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Abstract— In this paper, we address the problem of dis-
tributed tracking of a maneuvering target using sensor net-
works with nodes that possess limited sensing range (LSR).
In such sensor networks, a target can only be observed by a
small percentage of the sensors and is practically hidden to the
remaining majority of the nodes. This feature is shared among
most of today’s wireless sensor networks and differentiates
them from their traditional counterparts involving data fusion
for long-range sensors such as radars and sonars. Distributed
Kalman filters have proven to be effective and scalable algo-
rithms for distributed tracking in sensor networks. Our main
contribution is to give a message-passing version of the Kalman-
Consensus Filter (KCF)—introduced by the first author in CDC
’07—that is capable of distributed tracking of a maneuvering
target with a satisfactory performance. The architecture of
this filter is a peer-to-peer (P2P) network of microfilters as
extensions of local Kalman filters. The model proposed for
the maneuvering target is a piece-wise linear switching system
with two distinct modes of behavior that enables the target
to stay inside a rectangular region in all time (for a bounded
set of initial conditions). Simulation results are provided for
a lattice-type sensor network with 100 LSR nodes tracking a
target with switching modes of behavior which demonstrate
the effectiveness of the proposed distributed data fusion and
tracking algorithms.

Index Terms— sensor networks, Kalman-Consensus filtering,
distributed data fusion, target tracking

I. INTRODUCTION

Sensor networks have emerged as ideal means of massive
distributed sensing for scientific data gathering and tracking
events/targets in a variety of home, health, industrial, and
security applications. Distributed data fusion and filtering
algorithms form the core component of any target tracking
system [6]. Traditionally, such tracking systems heavily
relied on Kalman filters (KFs) or Extended Kalman filters
(EKFs) [1] for nonlinear estimation and their decentralized
forms [7], [21].

Consensus-based tracking [15], [17] and synchronization
algorithms [24] in sensor networks that are scalable and
resilient have recently emerged as powerful tools for collab-
orative information processing. Distributed Kalman filtering
(DKF) algorithms rely on consensus filters [20], [25]. A
new generation of DKF algorithms with a peer-to-peer (P2P)
architecture that rely on reaching a consensus on estimates
of local Kalman filters have recently been introduced by
Olfati-Saber in [16]. We refer to this class of distributed
estimation algorithms as Kalman-Consensus Filters (KCF).
An analytical derivation of the KCF algorithm is given in
[16].

For nearly three decades, the main emphasis of multi-
target tracking using multi-sensor platforms has been focused
on fusion of information obtained from long-range sensors
such as radars and sonars [22], [3], [4].

Today’s sensor networks are made out of limited sensing
range (LSR) nodes with a relatively large communication
range (or radio range). A wireless sensor network with nodes
that have limited sensing range is depicted in Fig.1. The
main challenge in tracking events using sensor networks with
LSR is that a target cannot be observed by all sensors in the
network. This property complicates the task of detection and
tracking of all existing targets/events/processes.

Target

Sensor

Active Sensor

Fig. 1. An ad hoc sensor network with n = 100 nodes with limited sensing
range (LSR) tracking m = 5 targets. Each target induces a set of active
sensors that can sense the target. The ad hoc network topology is omitted
for the purpose of clarity.

In distributed tracking using sensor networks, the objective
is to estimate and track the state of the targets using a
distributed algorithm involving message-passing between a
node i and all of its neighbors Ni over a network. Let us
denote the communication range of the sensors by rc and
the sensing range by rs. The communication range of the
nodes determines the network topology G = (V,E) that we
assume is an undirected graph.

Remark 1. Assuming that that the ratio rc/rs is sufficiently
large (i.e. rc/rs ≥ 2), regardless of the distribution of the
location of the nodes, the set of active sensors that sense the
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target form a clique due to the triangular inequality.

In this paper, we focus on the case of tracking a single
target, or m = 1. Due to limited sensing range of the nodes,
all nodes in the network cannot sense the target. This “limited
sensing capability” poses a challenge in implementation of
the Kalman-Consensus filter in [16] as appropriate care
should be taken in the interpretation of “lacking sensor
measurements.”

We introduce a model for a maneuvering target that is
capable of staying inside a given rectangular region1. The dy-
namics of this target is a piece-wise linear switching system
with two distinct modes of behavior. Intuitively, the target
softly reflects upon hitting the walls. This is accomplished
without using any collision-avoidance potential functions.
Our objective is distributed tracking of the location of this
maneuvering target (nonlinear process) using a lattice-type
sensor network with limited sensing range.

