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Abstract—An indirect adaptive control design with anti-
windup augmentation for stable systems subject to input mag-
nitude saturation is extended to address systems with significant
input rate constraints. We use the method of interpreting the
dynamics of the actuator, the plant and the unconstrained con-
troller such that either the Linear Matrix Inequality (LMI) or
the Riccati based anti-windup compensator design approaches
for systems with input magnitude limitations can be exploited.
We combine the control structure including the anti-windup
compensator with an adaptive law and show that the stable
performance of the nominal design is preserved in the presence
of input rate saturation despite the unknown plant parameters.
The proposed indirect adaptive control design methodology can
be employed to recover the unconstrained tracking performance
of plants with large parametric uncertainties by suppressing the
adverse effects of dominant input rate saturation.

I. INTRODUCTION

ALTHOUGH input rate saturation nonlinearity is consid-
ered to be relatively less common than input magnitude

saturation, input rate constraints are also observed in many
practical control systems.

The effects of the magnitude and rate limits of the actu-
ators on the performance of a combustion chamber pressure
control system are simulated in [1]. The dominating effect
of rate saturation in the control of jet engine compressors is
recognized in [2]. The magnitude and rate limits in practical
implementation of bleed valves as actuators for active stall
control in aircraft engines are discussed in [3].

The time delays in an aircraft control system can sharply
degrade the handling qualities. [4] The destabilizing effects
of the time delays associated with rate limiting phenomena
are considered in [5].

The actuator rate saturation in aircraft control is known to
lead Pilot Induced Oscillations (PIOs) which in the recent
past have been recognized as the cause of the YF-22A
prototype advanced tactical fighter crash in April, 1992 [6]
and subsequent JAS 39 Gripen fighter crash at an air show in
August, 1992 [7], displaying the significance of addressing
actuator rate saturation in order to avoid relevant unstable
oscillations and the risk of crash landing.
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In the quest for high performance, or in the event of a
control surface failure, it is reasonable to expect additional
complexities if the rate saturation is dominant. [8], [9] Several
control methodologies to handle input magnitude and rate
constraints can be found in [10]–[13].

Recently considerable attention has been focused on han-
dling input magnitude saturation through anti-windup com-
pensation. The rate saturation nonlinearity, which remains
inadequately addressed in control design, has also been an
active research topic for the anti-windup community in the
past decade. [14]–[20] Input magnitude saturation of plants
with uncertain models has been taken into account in devel-
oping anti-windup schemes in [21], [22], and the robustness
of an LMI based linear anti-windup design addressing input
magnitude constraints is examined in [23]. The robustness
characteristics of anti-windup design methodologies which
can handle input rate saturation and permit large parametric
uncertainties are yet to be investigated.

The control of input magnitude constrained systems with
unknown plant parameters is addressed using an LMI based
adaptive anti-windup augmentation in [24]. The stability
analysis of the respective design is provided in [25].

In this paper we propose an adaptive control structure
with anti-windup compensation to remedy the rate saturation
nonlinearities imposed on the control input, in particular if
plants with unknown parameters are involved. The emphasis
is on the mathematical formulation of the control problem
under investigation and the stability properties of the pro-
posed scheme. Due to the space constraints the corresponding
simulation results are deferred to subsequent publications of
the authors.

The rate-limiter is introduced as an input nonlinearity in
Section II where the actuator dynamics are absorbed partly
into the plant and partly into the unconstrained controller
chosen as a Linear Quadratic (LQ) design for the desired state
tracking performance. In the same section a Riccati based
anti-windup compensator is constructed based on the aug-
mented nominal system. The plant parameters are assumed
to be unknown in Section III, and an indirect adaptive control
design is developed using the Certainty Equivalence Principle
and the estimates of the linear plant parameters. Section IV
presents a detailed stability analysis. Our conclusions appear
in Section V.

