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Abstract— An adaptive neural network control (ANNC) is
proposed for a class of strict-feedback uncertain nonlinear sys-
tems with both unknown system nonlinearities and unknown
virtual control gain nonlinearities. The continuous function
separation technique and RBF neural network are introduced
to model system nonlinearities. A systematic procedure for
synthesis of ANNC is developed by combining the backstep-
ping technique and Lyapunov stability theory. An important
feature of the proposed algorithm is that the order of dynamic
compensator of ANNC is only identical to the order n of
controlled system, such that it can reduce the computation
load and makes particularly suitable for parallel processing
in actual implementation. In addition, the resulted closed-loop
system is proven to be semi-global uniform ultimate bound and
the possible controller singularity problem can be removed. Fi-
nally, numerical simulation example are presented to illustrate
the tracking performance of the proposed algorithm.

Index Terms— Uncertain nonlinear systems, neural net-
works, adaptive control, backstepping technique.

I. INTRODUCTION

IN the past decades, the adaptive control of nonlin-
ear systems with linearly parameterized uncertainty has

achieved significant progress (see [1]∼[3] and references
therein). For systems with high uncertainty, which can-
not be modelled or repeatable, adaptive control approach
obtained further development by means of neural net-
work (NN) control schemes(e.g., [4]∼[7]) or fuzzy control
schemes(e.g., [8]∼[10]) based on the idea of backstepping.

However, there is a substantial ”dimension curse” restric-
tion in the aforementioned works, that is, the number of
hidden units becomes prohibitively large as we move to
high dimensional systems, which imposes that there are
many parameters need to be tuned in the approximator-
based adaptive control schemes, such that the learning times
tend to become unacceptably large for the systems of higher
order and time-consuming process is unavoidable when the
approximator-based adaptive controllers are implemented.
This drawback restricts the applicability of the methods.
This problem has been first pointed out and researched in
[11] and [12], and further discussed in [13]∼[17] when using
adaptive fuzzy control schemes or NN control schemes.
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In this paper, motivated by the pioneering works proposed
by Professor Yang in [11]∼[17], with respect to a class
of strict-feedback nonlinear systems in the presence of
unstructured nonlinearities and unknown virtual control gain
nonlinearities, a systematic procedure is developed for the
synthesis of the stable adaptive NN tracking controller.

II. NOTATION AND PRELIMINARIES

A. RBF Neural Network

In control engineering, RBF neural networks are usually
used as a tool for modelling nonlinear functions because
of their good capabilities in function approximation. They
belong to a class of linearly parameterized networks. For
comprehensive treatment of neural networks approximation,
see [4]. RBF neural networks can be described as wT S(z)
with input vector z ∈ Rn, weight vector w ∈ Rl , node
number l, and basis function vector S(z) ∈ Rl . Universal
approximation resluts indicate that, if l is chosen sufficiently
large, then wT S(z) can approximate any continuous function
to any desired accuracy over a compact set. In this paper,
we use the following RBF neural networks to approximate
a smooth function h(z) : Rq → R

hnn(z) = wT S(z) (1)

where the input vector z ∈ Ω ⊂ Rn, weight vector w =
[w1,w2, . . . ,wl ]T ∈ Rl , the neural network node number
l > 1, and S(z) = [s1(z),s2(z), . . . ,sl(z)]T , with si(z) being
chosen as the commonly used Gaussian functions, which
have the form

si(z) = exp

[−(z− µi)T (z− µi)
η2

i

]
, i = 1,2, . . . , l

where µi = [µi1,µi2, . . . ,µin]T is the center of the receptive
field and ηi is the width of the Gaussian function.

For the unknown nonlinear function f (x), we have the
following approximation over the compact sets Ω

f (x) = w∗T S(x)+ ε. ∀x ∈ Ω ⊆ Rn (2)

where S(x) is the basis function vector, ε is the approxi-
mation error, and w∗ is an unknown ideal constant weight
vector.