Our main contribution is to provide a message-passing
version of the Kalman-Consensus filter (adequate for packet-
based networks) that achieves this task with a satisfactory
performance. KCF is a P2P network of microfilters embed-
ded in sensor nodes. A microfilter is a local estimator. To
further improve the performance of tracking, we propose a
hybrid architecture with a high-level fusion center that aggre-
gates the estimate and covariance information of randomly
selected set of nodes in the P2P microfilter network. We
demonstrate that the performance of this hybrid architecture
is virtually indistinguishable from that of a central Kalman
filter on tracking this maneuvering target.

The outline of the paper is as follows. In Section II,
the nonlinear model of a maneuvering target that remains
in a rectangle is introduced. In Section III, the message-
passing version of the KCF algorithm with application to
LSR-type sensor networks is given. In Section IV, a hybrid
P2P/Hierarchical tracking architecture is introduced. In Sec-
tion V, simulation results are presented. Finally, concluding
remarks are made in Section VI.

II. TARGET TRACKING PROBLEM

We consider a maneuvering target (or particle) with posi-
tion q ∈ R2 and velocity p ∈ R2 represented by a nonlinear
switching system

x(k + 1) = A(x(k))x(k) +Bw(k) (1)

where x(k) = (q1(k), p1(k), q2(k), p2(k))T denotes the state
of the target at time k. The target moves inside and outside of
a square field [−l, l]2 covered by a 10× 10 grid of n = 100
sensors. The matrix A(x) is designed so that the target is
a linear process inside the region and as soon as the target
leaves the region, a force orthogonal to the boundary of the
region is applied to the target which eventually pushes the
target back inside the region. The objective is to keep a
mobile target in the sensing region of the sensor network
with a lattice structure.

1This can be easily extended to convex polyhedra.

Matrix A(x) is defined as

A(x) = M(x)⊗ F1 + (I2 −M(x))⊗ F2

F1 =
[

1 ε
0 1

]
, F2 =

[
1 ε
−εc1 1− εc2

]
,

M(x) =
[
µ(x1) 0

0 µ(x3)

]
.

where F1 and F2 determine the dynamics of the target
inside and outside of the region, respectively, and µ(z) is
a switching function taking 0-1 values defined by

µ(z) =
σ(a+ z) + σ(a− z)

2

σ(z) =
{

1, z ≥ 0;
−1, z < 0

In addition, matrix B is given by

B = I2 ⊗G, G =
[
ε2σ0/2
εσ0

]
.

where ε is the step-size, c1, c2 > 0 are the parameters of a
PD controller, the elements of w(k) are normal zero-mean
Gaussian noise, and ‘⊗’ denotes the Kronecker product of
matrices. Inside, the square region, the target is a linear
process

x(k + 1) = Āx(k) +Bw(k)

with Ā = I2 ⊗ F1. This target model represents a constant
velocity target q̈i = wi(t) driven by the zero-mean white
Gaussian noise wi(t) with variance σ2

0 [4].
Each node has a linear sensing model that measures

zi(k) = Hi(k)x(k) + vi(k)

where Hi(k) is the output matrix and vi(k) is the zero-mean
Gaussian noise of the measurements of the ith node with
covariance Ri.

III. KALMAN-CONSENSUS FILTERING FOR SENSOR
NETWORKS WITH LSR

Kalman-Consensus Filter, introduced by Olfati-Saber in
[16], is an effective distributed estimation algorithm for
sensor networks with a peer-to-peer (P2P) architecture. In
this section, we present a message-passing version of the
Kalman-Consensus Filter (KCF) for sensor networks with
limited sensing range. The KCF algorithm (or Algorithm
1) relies on reaching a consensus on estimates obtained by
local Kalman filters rather than distributed construction of the
fused measurements and covariance information of a central
Kalman filter as in [15].

Algorithm 1 is the discrete-time equivalent of the
continuous-time Kalman-Consensus filter described in the
following.

Theorem 1. (Kalman-Consensus Filter [16]) Consider a
sensor network with a continuous-time linear sensing model

zi(t) = Hi(t)x+ vi(t)
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Algorithm 1 Kalman-Consensus Filter (message-passing
version during one cycle at time index k for node i)
Given Pi, x̄i, and messages mj = {uj , Uj , x̄j} ,∀j ∈ Ji =
Ni ∪ {i},

1: Obtain measurement zi with covariance Ri.
2: Compute information vector and matrix of node i

ui = HT
i R
−1
i zi

Ui = HT
i R
−1
i Hi

3: Broadcast message mi = (ui, Ui, x̄i) to neighbors.
4: Receive messages from all neighbors.
5: Fuse information matrices and vectors

yi =
∑
j∈Ji

uj , Si =
∑
j∈Ji

Uj .