II. INPUT RATE SATURATION

A rate-limited actuator can be modeled as a first-order lag
and a symmetric rate-limiting nonlinearity as shown in the
block diagram in Figure 1. The time constant of the lag,
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Fig. 1. A rate-limiter with first-order lag

Fig. 2. An infinitely fast actuator model

τ determines the cut-off frequency of the equivalent linear
actuator. [20] If the actuator dynamics are very fast, τ is
very small, and the system can be modeled as an ideal relay
instead of a saturation element. A pure rate limiter is shown
in Figure 2. [5]

We consider a linear plant of order n with a scalar input
uact ∈ R . The state vector x ∈ Rn is also defined as
the output. The system matrices are thus (Ap, Bp, Cp, 0) ,
Ap ∈ Rn×n, Bp ∈ Rn, Cp ∈ Rn×n. Since Cp is an identity
matrix, the plant transfer function matrix can be written as

G(s)=(sI −Ap)−1Bp (1)

For any constant reference signal r the state tracking error

e = x− r (2)

can be regulated to zero by solving the associated Algebraic
Riccati Equation (ARE) and constructing the LQ controller

u = −K1e−K2

∫ t

0

e(τ)dτ (3)

with parameters K1 ∈ R1×n and K2 ∈ R1×n.

The control input rate is sat(ur) which can be defined
using the saturation nonlinearity as

sat(ur) = sign(ur)min ( |ur|, ūr ) (4)

where ūr is the rate saturation level posed at the actuator
such that ūr > 0 , ūr ∈ R .

In the presence of input rate limitations the system can be
summarized as depicted in Figure 3.

We follow the absorption method in [20] and subsume the
time constant into the controller and the integrator block into
the linear plant. The augmented plant, which is the original
one modified by absorbing the integrator in the actuator
dynamics, has the transfer function matrix:

Ḡ(s) = C̄p(sI − Āp)−1B̄p (5)

where

Āp =
[
Ap Bp
0 0

]
, B̄p =

[
0
I

]
, C̄p =

[
I 0
0 I

]
(6)

are the augmented system matrices, the dimensions of which

can be specified as Āp ∈ R(n+1)×(n+1) , B̄p ∈ Rn+1 and
C̄p ∈ R(n+1)×(n+1) . Notably, C̄p is also an identity matrix.

The augmented linear plant has the input sat(ur) ∈ R
and the state vector xa ∈ Rn+1 which can be defined as

xa =
[
xT uact

]T
(7)

Accordingly the augmented control law is formulated as

ur = −(1/τ)K1e− (1/τ)K2

∫ t

0

e(τ)dτ − (1/τ)uact (8)

where uact , the input to the original plant, is given by

uact =
1
s
sat(ur) (9)

The tracking error dynamics can be expressed as

ė = Ape+Apr +Bpuact (10)

and a possible realization of the augmented control is

ẋc = Ācxc + B̄c

[
−e
−uact

]
(11)

ur = C̄cxc + D̄c

[
−e
−uact

]
(12)

with Āc ∈ Rn×n , B̄c ∈ Rn×(n+1) , C̄c ∈ R1×n and
D̄c ∈ R1×(n+1) chosen as

Āc = 0 (13)

B̄c =
[
I 0

]
(14)

C̄c = (1/τ)K2 (15)

D̄c =
[

(1/τ)K1 (1/τ)
]

(16)

Once the system subject to input rate saturation is in-
terpreted as an augmented system with input magnitude
saturation constraints as above, the relevant anti-windup
compensator can be constructed.

If Ḡ(s) = N̄(s) M̄−1(s) is a full-order right coprime
factorization of the transfer function matrix of the augmented
plant, the anti-windup compensator can be described by the
following transfer function matrix:

K̄aw(s) =
[
M̄(s)− I

N̄(s)

]
(17)

The system matrices of the anti-windup compensator can
hence be identified as (Āaw, B̄aw, C̄aw, D̄aw) where

Āaw = Āp + B̄pF (18)
B̄aw = B̄p (19)

C̄aw =
[
F
I

]
(20)

D̄aw = 0 (21)

with Āaw ∈ R(n+1)×(n+1) , B̄aw ∈ Rn+1 , C̄aw ∈
R(n+2)×(n+1) , D̄aw ∈ Rn+2 , and F chosen such that
Āp + B̄pF is a Hurwitz matrix.