The ideal weight vector w∗ in (2) is an ”artificial”
quantity required only for analytical purposes. Typically,
w∗ is chosen as the value of w that minimizes | ε | for all
x ∈ Ω, where Ω ⊆ Rn is a compact set, i.e.,

w∗ := arg min
w∈Rn

{
sup
x∈Ω

| f (x)−wT S(x) |
}

.
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We make the following assumption on the approximation
error.

Assumption 1: Over a compact region Ω ∈ Rn

| ε |≤ ε∗

where ε∗ > 0 is an unknown bound.
The following lemma provides a new description for the

continuous function by use of combination of continuous
function separation technique and RBF NN approximation,
which enables one to deal with nonlinear parameterization
and will result in a solution to the robust adaptive NN
control problem of nonlinear parameterized systems.

Lemma 1: [17] For any given real continuous function
f (x,θ ) with f (0,θ ) = 0, when the continuous function
separation technique and RBF NN approximation technique
are used, then f (x,θ ) can be denoted as follows

f (x,θ ) = S̄(x)Ax (3)

where S̄(x) = [1,S(x)] = [1,s1(x),s2(x), · · · ,sl(x)], si(x), i =
1,2, · · · , l are the RBF basis functions which are known and
l is the node number. AT = [ε,W T ], εT = [ε1,ε2, · · · ,εn]
is a vector of the approximation error and W =⎡⎢⎢⎢⎣

w∗
11 w∗

12 · · · w∗
1n

w∗
21 w∗

22 · · · w∗
2n

...
... · · · ...

w∗
l1 w∗

l2 · · · w∗
ln

⎤⎥⎥⎥⎦ is a weight matrix.

III. PROBLEM FORMULATION

Consider an uncertain nonlinear dynamic system in the
following form⎧⎨⎩

ẋi = gi(x̄i,θ )xi+1 + fi(x̄i,θ ), 1 ≤ i ≤ n−1
ẋn = f n (x,θ )+ gn (x,θ )u
y = x1

(4)

where x = [x1,x2, · · ·,xn]T ∈ Rn is the system state, u ∈ R
is the control input, y ∈ R is the output of system and
θ ∈Θ⊂Rq is an q-dimension of parameter uncertain vector,
where Θ is a compact set. Let x̄i = [x1,x2, · · ·,xi]T . fi(x̄i,θ )’s
are unknown smooth system functions with fi(0,θ ) = 0
and gi(x̄i,θ )’s are unknown smooth functions which are
referred to as the virtual control gain ones, all of which
are continuous functions depending on the state x

For system (4), the following assumptions are introduced.
Assumption 2: The uncertain virtual control gain func-

tions gi(x̄i,θ ), i = 1,2, . . . ,n are confined within a certain
range such that

0 < bmin ≤| gi(x̄i,θ ) |≤ bmax (5)

where bmin and bmax are the lower and upper bound param-
eters respectively.

The above assumption implies that the smooth virtual
control gain functions gi(x̄i,θ ), i = 1,2, . . . ,n are strictly
either positive or negative. From now on, without loss
of generality, we shall assume gi(x̄i,θ ) ≥ bmin > 0, i =
1,2, . . . ,n,∀(x,θ ) ∈ Rn × Θ. Assumption 2 is reasonable

because gi(x̄i,θ ) being away from zero is the controllable
conditions of system (4).

The primary goal of this paper is to track a given
reference signal yd(t) while keeping the states and control
bounded. That is, the output tracking error z1 = y(t)−yd(t)
should be small. The given reference signal yd(t) is assumed
to be available together with its n time derivatives, and
that y(n)

d (t) is piecewise continuous. Moreover, the vector

x̄d(i+1) = [yd ,y
(1)
d , . . . ,y(i)

d ]T is bounded, i.e., for some κ > 0,
‖ x̄d(i+1) ‖< κ , i = 1,2, · · ·,n.

IV. DESIGN OF ROBUST ADAPTIVE NN CONTROL

A. Control Design Procedure

We give the proceeding of the backstepping design as
follows.

