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Abstract—Closing the loop with a fully automated 
artificial pancreas will definitely improve the life of 
patients with type 1 diabetes. An adaptive control 
strategy is proposed in order to dynamically respond to 
unpredicted glucose fluctuations due to internal or 
external perturbations. The adaptability of the controller 
is further assured with models derived from continuous 
glucose measuring device data collected from the patient. 
The implicit self-tuning tracker is used to keep the 
glucose concentrations within normoglycemic range, 
while the controller parameters are directly tuned at 
each step based on patient specific time-series models. 
Closed-loop results are demonstrated on a simulated 
patient assuming intravenous measurement of glucose 
and subcutaneous infusion of rapid-acting insulin. 

I. INTRODUCTION 
YPE 1 diabetes is characterized with degradation of 
insulin releasing cells in the pancreas, which 
consequently leads to the failure of blood glucose 

regulation in the body. Therefore, patients with type 1 
diabetes are totally dependent on exogenous insulin. The 
current intensive insulin therapy includes 3-5 daily insulin 
injections or insulin infusion with a manually controlled 
pump, and 3-7 daily fingerstick blood glucose 
measurements. Due to the open loop nature of the current 
therapy and changing daily life conditions (e.g. diet, 
exercise, stress or illness), it is a difficult task for many 
patients to decide on the required insulin amount/rate and 
correct timing of injection or bolus insulin infusion. Closing 
the loop with a fully automated device will definitely 
improve the life of the patients. Such fully automated 
artificial pancreas will basically consist of three 
components: a continuous blood glucose measuring device, 
an automated insulin infusion pump, and a control 
algorithm. In this paper, we focus on the last component of 
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the artificial pancreas, the control algorithm. 
In the literature, model-based control strategies have been 

previously proposed for closing the loop for patients with 
type 1 diabetes (see e.g. [1]-[3]). Physiological glucose-
insulin dynamics models that are only representative of an 
average patient have been utilized for prediction of future 
glucose concentrations in these studies. However, for the 
development of an automated artificial pancreas, a more 
realistic description that takes into account the intra- and 
inter-subject variability of glucose-insulin dynamics is 
required. In this research, we focus on intra-/inter-subject 
variability by developing patient specific models using 
subject’s own continuous glucose monitoring (CGM) data 
which is the major novelty of our work. The linear model is 
recursively updated at each sampling time and is also 
integrated with a change detection strategy for a faster 
response to abrupt changes in glucose levels. 

With the recent developments in CGM technologies, it is 
believed that CGM will play a primary role in intensive 
insulin therapy in the near-future and ultimately in the 
development of a fully automated artificial pancreas. CGM 
devices provide real-time frequently measured glucose data 
[4]-[6]. Techniques have been proposed for analysis of the 
CGM discrete time-series data [7]-[9]. In this research, we 
propose an adaptive self-tuning control algorithm that uses 
linear discrete time-series models derived form patient’s 
own glucose data for tuning the controller parameters. We 
have previously developed indirect (explicit) adaptive 
control algorithms for blood glucose regulation using CGM 
device data [9]. In this paper, we focus on a direct (implicit) 
control strategy, the self-tuning tracker. 

In summary, the implicit self-tuning regulator developed 
by Astrom and Wittenmark [10] is extended to a self-tuning 
tracker [11] where the reference trajectory is a time-varying 
function depending on the current glucose measurement. In 
order to provide fast response in presence of disturbances, 
the self-tuning tracker is further incorporated with a change 
detection method. Closed-loop results are demonstrated on a 
virtual patient assuming intravenous measurement of 
glucose and subcutaneous administration of rapid-acting 
insulin.  

II. THE CLOSED-LOOP STRATEGY 
Adaptive control strategies try to compensate for 

variations in process dynamics or disturbances by adapting 
the controller parameters to changing conditions. The 
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glucose-insulin dynamics show great variability from 
subject to subject. Metabolic changes that are caused by 
stress, illness or changes in insulin sensitivity might also 
lead to variation in glucose-insulin dynamics within the 
same subject. Furthermore, patients with type 1 diabetes are 
subjected to external disturbances like meal consumption or 
physical activity on a daily basis. Due to unpredictable 
fluctuations of glucose-insulin dynamics and external 
disturbances causing large perturbations, we believe that 
adaptive control is the most appropriate strategy for closing 
the loop of such a complex system. 