Two equivalent methods to construct the anti-windup com-
pensator guaranteeing similar L2 performance are LMI and
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Fig. 3. The rate-limited system including the linear plant and the unconstrained controller

Riccati based synthesis techniques. Either one of them can be
chosen to define the parameter F , and the implementation of
the compensator into the system follows similarly afterwards
regardless of the choice made.

Instead of the LMI based anti-windup compensator design
methodology followed in [24]–[26], here we use the alterna-
tive Riccati based method to construct the plant-order anti-
windup compensator for stable plants.

Using the method given in [20] we define F to be

F = −
(
R+

W−1

ε

)
B̄p

T
P (22)

where P > 0 satisfies the following ARE :

ĀTp P + P Āp − P B̄p R B̄Tp P + C̄Tp C̄p = 0 (23)

The design parameters R, W and ε can be properly chosen
for a similar L2 performance as promised by the respective
LMI based design methodology.

The corresponding anti-windup design ensures the local
stability of the nonlinear loop with the region of attraction
defined by an ellipsoid as described in [20] where a simplified
tuning approach is also provided for the choice of parameters
to define the region of attraction and an upper bound on
the local L2 gain. The reader not familiar with anti-windup
synthesis techniques using Riccati equations might also want
to consult [27].

When F is defined using (22) and (23), the matrices
in (18,19,20,21) can be constructed, and the anti-windup
compensator can be augmented into the system as

ẋaw = Āawxaw + B̄aw(ur − sat(ur)) (24)
yaw = C̄awxaw + D̄aw(ur − sat(ur)) (25)

with yaw=
[
yaw1 yTaw2

]T
, yaw1 ∈ R , yaw2 ∈ Rn+1.

The anti-windup modification term, yaw2 is incorporated
into the augmented control structure in (11,12) as

ẋcm = Ācxcm + B̄c

[
−e
−uact

]
− B̄cyaw2 (26)

um = C̄cxcm + D̄c

[
−e
−uact

]
− D̄cyaw2 (27)

with Āc , B̄c , C̄c and D̄c as defined previously.
On the other hand, the term yaw1 modifies the control

input um in (27), and is used to define ur as

ur = um − yaw1 (28)

The augmented linear plant subject to input magnitude
saturation and the corresponding nominal control structure
with anti-windup compensation are displayed in Figure 4.

III. AN INDIRECT ADAPTIVE CONTROL DESIGN

As the described control structure is based on the explicit
plant model, in the unknown plant parameters case one can
use the online estimations of these parameters and implement
an adaptive control with anti-windup augmentation.

A first order filter 1/(s+ λ) , λ > 0 is used to avoid the
high frequency sensor noise amplification by the derivative
term. For any fixed set of plant parameters we thus obtain

s

s+ λ
x︸ ︷︷ ︸

def
= z

= Ap
1

s+ λ
x+Bp

1
s+ λ

1
s
sat(ur) (29)

⇒ z =
[
Ap Bp

]︸ ︷︷ ︸
def
= θ∗T

 1
s+λ x

1
s+λ

1
s sat(ur)


︸ ︷︷ ︸

def
= φ

(30)

where sat(ur) is the time derivative of uact which is the
control input including the rate saturation nonlinearity and
directly applied to the original plant. Note that as long as
the rate of change of the control input does not hit the rate
saturation limits, ūr or −ūr , and remains in the region where
sat(ur) = ur , the relation in (9) reduces to uact= (1/s)ur .
Meanwhile, the anti-windup compensator remains inactive,
and the output of the augmented controller, um is applied
to the augmented plant as ur .