Step 1. Define the error variable z1 = x1 − yd, then

ż1 = g1(x̄1,θ )x2 + f1(x1,θ )− ẏd (6)

Since f1(x1,θ ) is an unknown continuous function with
f1(0,θ ) = 0, according to Lemma 1, f1(x1,w) can be
expressed as

f1(x1,θ ) =S̄1(x1)A1x1

=S̄1(x1)A1z1 − S̄1(x1)A1yd (7)

Letting cθ1 =‖ A1 ‖, Am
1 = c−1

θ1 A1(we obtain ‖ Am
1 ‖≤ 1),

ω1 = Am
1 z1. Then, defining a error variable z2 = x2 − α1

where α1 is an intermediate stabilizing function and substi-
tuting (7) into (6), we get

ż1 = g1(x̄1,θ )(z2 + α1)+ cθ1S̄1(x1)ω1 + ν1 (8)

where cθ1 is an unknown constant and ν1 = ξ1(x1)A1yd − ẏd

is a bounded function.
Consider the stabilization of the subsystem (8) and the

Lyapunov function candidate is given as follows

V1(z1, λ̂1) =
1
2

z2
1 +

1
2

bminΓ−1
1 λ̃ 2

1 (9)

where Γ1 is a positive constant. λ1 and λ̃1 will be designed
later. The time derivative of V1 is

V̇1(z1, λ̂1) =z1(g1(x̄1,θ )(z2 + α1)+ cθ1S̄1(x1)ω1 + ν1)

−bminΓ−1
1 λ̃1

˙̂λ1

(10)

We calculate some items in (10) first. Let γ1 > 0, we can
get

cθ1S̄1(x1)ω1z1 =cθ1S̄1(x1)ω1z1 − γ2
1 ωT

1 ω1

+ γ2
1 ωT

1 ω1

=− γ2
1

(
ω1 − cθ1

2γ2
1

S̄1z1

)2

+
c2

θ1

4γ2
1

S̄1S̄T
1 z2

1 + γ2
1 ωT

1 ω1

≤ c2
θ1

4γ2
1

S̄1S̄T
1 z2

1 + γ2
1 ωT

1 ω1 (11)
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and according to Yang’s inequation, given any positive
constant ρ > 0, we have

ν1z1 ≤ η1ψ1(x1) ‖ z1 ‖≤ η2
1

4ρ2 ψ2
1 (x1)z2

1 + ρ2 (12)

where η1 = max(‖ A1yd ‖,‖ ẏd ‖) and ψ1(x1) = 1+ ‖ S̄1 ‖.
Noting (11) and (12), we can get

cθ1S̄1(x1)ω1z1 + ν1z1

≤ c2
θ1

4γ2
1

S̄1S̄T
1 z2

1 + γ2
1 ωT

1 ω1 +
η2

1

4ρ2 ψ2
1 (x1)z2

1

+ ρ2

≤bminλ1Φ1(x1)z2
1 + γ2

1 ωT
1 ω1 + ρ2

≤bminλ̂1Φ1(x1)z2
1 + bminλ̃1Φ1(x1)z2

1

+ γ2
1 ωT

1 ω1 + ρ2 (13)

where Φ1(x1) = 1
4γ2

1
S̄1S̄T

1 + 1
4ρ2 ψ2

1 , λ1 =

max(b−1
minc2

θ1,b
−1
minη2

1 ), λ̃1 = (λ1 − λ̂1) and λ̂1 is the
estimate of λ1.

Therefore, substituting (13) into (10), we can get

V̇1(z1, λ̂1) ≤g1(x̄1,θ )z1z2 + g1(x̄1,θ )α1z1

+ bminλ̂1Φ1(x1)z2
1

+ bminΓ−1
1 λ̃1

(
Γ1Φ1(x1)z2

1 − ˙̂λ1

)
+ γ2

1 ωT
1 ω1 + ρ2 (14)

Given a design constant k1 > 0, we choose the interme-
diate stabilizing function α1 and the adaptive law for λ̂1

as

α1 = −
(

k1 + λ̂1Φ1(x1)
)

z1 (15)

