āi)x + 2δ‖xT PN B̄‖ρ − 2δ‖µ‖

= xT (Āi
T
PN + PN Āi)x. (18)

For the sake of brevity, let

Āi
T
PN + PN Āi = −Ri, (19)

where,

Ri > 0, i ∈ 1, · · · , N.

Substitute (19) into (18),

V̇ (x) ≤ −xT Rix ≤ −λmin(Ri)‖x‖
2. (20)

Let

λ = min
i

λmin(Ri),

we obtain

V̇ (x) ≤ −λ‖x‖2. (21)
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(2) if ‖µ(x, t)‖ ≤ ǫ :

V̇ (x) = xT [Āi
T
PN + PN Āi + (B̄Di)

T PN

+PN (B̄Di)]x

−
ρ

ǫ
µT (I+ET

i )B̄T PNx−
ρ

ǫ
xT PN B̄(I+Ei)µ]

= xT [Āi
T
PN + PN Āi + (B̄Di)

T PN

+PN (B̄Di)]x

−
ρ2

ǫ
xT PN B̄(2I + ET

i + Ei)B̄
T PNx

≤ xT (Āi
T
PN + PN Āi)x + 2δ‖µ‖ − 2δ

‖µ‖2

ǫ

≤ xT (Āi
T
PN + PN Āi)x − 2

δ

ǫ
(‖µ‖2 − ǫ‖µ‖)

≤ xT (Āi
T
PN + PN Āi)x − 2

δ

ǫ
(‖µ‖ −

ǫ

2
)2 +

δǫ

2

≤ −λ‖x‖2 +
δǫ

2
. (22)

Following the standard argument in [11], the controlled

system is globally practically stable. The uniform bounded

region is with radius

d(r) =

{

kR2 if r ≤ R,

kr2 if r > R,
(23)

where

k =
λmax(PN )

λmin(PN )
,

R =
δǫ

2λ
.

The uniform ultimate bounded ball is with radius d̄ > kR2

and the maximum amount of time it takes to enter this ball

(and remains there thereafter) is

T (d̄, r) =

{

0 if r ≤ R̄,
λmax(PN )r2−λmin(PN )R̄2

λR̄2− 1

2
δǫ

if r > R̄,
,

(24)

where

R̄ = kd̄2.

The uniform stability ball is with radius R. Both d̄ and R

can be made arbitrarily small by an appropriate choice of ǫ.

The proof is thus completed.

B. ROBUST CONTROL DESIGN FOR MISMATCHED

CASES

In case the matching conditions (9) and (10) are not

met, we need to investigate the mismatched case. Let us

decompose the uncertainty in the following way:

∆Ai(ω) = B̄Di(ω) + ∆Ãi(ω), (25)

∆Bi(ω) = B̄Ei(ω) + ∆B̃i(ω). (26)

Let

ρA = max
i

max
ω∈Ω

‖∆Ãi(ω)‖, (27)

ρB = max
i

max
ω∈Ω

‖∆B̃i(ω)‖, (28)

ρ̄ = max
i

max
ω∈Ω

‖Di(ω‖. (29)

Theorem 3.2: Uncertain switched linear system (1) under

the mismatched conditions (27),(28) is UUB with the state

feedback control (12), if

γ < λ,

where

γ = 2λmax(PN )(ρA +
1

δ
ρB ρ̄),

and the sizes of the uniform ultimate bounded region can be

made arbitrarily small by a suitable choice of ǫ.

Proof : Let the Lyapunov function candidate V (x) be the

same as (15). The derivative of V (x) along the trajectory of

the controlled system of (1) is

V̇ (x) = ẋT PNx + xT PN ẋ

= [xT (Āi
T

+ ∆AT
i ) + uT (B̄i

T
+ ∆BT

i )]PNx

+xT PN [(Āi + ∆Ai)x + (B̄i + ∆Bi)u]

+ẽT
i PNx + xT PN ẽi (30)

where

ẽi(x, ω) = ∆Ãi(ω)x + ∆B̃i(ω)u(x). (31)

By the proof of Theorem 3, we have

V̇ (x) ≤ −λ‖x‖2 +
δǫ

2
+ ẽT

i PNx + xT PN ẽi

= −λ‖x‖2 +
δǫ

2
+ [∆Ãi(ω)x

+∆B̃i(ω)u(x)]T PNx

+xT PN [∆Ãi(ω)x + ∆B̃i(ω)u(x)]

≤ −λ‖x‖2+
δǫ

2
+2λmax(PN )(ρA+

1

δ
ρB ρ̄)‖x‖2
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= −λ‖x‖2 +
δǫ

2
+ γ‖x‖2

= −(λ − γ)‖x‖2 +
δǫ

2
. (32)

Therefore, if γ < λ holds, the controlled system of (1) is

UUB by following the similar argument as in the proof of

Theorem 3.1. The size of the ultimate bounded region can

be determined subsequently.

The proof is thus completed.

IV. A NUMERICAL EXAMPLE

Consider a uncertain switched linear system (1) with two

subsystems,

A1(ω) =

(

0 1
−0.01 + ω2(t) −1 + ω1(t)

)

,

B1(ω) =

(

0
1.4387 + ω3(t)

)

,

A2(ω) =

(

0 1
−0.235 + ω2(t) −1 + ω1(t)

)

,

B2(ω) =

(

0
0.5613 + ω3(t)

)

,

where the uncertain parameters

‖ω1(t)‖ ≤ 0.5, ‖ω2(t)‖ ≤ 1.0, ‖ω1(t)‖ ≤ 0.25,

for all t ≥ 0.

Decompose Ai(ω), Bi(ω), i = 1, 2 as in form (7),(8),

Āi =

(

0 1
−0.01 −1

)

,

B̄ =

(

0
1

)

,

∆A1(ω) =

(

0 0
ω2(t) ω1(t)

)

,

∆B1(ω) =

(

0
0.4387 + ω3(t)

)

,

∆A2(ω) =

(

0 0
−0.225 + ω2(t) ω1(t)

)

,

∆B2(ω) =

(

0
−0.4387 + ω3(t)

)

,

which satisfies the matched condition (9),(10).

We can choose δ = 0.4, then get

ρ = 3.375‖x‖,

and

P2 =

(

5050.5 −50.2
−50.2 0.8

)

> 0,

Therefore,

µ = B̄T PNxρ

=
(

0 1
)

(

5050.5 −50.2
−50.2 0.8

)

xρ

= (−169.4x1 + 2.7x2)‖x‖.

V. CONCLUSIONS

A system way to design a robust control for uncertain

switched systems is suggested. The uncertainty may or may

not meet the matched condition. The resulting controlled sys-

tem performance, under the matching condition, is (global)

uniformly ultimate bounded. In the mismatched case, if the

mismatched portion of the uncertainty is within a threshold,

which is designated by λ, as shown in Theorem 3.2, the same

performance is guaranteed.
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