The regressor vector is defined using the original plant state
vector x and the saturated control input sat(ur) as

φ =
1

s+ λ

[
xT 1

s sat(ur)
]T

(31)

=
1

s+ λ

[
xT uact

]T
(32)

which is the filtered form of the state vector of the augmented
plant as given in (7).
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Fig. 4. The nominal control structure with anti-windup compensator for the rate-limited system in the augmented form

The estimation model can be expressed as

ẑi = θTi φ , i = 1, 2, ..., n (33)

with θi as the estimate of θ∗i , the ith column of θ∗ :

θi(t) =
[
âi1 âi2 ... âin b̂i

]T
(34)

where âij and b̂i are the estimates of aij and bi at time
t , aij is the ijth entry of Ap ∈ Rn×n , and bi is the ith

entry of Bp ∈ Rn .
The normalized estimation error εi can be constructed as

εi =
zi − θTi φ
m2

, i = 1, 2, ..., n (35)

by choosing the following proper normalization signal:

m2 = 1 + φTφ (36)

so that φ / m ∈ L∞ can be guaranteed.
The parameter errors are defined in vector form using

θ̃i = θi − θ∗i , i = 1, 2, ..., n (37)

and the matrices of parameter errors are derived as

Ãp = Âp −Ap , B̃p = B̂p −Bp (38)

For the adaptive law we employ the Gradient Algorithm:

θ̇i = Γiεiφ , Γi = ΓTi > 0 (39)

For any constant θ∗i we can thus show the following:

‖θ̇i‖ = ‖ ˙̃
θi‖ ≤ ‖Γi‖i,2 ‖εim‖

‖φ‖
m

(40)

where ‖Γi‖i,2 is the induced L2 norm of Γi , and ‖θ̇i‖, ‖ ˙̃
θi‖,

‖εim‖, ‖φ‖ denote the Euclidean norms of θ̇i ,
˙̃
θi , εim , φ .

In order to guarantee the boundedness of parameter esti-
mates a projection algorithm needs to be included. Together
with ‖φ‖ / m ∈ L∞ and εim ∈ L2

⋂
L∞ , it is implied

by (40) that θ̇i ∈ L2

⋂
L∞ . Hence, we have θi ∈ L∞ and

εi , εim , θ̇i ∈ L2

⋂
L∞ for i = 1, 2, ..., n .

The reader is referred to [28] for the relevant discussion
on the stabilizability problem in the indirect Adaptive Pole
Placement control.

As the plant parameters are unknown, the controller gains
K1 and K2 cannot be evaluated by solving the associated
ARE. The modified controller in (26,27) thus cannot be
constructed. Similarly, F cannot be obtained using (22), and
the anti-windup controller in (24,25) cannot be implemented.

Instead we implement an adaptive control design based
on the Certainty Equivalence Principle. The adaptive control
gain K̂ is evaluated through the solution of the associated

Fig. 5. The adaptive control design for rate-limited systems with unknown plant parameters
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ARE using the parameter estimates from the adaptive law.
Accordingly, a new parameter F̂ can be defined through (22)
using the solution of (23) with the parameter estimates.

As we work on an artificial plant augmentation, we do not
need to estimate all elements of the matrices Āp , B̄p and C̄p
but only the original plant parameters, Ap and Bp which are
required to construct the estimate of Āp . We do not estimate
B̄p and C̄p since they are known.

The block diagram of the adaptive control structure includ-
ing the anti-windup scheme is illustrated in Figure 5 where
both the augmented control and the anti-windup compensator
parameters are shown to be evaluated online.

IV. STABILITY ANALYSIS

We simply add and subtract the terms Âpe and B̂puact
to the tracking error dynamics in (10) and obtain

ė = Âpe− B̂p uact +Apr − Ãpe− B̃p uact (41)

where −Ãp e and −B̃p uact are the terms due to parameter
estimation errors.