˙̂λ1 = Γ1[Φ1(x1)z2
1 −σ1(λ̂1 −λ 0

1 )] (16)

where λ 0
1 and σ1 are design parameters. In light of Assump-

tion 2, we can get

g1α1z1 =g1[−(k1 + λ̂1Φ1(x1))z2
1]

≤bmin[−(k1 + λ̂1Φ1(x1))z2
1] (17)

and by use of Yang’s inequation again, yields

g1z1z2 ≤ 1
4

z2
1 + g2

1z2
2 (18)

Using (15), (16), (17) and (18), V̇1 is converted into

V̇1(z1, λ̂1) ≤−
(

bmink1 − 1
4

)
z2

1 −
1
2

bminσ1λ̃ 2
1

+ g2
1z2

2 + γ2
1 ωT

1 ω1 + δ1 (19)

where δ1 = ρ2 + 1
2 bminσ1 | λ1 −λ 0

1 |2.
Step 2.

ż2 = g2(x̄2,θ )x3 + f2(x̄2,θ )− α̇1 (20)

Then the time derivative of α1 is

α̇1 =
∂α1

∂x1
ẋ1 +

∂α1

∂ λ̂1

˙̂λ1 +
∂α1

∂yd
ẏd

=
∂α1

∂x1
(g1(x̄1,θ )x2 + f1(x̄1,θ ))

+
∂α1

∂ λ̂1

˙̂λ1 +
∂α1

∂yd
ẏd

= f12(z1, x̄2,θ )+
∂α1

∂yd
ẏd (21)

Substituting (21) into (20), we get

ż2 =−g2
1(x̄1,θ )z2 + g2(x̄2,θ )x3 + f ′2(z̄2,yd ,w)

− ∂α1

∂yd
ẏd (22)

where f ′2(z̄2,yd ,θ ) = g2
1(x̄1,θ )z2 + f2(x̄2,θ )− f12(z1, x̄2,θ ).

We also use Lemma 1 to treat the unknown function
f ′2(z̄2,yd ,θ ) and obtain

f ′2(z̄2,yd ,θ ) =S̄2(z̄2,yd)A2[z̄2,yd ]T

=S̄2A1
2z̄T

2 + S̄2A2
2yd

=cθ2S̄2ω2 + S̄2A2
2yd

where ω2 = Am
2 z̄T

2 and cθ2 =‖ A1
2 ‖= λ 1/2

max(A1T
2 A1

2), such that
A1

2 = cθ2Am
2 and ‖ Am

2 ‖≤ 1. Defining the error variable z3 =
x3 −α2, a direct substitution of above equation gives

ż2 =−g2
1(x̄2,θ )z2 + g2(x̄2,θ )(z3 + α2)+ cθ2S̄2ω2 + ν2

(23)

where ν2 = S̄2A2
2yd − ∂α1

∂yd
ẏd .

Choosing Lyapunov function candidate

V2 = V1 +
1
2

z2
2 +

1
2

bminΓ−1
2 λ̃ 2

2

where λ̃2 = (λ2 − λ̂2) and λ2 = max(b−1
minc2

θ2,b
−1
minη2

2 ).
A similar procedure with (11), (12) and (13) is used and

the time derivative of V2 becomes

V̇2 ≤−
(

bmink1 − 1
4

)
z2

1 + γ2
1 ωT

1 ω1 + δ1

+ z2

(
g2(z3 + α2)+ bminλ̂2Φ2z2

)
+ γ2

2 ωT
2 ω2 + ρ2

+ bminΓ−1
2 λ̃2(Γ2Φ2z2

2 − ˙̂λ2)

where Φ2 = 1
4γ2

2
S̄2S̄T

2 + 1
4ρ2 ψ2

2 , ‖ ν2 ‖≤η2ψ2 and ψ2 = 1+ ‖
S̄2 ‖ + ‖ ∂α1

∂yd
‖.