A typical adaptive control mechanism (Fig.1) consists of a 
parameter estimator and a control law. At each sampling 
step, variations in plant dynamics are monitored by online 
estimation of the process transfer function parameters. These 
parameters are then used in the controller design for 
calculation of the appropriate control action. In general, the 
controller tries to adapt in response to disturbances or 
changes in the system itself. In our case, the plant is 
represented by patient’s glucose dynamics where the 
controller decides on the required insulin infusion rate to 
keep glucose levels within normoglycemic range. 
Specifically, we propose a control mechanism that 
incorporates a recursive least square (RLS) estimator with 
an implicit self-tuning tracker. 

Physiological glucose-insulin dynamics models that are 
available in the literature [12]-[14] can be used to express 
the process transfer function for the closed-loop algorithm. 
These models are generally nonlinear and are representative 
of only an average subject under specific conditions. In this 
paper, the proposed closed-loop strategy does not require the 
use of such physiological models.  Instead, we assume that 
glucose-insulin interactions can be described as a linear 
discrete time-series model that is developed from patient’s 
glucose measurements from a CGM device. Linear models 
would be less accurate than nonlinear models for describing 
variations of a nonlinear system in a wide range of 
conditions. However, the frequent sampling and recursive 
identification of the model which is also interfaced with a 
change detection method will compensate for their 
simplicity. 

The current glucose concentration can be expressed by an 
autoregressive moving average model with exogenous 
inputs (ARMAX) as a function of past glucose and insulin 
observations 
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where y and u are the deviations of the process output 
(glucose concentration) and the control variable (insulin 
infusion rate) from their set point values, respectively. {e(t)} 
is a sequence of independent and identically distributed 
zero-mean Gaussian variables. ai, bi and ci are unknown and 
time-varying model parameters, and d is the delay term in 

control action. Using the backward shift operator 1−q  (e.g. 

)()( ktytyq k −=− ), (1) can be expressed as: 
 

)()()()()()( 111 teqCtuqBqtyqA d −−−− += .        (2) 
 
The polynomials A, B, and C are defined by 
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 It is desired that the control action u(t) minimizes the 
variance of process output from its set point value. 
Therefore, the optimal control law is calculated from the 
minimization of the design criterion 
 

)(2 tEyV =                                                (4) 
as [10] 
 

)(
)()(

)()(
11

1
ty

qFqB

qGqtu
d

−−

−−
−=                           (5) 

 
where the F and G are polynomials determined from [10] 
 

).()()()( 1111 −−−−− += qGqFqAqCq d        (6) 
 

 The control algorithm described by (2)-(6) is known as 
minimum variance control. At each step, after the estimation 
of model parameters (2), one has to solve for (6) in order to 
calculate the control law (5).  

Astrom and Wittenmark [10] have reparameterized the 
process function (2) so that it can be expressed in terms of 
regulator parameters directly. This eliminates the design 
computations (e.g. (6)) and consequently simplifies the 
algorithm substantially. 

Substituting (6) into (2), a new model structure is 
expressed  
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where  1−+= dmk  and the coefficients iα  and iβ are in 
terms of ai, bi and ci. At each sampling step, the model 
parameters of (7) can be estimated using weighted recursive 
least squares (RLS) method: 
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Fig. 1. Block diagram of a typical adaptive control strategy. 
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where the vector of past observations is described by 
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and the estimate of model parameters is given by 
 

)].()...(),()...([)(ˆ 021 ttttt kββααθ =            (13) 
 

The terms K and P denote the estimator gain vector and the 
matrix proportional to the covariance matrix of the 
parameter estimates, respectively, and λ  is the forgetting 
factor ( 10 ≤< λ ). The forgetting factor puts relative 
weights on the past observation. For 1=λ , all the 
observations are equally weighted (infinite memory).  On 
the other hand, small values of forgetting factor gives more 
weight on recent observations and less weight on older ones 
(short memory). 

The control law is then obtained to satisfy 
 

0)(ˆ)( =ttT θϕ                            (14) 
 

and more explicitly is described by 
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The adaptive control mechanism expressed by (8)-(15) is 
known as the implicit self-tuning tracker [11]. Non adaptive 
version of the self-tuning tracker ( 1=λ ) is used if the 
system parameters are unknown but fixed. Self tuning then 
is viewed as a mechanism for initial adjustment. An adaptive 
version of the self-tuning tracker ( 1<λ ) can follow the 
model parameter variations, since an adaptive controller will 
adapt to changing dynamics. The self-tuning tracker also 
handles an operating point dependent nonlinearity as a time 
variant problem [15]. 