6: Compute the Kalman-Consensus state estimate

Mi =
(
P−1

i + Si

)−1
,

x̂i = x̄i +Mi(yi − Six̄i) + γMi

∑
j∈Ni

(x̄j − x̄i),

γ = 1/(‖Mi‖+ 1), ‖X‖ = tr(XTX)
1
2 .

7: Update the state of the Microfilter

Pi ← AMiA
T +BQBT

x̄i ← Ax̂i

where x is the state of the target and vi(t) is the sensor
noise. Suppose each node applies the following distributed
estimation algorithm

˙̂xi = Ax̂i +Ki(zi −Hix̂i) + γPi

∑
j∈Ni

(x̂j − x̂i)

Ki = PiH
T
i R
−1
i , γ > 0

Ṗi = APi + PiA
T +BQBT −KiRiK

T
i

(2)

with a Kalman-Consensus estimator and initial conditions
Pi(0) = P0 and x̂i(0) = x(0). Then, the collective dynamics
of the estimation errors ηi = x − x̂i (without noise) is
a stable linear system with a Lyapunov function V (η) =∑n

i=1 η
T
i P
−1
i ηi. Moreover, V̇ ≤ −2γΨG(η) ≤ 0 where

ΨG(x̂) = x̂T L̂x̂ =
1
2

∑
(i,j)∈E

‖x̂j − x̂i‖2

and L̂ = L ⊗ Im is the m-dimensional Laplacian of the
network. Furthermore, all estimators asymptotically reach a
consensus, i.e. x̂1 = · · · = x̂n = x.

For sensor networks with limited sensing range, only a
subset of nodes Va ⊂ V of the network called active sensors
are able to sense the target. The remaining passive nodes
Vp ⊂ V do not obtain any meaningful measurement of a
target that is not within their sensing range. Therefore, we
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Fig. 2. Scalable data fusion architectures: (a) a P2P network of microfilters
(MF) plus a high-level fusion center and (b) the hybrid P2P/FC tracking
architecture of a large-scale sensor network.

define the information matrix of passive nodes as Ui =
0,∀i ∈ Vp. The information vector of passive nodes is
defined as ui = 0 by assuming that their output matrices
are zero, i.e. Hi = 0 for all i ∈ Vp. For mobile targets,
the set of active and passive nodes are variable in time. The
above procedure enables the application of Algorithm 1 to
sensor networks with limited sensing range nodes without
any ambiguity arising from the lack of measured data in
passive nodes.

IV. HYBRID P2P/HIERARCHAL ARCHITECTURE FOR
DISTRIBUTED DATA FUSION

In this section, we propose a hierarchical architecture to
obtain and fuse the estimates of the microfilters of a peer-to-
peer (P2P) sensor network. The Kalman-Consensus filter can
be viewed as a P2P network of interacting Microfilters (MFs)
with input messages mj(k), j ∈ Ji (see Algorithm 1) and
outputs mi(k+1) and x̂i(k) which are the next message and
the state estimate at time k, respectively. Each microfilter is
a discrete-time dynamic system with internal state (Pi, x̄i).

Here, we use a simplified higher level fusion center (FC)
that randomly picks a subset Vf (k) ⊂ V of the nodes of a
P2P network of microfilters, as shown in Fig. 2 (a) and fuses
their estimates using a linear data fusion rule:

x̂f (k) =

∑
i∈Vf

P−1
i (k)x̂i(k)∑

i∈Vf
P−1

i (k)
(3)

More sophisticated data fusion algorithms such as covariance
intersection [8], [12] can be utilized for sequential fusion
of the information packets received at a fusion center via
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multi-hop routing. A challenging problem in hierarchical
architectures for data fusion is to deal with out-of-sequence
data [2], [10].

In most existing tracking systems, either there is a central
fusion center at the root of a spanning-tree that goes through
all sensor nodes [13], [14], or a single or multiple sinks
that fuse the information obtained by all the sensors [5].
Both approaches lead to purely hierarchical architectures for
tracking.

A key contribution of this paper is to propose a hybrid
architecture for distributed data fusion in sensor networks
with limited sensing range shown in Fig. 2 (b). The heavy
load of information processing in this tracking system is
carried on by a P2P network of microfilters that are em-
bedded in wireless sensors. Unlike the sink (or root) of
traditional hierarchical systems, the fusion center in our
proposed tracking architecture does not have to receive
significant amount of data from many sensors that usually
leads to congestion and high rates of packet-loss. Instead,
the fusion center can talk to any small subset of the nodes
of the P2P network to determine a fused estimate of the
state of the target. Such a hybrid P2P/hierarchical network
is robust to link/node failures and packet-loss effects [23] at
its P2P level that leads to analysis of consensus problems in
switching networks [19], [11], [18].