Now, choose the intermediate stabilizing function α2 and
adaptive law as

α2 = −
(

k2 + λ̂2Φ2

)
z2 (24)

˙̂λ2 = Γ2

[
Φ2z2

2 −σ2(λ̂2 −λ 0
2 )
]

(25)
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where k2 > 0, λ 0
2 and σ2 are design constants. Using same

procedure as (17) and 18), then V̇2 is converted to

V̇2 ≤−
2

∑
i=1

(
bminki − 1

4

)
z2

i −
1
2

bmin

2

∑
i=1

σiλ̃ 2
i

+ g2
2z2

3 +
2

∑
i=1

γ2
i ωT

i ωi + δ2 (26)

where δ2 = 2ρ2 + 1
2 bmin ∑2

i=1 σi | λi −λ 0
i |2.

A similar procedure is employed recursively for each step
k(3 ≤ k ≤ n−1). By considering the equation of system (4)
for i = k, ẋk = gk(x̄k,θ )xk+1 + fk(x̄k,θ ), and the Lyapunov
function candidate

Vk = Vk−1 +
1
2

z2
k +

1
2

bminΓ−1
k λ̃ 2

k

where λ̃k = (λk − λ̂k).
We may design the intermediate stabilizing function αk,

and learning law for λ̂k, which take similar forms of (24)
and (25), respectively. The controller u for the system (4)
shall be constructed in step n.

Step n: Define the error variable as zn = xn −αn−1, we
have

żn = fn(x,θ )+ gn(x,θ )u− α̇n−1

Using the similar way to (21) in Step 2, we have

α̇n−1 =
n−1

∑
j=1

∂αn−1

∂x j

{
x j+1 + f j(x̄ j,θ )

}
+

∂αn−1

∂ λ̂n−1

˙̂λn−1 +
n−1

∑
j=1

∂αn−1

∂y( j−1)
d

y( j)
d

= f(n−1)n(z̄n−1, x̄n, x̄d(n−1),θ )

+
n−1

∑
j=1

∂αn−1

∂y( j−1)
d

y( j)
d

Then

żn =−g2
n−1zn + f ′n(z̄n, x̄d(n−1),θ )+ gn(x,θ )u

−
n−1

∑
j=1

(
∂αn−1

∂y( j−1)
d

y( j)
d

)
where f ′n = fn(x,θ ) − f(n−1)n(z̄n−1, x̄n, x̄d(n−1),θ ) +
g2

n−1(x̄n−1,θ )zn.
We also use Lemma 1 to deal with the unknown function

f ′n(z̄n, x̄d(n−1),w) and obtain

f ′n =S̄nAn[z̄n, x̄d(n−1)]
T

=S̄nA1
n[z̄n,xn]T + S̄nA2

nx̄T
d(n−1)

=S̄nA1
nz̄T

n + S̄nA2
nx̄T

d(n−1)

Let ωn = Am1
n z̄T

n , cθn =‖ Am1
n ‖ and A1

n = cθnAm1
n .

żn =−g2
n−1zn + cθnξnwn + gn(x,θ )αn + νn

where u = αn and νn = −S̄nA2
nx̄T

d(n−1)−∑n−1
j=1(

∂αn−1

∂y
( j−1)
d

y( j)
d ).

Taking the following Lyapunov function candidate

Vn = Vn−1 +
1
2

z2
n +

1
2

bminΓ−1
n λ̃ 2

n

where λ̃n = (λn − λ̂n) and λn = bmin max(b−1
minc2

θn,b
−1
minη2

n ).
Then its time derivative is

V̇n =V̇n−1 + zn(−g2
n−1zn + gn(x,θ )αn + cθnξnwn + νn)

−bminΓ−1
n1 λ̃n

˙̂λn

≤−
n−1

∑
i=1

(
bminki − 1

4

)
z2

i −
1
2

bmin

n−1

∑
i=1

σiλ̃ 2
i

+
n

∑
i=1

γ2
i ωT

i ωi + δn−1 + ρ2

+ zn

(
gn(x,w)αn + bminλ̂nΦnzn

)
+ bminΓ−1

n λ̃n

(
ΓnΦnz2

n − ˙̂λn

)
(27)

where Φn = 1
4γ2

n
S̄nS̄T

n + 1
4ρ2 ψ2

n , ‖ νn ‖≤ ηnψn, ψn = 1+ ‖
S̄n ‖ +∑n−1

j=1

(
‖ ∂αn−1

∂y( j−1)
d

‖
)

.