During daily life, many conditions like meal consumption, 
exercise, or stress cause large and sometimes unexpected 
variations in glucose levels. In order to capture drastic 
changes in glucose concentrations and to provide a quicker 
respond to such changes, the RLS algorithm is also 
integrated with a change detection method. When change in 
model parameters is detected (physically corresponds to a 
significant change in glucose levels), to ensure quicker 
convergence to new parameter values, the forgetting factor 
is decreased to a smaller value. This way, the past 
observations are rapidly excluded, and the model is derived 
from the more recent and fresh data only. The proposed 
change detection method can be described by null and 
alternative hypotheses given as: 
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where ))(ˆ( tE θ denotes the expected value of the model 
parameters estimate at time instant t. 0θ̂  is the vector of 
unbiased parameter estimates computed by RLS algorithm 
using the data until time instant T. TW is the window size for 
change detection persistency check. When a persistent 
change within the window size is detected, the forgetting 
factor is reduced to a smaller value and 0θ̂  is replaced with 
its new estimate. 

In summary, the algorithm can be described as follows: 
Step 1: Start with guesses for orders n and k, to select a 

suitable controller structure (15). 
 Step 2: Using regression model (8) estimate the controller 

parameters (13) by RLS algorithm (9)-(11). 
Step 3: Check for change detection (16). If change is 

detected reduce the forgetting factor. 
Step 4: Compute the appropriate control action by (15). 
Step 5: Test for stability and optimality of the structure 
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using the two theorems of Astrom [10].  
Step 6: In case the structure appears to be appropriate 

based on step 5, implement the control action computed at 
step 4 and return to step 2 at the next sampling time, 
otherwise go to step 1 and start with a different guesses for n 
and k. 
 Reference Trajectory: Using a constant desired glucose 
value as a reference trajectory, may result in overestimated 
insulin infusion rates especially when large and sudden 
changes in glucose concentrations are experienced (for 
instance during meal consumption). Overestimated insulin 
rates may lead to hypoglycemia particularly when 
subcutaneous administration of insulin is considered due to 
large time delay associated with its absorption from adipose 
tissue. Therefore, depending on the current glucose 
measurement, a time-varying trajectory is preferred, and the 
self-tuning regulator problem is extended to a self-tuning 
tracker [11]. Similar to [3], for high glucose levels, a 
gradually decreasing target trajectory (Fig.2) is selected to 
avoid overestimated insulin infusion rates. On the other 
hand, for low glucose levels an exponentially increasing 
trajectory (Fig.2) is used to make the control action more 
aggressive and provide faster recovery during 
hypoglycemia. 
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Fig. 2. Time-varying reference trajectory for glucose concentration. 

III. RESULTS AND DISSCUSSION 
Due to safety considerations, it is always prudent to test 

the proposed algorithms on virtual environments before 
implementing them on real-world processes. When the 
application is dealing with human health, this concern is 
even more pronounced. Therefore, we investigate the 
performance of the proposed adaptive closed-loop strategy 
on a virtual patient with type 1 diabetes that is simulated 
using GlucoSim [16]. GlucoSim is a web-based educational 
simulation package for computing the dynamics of glucose-
insulin levels in human body.  The software utilizes models 
developed by Puckett [17] for glucose-insulin interactions in 
the body. It also incorporates the model by Puckett [17] for 
glucose absorption from the intestine and the model by 
Hovorka [3] for subcutaneous infusion of rapid-acting 
insulin. 

We assume that the virtual subject’s blood glucose 
concentration is monitored with a CGM device that provides 
intravenous glucose readings at 5 minute intervals. Based on 

the intravenous glucose data, the corresponding insulin 
infusion rate is administered subcutaneously, also at every 5 
min. To depict the sensor noise of a possible glucose 
monitoring device, Gaussian noise with a standard deviation 
of 4.5 mg/dl is added to the data provided by GlucoSim. In 
addition, constraints are imposed due technical restrictions 
on the limits of insulin infusion rate 

min/67)(min/0 mUtumU ≤≤ , and on maximum 
change of insulin infusion rate 3/)( maxmax utu =Δ .The 
initial guess for control structure with n = 3, and k = 16 is 
selected based on physiological insight about the action of 
subcutaneously administered insulin. It is assumed that 
insulin will enter the depot after 5 min (a delay of 1 step, d = 
1) of its administration, and will have a dominant effect on 
glucose regulation for around 80 min (order of 16 for k).  