The term “microfilter” is chosen to indicate that millions
of such local filters are needed to solve large-scale process
tracking and data fusion problems in sensor networks as
shown in Fig. 2 (b).

Due to the existence of loops in the P2P network of
microfilters, double-counting of information arises that might
become a challenge in certain applications as discussed in
[9]. Based on our observations, this hybrid P2P/hierarchal
architecture has a very satisfactory performance on tracking
maneuvering targets that is comparable to a central Kalman
filter.

V. SIMULATION RESULTS

We consider tracking of the position of the a maneuvering
target with piece-wise linear switching dynamics given in
(1) using a square grid of n = 100 that are evenly spaced
in a region [−l, l]2 with l = 45. The distance between each
sensor and its nearest neighbor is dmin = 10. The sensing
and communication range of each sensor is chosen uniformly
to be rs = 1.5dmin and rc = 3dmin + 2 (thus, rc/rs > 2).

Each sensor measures the position of the target in a plane,
i.e.

Hi =
[

1 0 0 0
0 0 1 0

]
, ∀i ∈ V

The measurement and process noise statistics are chosen as
follows:

Ri = k2
vI2, Q = k2

wI4

with kv = 3, kw = σ0 = 5. The initial state of the target is

x0 = (−5, 7, 0, 20)T , P0 = 10k2
wI4.

The step-size of all simulations is T = 0.04 (sec) equivalent
to a sampling rate of f0 = 25Hz. The parameters of the

target are chosen as c1 = 0.75, c2 = 1, a = 40 (a is chosen
slightly less than l = 45 to guarantee that the target always
stays inside the sensor field [−l, l]2).

According to the choices of the sensing and communica-
tion range rs and rc, at any time, a minimum of 4 and a
maximum of 9 sensors (less than 10%) can sense a moving
target. Despite such challenging sensing restrictions, in a
peer-to-peer distributed tracking framework, every sensor has
to have a “quality” estimate of the state of the target using
local interactions with neighboring sensors.

To explore the tracking performance of the Kalman-
Consensus filter (KCF) (Algorithm 1), we use the perfor-
mance of a central Kalman filter as a base performance.
Implementation of the central KF for sensor networks with
limited sensing range leads to a filter with time-varying
collective output matrix Hc(k) = H⊗α(k) where α(k) is a
column vector with 0 and 1 elements indicating passivity and
activity of the ith sensor at time k, respectively (or αi(k) = 1
for all i ∈ Va and αi(k) = 0, otherwise). In contrast, for
sensor networks with long-range sensors such as radars and
sonars, the output matrix Hc is fixed in time.

Fig. 3 demonstrates the performance of the central KF.
Given the fact that target is a nonlinear system, the perfor-
mance of this extended Kalman filter is very satisfactory.
This performance can be used as a base level to judge the
performance of the distributed Kalman filtering algorithm.

Fig. 4 illustrates the performance of the fusion center of
the P2P network of microfilters (Kalman-Consensus filter)
for sensor networks with limited sensing range. In compari-
son with the central KF, the performance is almost the same
if not better. Note that single runs and different trajectories
are used, but the maneuvering target behaves the same way
in each run by reflecting upon hitting the horizontal/vertical
limits of ±a around the origin.

Fig. 5 shows the collective tracking performance of the
Kalman-Consensus filter (without any data fusion at the
higher-level fusion center) for sensor networks with limited
sensing range. In this case, the mean-squared error (MSE)
is approximately 3 times of the MSE of a central KF in
Fig. 3. Based on Fig. 5 (c), all nodes reach a consensus on
their position estimates throughout the tracking period after
a relatively short initial transient period. Fig. 6 illustrates the
consecutive snapshots of the estimates of all nodes in the
P2P network of microfilter (or KCF).

VI. CONCLUSIONS

The problem of distributed tracking of a maneuvering
target using sensor networks with limited sensing range is
addressed. A novel switching model is introduced for a
target that is able to remain inside a rectangle in all time.
We presented a message-passing version of the Kalman-
Consensus filter in [16] and demonstrated its effectiveness
in tracking this maneuvering target using a sensor network
where less than 10% of the nodes sense the target at any
given time. A hybrid P2P/Hierarchical tracking architecture
was also introduced with a superior performance compared
to the P2P architecture.
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(a)

(b)

Fig. 3. Tracking performance of the central Kalman filter for sensor
networks with LSR: (a) the trajectory of the target and position estimate
and (b) position estimation error (MSE=0.54) after moving average filtering
using a window of length 30 samples.
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