Now, we get kn > 0 as a design constant and are ready
to choose the controller with adaptive law in step n as

u = αn = −
(

kn + λ̂nΦn

)
zn (28)

˙̂λn = Γn

[
Φnz2

n −σn(λ̂n −λ 0
n )
]

(29)

By means of Assumption 2, we have

gn(x,θ )αnzn ≤−bmin(kn + λ̂nΦn)z2
n

It follows from the recursive control design procedure
above, so that

V̇n ≤−
n−1

∑
i=1

(
bminki − 1

4

)
z2

i

− 1
2

bmin

n

∑
i=1

σiλ̃ 2
i +

n

∑
i=1

γ2
i ωT

i ωi + δn

≤−
n

∑
i=1

(
−bminki − 1

4

)
z2

i

− 1
2

bmin

n

∑
i=1

σiλ̃ 2
i + γ2 ‖ ω ‖2 +δn (30)

where δn = nρ2 + 1
2 bmin ∑n

i=1 σi | λi − λ 0
i |2, ω =

[ω1,ω2, . . . ,ωn]T and γ = (γ2
1 + γ2

2 + . . .+ γ2
n )1/2.

We are now in a position to state our main result on
semi-global robust adaptive NN controller.

Theorem 1: Consider the overall closed-loop system (4),
(28) and (29) and suppose that the packaged uncertain
functions f ′i (z̄i, x̄d(i),θ ), i = 1,2, · · ·,n can be dealt with by
Lemma 1. If we pick γ < 1, ki >

5
4 b−1

min, i = 1,2, . . . ,n in (30),
then the robust adaptive NN tracking control u = αn, the
intermediate stabilizing functions αi and adaptive laws for
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λ̂i can make all the solutions (z(t), λ̂ ) of the derived closed
loop system uniformly ultimately bounded. Furthermore,
given any µ1 > 0, we can tune our design constants such that
the output error z1 = y(t)− yd(t) satisfies limt→∞ | z1(t) |≤
µ1.

Proof: Note that ωi = Am
i z̄T

i and ‖Am
i ‖ ≤ 1, i = 1, ...,n,

so we obtain

ω =

⎡⎢⎢⎢⎣
ω1

ω2
...
ωn

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
Am

1 0 · · · 0
Am1

2 Am2
2 · · · 0

...
... · · · ...

Am1
n Am2

n · · · Amn
n

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

z1

z2
...
zn

⎤⎥⎥⎥⎦= Az

and
‖ ω ‖≤‖ A ‖‖ z ‖≤‖ z ‖ (31)

Now, if choosing γ < 1, then (30) becomes

V̇n ≤−
n

∑
i=1

(
−bminki − 5

4

)
z2

i −
1
2

bmin

n

∑
i=1

σiλ̃ 2
i + δn (32)

If picking ki > 5
4 bmin, i = 1,2, . . . ,n from (32), we obtain

V̇n ≤−zT Qz− 1
2 bminλ̃ T Q1λ̃ + δn

≤−zT Qz− 1
2 bminλ̃ T Q1λ̃ + δn

≤−2c1Vn + δn

(33)

where Q = diag[bmink1 − 5
4 ,bmink2 − 5

4 , . . . ,bminkn−1 − 5
4 ,

bminkn− 5
4 ], Q1 = diag[σ1,σ2, . . . ,σn], c1 = min{(λmin(Q)−

1)/2,λmin(Q1)/λmax(Γ)}, Γ = [Γ1,Γ2, . . . ,Γn]T . From (33),
we obtain

Vn(t) ≤ δn

2c1
+Vn(t0)e−2c1(t−t0). ∀t ≥ t0 ≥ 0.