Blood glucose regulation in response to a single meal with 
carbohydrate content of 40 g, consumed 45 min after the 
connection of the automated pump is demonstrated in Fig. 3. 
Results are for 70 kg male virtual patient. The forgetting 
factor is reduced from 0.4 to 0.005 when a change in model 
parameters (13) is detected. Maximum glucose 
concentration (146 mg/dl) is observed at 2.5hr. Glucose 
concentrations fall back to normoglycemic range (70-120 
mg/dl) about 2.5-3 hours after the meal consumption and 
settle down to approximately 75-80 mg/dl. Note that, this 
value is consistent with the desired 80 mg/dl for fasting 
conditions (Fig. 2). A slight hypoglycemia (57 mg/dl of 
glucose concentration) is detected at around 6hr which is 
recovered within 1-1.5 hours.  
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Fig. 3. Blood glucose regulation in response to single meal at 45 min. 
Control action with change detection strategy incorporated to the self-tuning 
tracker. In case of change detection the forgetting factor is reduced from 0.4 
to 0.005. 

 
Reducing the maximum change of insulin infusion rate 

(e.g. 5/)( maxmax utu =Δ ), reduces the aggressiveness of 
the control action and smoothes the insulin infusion rates. 
However, less aggressive control action leads to slower 
reduction of insulin infusion rates from high values 
(extended time periods for insulin rates to decrease) which 
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results in pronounced hypoglycemic glucose levels (results 
not shown) when combined with the slow absorption of 
subcutaneously administered insulin. On the other hand, 
increasing the maximum change of insulin infusion rate 
makes the control action more aggressive (rapid saturations), 
which results in more fluctuating glucose concentrations. 
Furthermore, increasing the delay in control action leads to 
more sluggish controller response. 

Removing the constraints on the input and the maximum 
rate of change ( max)(tuΔ ), leads to high (above 200 
mU/min) and impulse-like control actions at meal time 
which cause glucose concentrations to fall below 40 mg/dl 
within 1-2 hours after meal and recovery from 
hypoglycemia can not be achieved during the 15 hour 
period. When, only the constraint on input 
( min/67)(min/0 mUtumU ≤≤ ) is removed, the trend 
of control action is similar to the one of Fig.3, however 
maximum insulin infusion rates of 110-115 mU/min 
(compare with 67 mU/min) are observed which lead to two 
hypoglycemic episodes (34 mg/dl at 4hr and 40 mg/dl at 
11hr) that are recovered within 1-2 hours.  
 In order to investigate the effect of the change detection 
strategy (16), glucose regulation by the self-tuning tracker 
with no-change detection method (skip Step 3) is 
demonstrated in Fig.4 (both constraints are imposed). The 
results are for a constant forgetting factor of value 0.4 and 
the same case scenario as in Fig.3. Exclusion of change 
detection strategy results in glucose concentrations below 45 
mg/dl (severe hypoglycemia), and cycling fluctuations in 
glucose levels after the meal. Additionally, insulin infusion 
rate shows rapid and prolonged saturation to its maximum 
limit for glucose concentrations above 90 mg/dl (observe the 
saturation in insulin infusion rate after 8 hours). 
 In summary, the incorporation of the change detection 
strategy to the self-tuning tracker generates superior glucose 
regulation by preventing hypoglycemia and rapid saturation 
of the control action. 
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Fig. 4. Blood glucose regulation in response to single meal at 45 min. 
Control action with no-change detection strategy in the self-tuning tracker. 

 A more realistic meal disturbance scenario is the multiple 
meals case, where the meal   schedule for   the day is as: 
Breakfast at 8:45 AM with 35 g of carbohydrate (CHO) 
consumption, lunch at 1:30 PM with 60 gr of CHO, and 
dinner at 6:30 PM with 50 gr CHO. Figure 5 illustrates 
blood glucose regulation for the multiple meal disturbance 
case with the change detection strategy interfaced to the 
implicit self-tuning tracker. 