It results that the solutions of composite closed-loop
system are uniformly ultimately bounded, and implies that,
for any µ1 > (δn/c1)1/2, there exists a constant T > 0 such
that | z1(t) |≤ µ1 for all t ≥ t0 +T . The last statement holds
readily since (δn/c1)1/2 can be made arbitrarily small if
the design parameters λ̂ 0 and σ are chosen appropriately.
Finally, we have proved Theorem 1.

V. SIMULATION EXAMPLES

In this section, we will discuss the following second-order
plant in the simulation as{

ẋ1 = (3 + x1)x2 + x1 + x2
1

ẋ2 = (2 + x1)u
(34)

with the output y = x1. Clearly, system (34) is of strict-
feedback form and have the uncertain virtual control gain
functions g1 and g2 with satisfying Assumption 2, we can
use Theorem 1 to design the robust adaptive NN tracking
controller.

For system (34), we can design the following controller
by use of Theorem 1.

The first stabilizing function α1 is

α1 = −(5 + λ̂1Φ1)z1 (35)

where z1 = y−yd , Φ1 = 1
4γ2

1
S̄1S̄T

1 + 1
4ρ2 ψ2

1 and adaptive law

for λ̂1 as

˙̂λ1 = 1000
[
Φ1z2

1 −0.00002(λ̂1−0.1)
]

(36)

and we obtain the controller law as

u = −(5 + λ̂2Φ2)z2 (37)

where z2 = x2 −α1 and Φ2 = 1
4γ2

2
S̄2S̄T

2 + 1
4ρ2 ψ2

2 .

Then adaptive law is

˙̂λ2 = 30
[
Φ2z2

2 −0.00017(λ̂2−0.3)
]

(38)

It is well known that the selection of the centers and
widths of RBF has a great influence on the performance of
the adaptive NN controller, and that Gaussian RBF NNs ar-
ranged on a regular lattic on Rn can uniformly approximate
sufficiently smooth functions on closed bounded subsets.
Accordingly, in the following simulation studies, we select
the centers and widths as: Neural network W ∗T

1 S1(x1)
contains five nodes, with centers µl(l = 1,2, · · · ,5) evenly
spaced in [−1,1] and widths ηl = 1(l = 1,2, · · · ,5). Neural
networks W ∗T

2 S2(z1,z2,yd) contains 125 nodes, with centers
µl(l = 1,2, · · · ,125) evenly spaces in [−1,1]× [−1,1]×
[−1,1], and widths ηl(l = 1,2, · · · ,125). The following ini-
tial conditions and controller design parameters are adopted
in the simulation: x(0) = [0,0]T , λ̂ (0) = [0,0]T , and γ1 =
γ2 = 0.5, ρ = 0.5.

Figs. 1, 2 and 3 show the simulation results for system
(34) with the reference signal yd = sin(0.5t).
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Fig. 1. Simulation results for Plant Σ1 with yd = sin(0.5t) (a) System
output y and reference signal yd ( solid line: y and dashed line: yd ). (b)
Tracking error z1.
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Fig. 2. Simulation results with yd = sin(0.5t) (a) Control input u. (b)
Intermediate error variable z2.
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Fig. 3. Simulation results with yd = sin(0.5t) (a) Adaptive parameter λ̂1.
(b) Adaptive parameter λ̂2.

VI. CONCLUSION

We have considered the tracking control problem for a
class of strict-feedback uncertain nonlinear systems. The
systems may possess a wide class of uncertainties referred
to as unstructured uncertainties, which are not linearly
parameterized and have no prior knowledge of the bounding
functions. We have incorporated the continuous function
separation technique with RBF NN to model the unstruc-
tured uncertain functions in the systems and proposed
an adaptive NN tracking control algorithm by combining
backstepping technique with Lyapunov stability theory. The
proposed algorithm can guarantee that the closed-loop sys-

tem is SGUUB. The main feature of the algorithm proposed
is that the order of dynamic compensator of ANNC is only
identical to the order n of controlled system. Additionally,
the computation load of the algorithm can be reduced, and
it is a convenience to realize this algorithm for applications.
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