The only nadir that can be remarked as slight 
hypoglycemia occurs just before 12am corresponding to 
58.55 mg/dl of glucose concentration (Fig.5). There are no 
blood glucose concentrations below 45 mg/dl (severe 
hypoglycemia). Maximum glucose levels are observed at 
158.1, 163.5 and 205.1 mg/dl following breakfast, lunch and 
dinner respectively. The control action is more sluggish at 
the start (lower insulin infusion rates before 11pm and 
slower normalization of glucose during breakfast compared 
to other meals), and becomes more active or aggressive as 
more data become available to capture the glucose-insulin 
dynamics. The automated artificial pancreas demonstrated   
in Fig. 5,   is able to   prevent hypoglycemia and bring the 
glucose levels back to normal range within 3 hours after 
meals. 

Finally, we compare the results of the direct self-tuning 
regulator with another controller strategy previously 
developed by our research group. The extensive description 
of the control strategy can be found in [9]. In summary, it 
consists of a recursive least squares estimation of a patient 
specific ARMAX model incorporated with a change 
detection method and explicitly computed control law (e.g. 
linear-quadratic-control, LQC and generalized-predictive-
control, GPC). In this paper, the LQC law is considered 
only. Figure 6 displays the glucose regulation with this 
indirect adaptive control algorithm. 

Compared to the direct self-tuning tracker (Fig. 5), the 
LQC-based control strategy provides less aggressive insulin 
infusion   rates   and    therefore    slightly   higher     glucose  
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Fig. 5. Blood glucose regulation in response to multiple meals. Control 
action with change detection strategy incorporated to the self-tuning tracker. 
In case of change detection the forgetting factor is reduced from 0.4 to 
0.005. 

823



  

8am 12pm 4pm 8pm 12am 4am
50

75

100

125

150

175

200

225

Time (hour)

G
lu

co
se

   
   

   
   

  
C

on
ce

nt
ra

tio
n 

(m
g/

dl
)

8am 12pm 4pm 8pm 12am 4am
0 

20

40

60

80

Time (hour)

In
su

lin
 In

fu
sio

n 
R

at
e 

(m
U

/m
in

)  
  

Breakfast Lunch

Dinner

 
Fig. 6. Blood glucose regulation in response to multiple meals. Control 
action with previously published [9] indirect control strategy.  
 
concentrations. Minimum glucose concentration is observed 
around 6pm with 67.2 mg/dl, and maximum glucose values 
following breakfast, lunch, and dinner are 167.5, 206.8, and 
201.1 mg/dl respectively.  

The control action provided by LQC strategy more closely 
mimics the physiological insulin release from a healthy 
pancreas. Instead of going up-and-down, like the control 
action of the implicit self-tuner (Fig.5), a healthy pancreas 
will release insulin at a rate proportional to the meal size that 
will closely follow the variation in glucose levels (notice the 
similarity in the trends of glucose concentrations and insulin 
infusion rates  in Fig.6). However, even with the more 
aggressive control action, the direct self-tuning tracker 
provides glucose regulation that is not significantly different 
from the LQC strategy (compare Fig.5 to Fig.6) and is able 
to keep the blood glucose concentrations within 
normoglycemic range avoiding hypoglycemia.  

The self-tuning tracker simplifies the 2-step process 
(model identification followed by controller design and 
tuning) of an indirect control strategy (e.g. LQC) to a 1-step 
process by directly integrating the changes in the model to 
the control law. The simplicity of the control algorithm and 
the good glucose regulation provided, make the real-life 
implementation (in terms of hardware development) of the 
self-tuning tracker superior  compared to the more 
computationally demanding indirect model-based control 
methods that require the solution of a quadratic optimization 
problem at each step. 

IV. CONCLUSION 
An implicit adaptive control algorithm for closed-loop 

insulin infusion has been proposed. Specifically, the self-
tuning tracker is selected for the control law where 
controller parameters are updated directly form the process 
coefficients. The computational simplicity of the direct  

control strategy makes it superior in terms of hardware 
development compared to explicit control methods. The 
reliability of the algorithm has been tested for subcutaneous 
administration of insulin. The algorithm provides glucose 
concentrations within normoglycemic limits, and gives 
promising results for closing the loop for patients with type 
1 diabetes with a fully automated artificial pancreas. Real-
life implementation of the algorithm should also address 
safety issues like pump and sensor failure. 
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