We first attempt to express the control input uact , the
original state vector x , and thus the tracking error e in
terms of the normalized estimation error given by

ε =
[
ε1 ε2 ... εn

]T
(42)

One can derive εm2 using (33) and (35) as follows:

εm2 = − Ãp
1

s+ λ
x− B̃p

1
s+ λ

1
s
sat(ur) (43)

= − Ãp
1

s+ λ
(e+ r)− B̃p

1
s+ λ

1
s
sat(ur) (44)

We operate on both sides of (44) with (s+λ) and combine
the corresponding relation with (41) to further derive

ė = Âpe+ (s+ λ)εm2 + ˙̃Ap
1

s+ λ
e (45)

+ ˙̃Bp
1

s+ λ

1
s
sat(ur) + Ãpr + ˙̃Ap

1
s+ λ

r

− B̂p
1
s
sat(ur) +Apr

A new vector variable can then be defined as

ē = e− εm2 (46)

and substituted into (45) in order to obtain

˙̄e = Âpē+ (λI + Âp)︸ ︷︷ ︸
∈L∞

εm︸︷︷︸
∈L2

m+ ˙̃Ap︸︷︷︸
∈L2

1
s+ λ

e (47)

+ ˙̃Bp︸︷︷︸
∈L2

1
s+ λ

1
s
sat(ur)︸ ︷︷ ︸

∈L∞

+ Âpr︸︷︷︸
∈L∞

+ ˙̃Ap︸︷︷︸
∈L2

1
s+ λ

r︸ ︷︷ ︸
∈L∞

− B̂p
1
s
sat(ur)︸ ︷︷ ︸
∈L∞

The implementation of a similar projection function as
discussed in [25] is essential in order to have all the roots of

det(sI − Âp(t)) in the negative half-plane and to establish
exponential stability of the homogeneous part of (47).

The homogeneous part of (47) is not affected by neither
the modified LQ controller output um nor the implemented
uact when the system is in the saturation phase since the
rate of change of the actual effective control input to the
plant is sat(ur) which is a constant equal to either ūr or
−ūr. The integrator action would result in an effective control
input of (1/s) ūr or −(1/s) ūr which can again be shown
to be bounded for any time instant assuming that the initial
effective control input is bounded. The parameter estimates
Âp and B̂p are bounded by projection, the reference signal
r is bounded by definition, and the adaptive law guarantees
that εm , ˙̃Ap ,

˙̃Bp ∈ L∞ .
A fictitious normalizing signal mf is defined as

mf
2 = c+ ‖et‖

2

2δ (48)

where c > 0 is some constant, and ‖et‖
2

2δ is the exponentially
weighted L2 norm of e . Using (46) we can write

‖et‖2δ ≤ ‖ēt‖2δ + ‖(εm2)t‖2δ (49)

and obtain the following bound for m2
f :

m2
f ≤ c+ c ‖ēt‖

2

2δ + c ‖(εm2)t‖
2

2δ (50)

Based on (47) we can also write

‖ēt‖
2

2δ ≤ c ‖(εm2)t‖
2

2δ + c ‖( ˙̃Ape)t‖
2

2δ (51)

+ c ‖( ˙̃Bp
1
s
sat(ur))

t
‖

2

2δ + c ‖(Âpr)t‖
2

2δ

+ c ‖( ˙̃Apr)t‖
2

2δ + c ‖(B̂p)t‖
2

2δ

where ‖( ˙̃Bp 1
s sat(ur))t‖

2

2δ and ‖( ˙̃Apr)t‖
2

2δ are known to be
bounded by the properties of the adaptive law. The bound-
edness of ‖(Âpr)t‖

2

2δ and ‖(B̂p)t‖
2

2δ can be established by
projection. ‖( ˙̃Ape)t‖

2

2δ can be further shown to be bounded
by ‖( ˙̃Apmf )t‖

2

2δ .

We partition φ in (32) as φ =
[
φT1 φ2

]T
and define

φ1 =
1

s+ λ
x , φ2 =

1
s+ λ

uact (52)

One can observe that the state x and the error e bound
φ1 , and φ2 is bounded by definition. Thus,

m =
√

1 + φTφ (53)

can be shown to be bounded by mf .
We then substitute (51) in (50) and obtain

m2
f ≤ c+ c ‖(εmmf )t‖

2

2δ + c ‖( ˙̃Apmf )t‖
2

2δ (54)

≤ c+ c

∫ t

0

e−δ(t−τ)g2(τ)m2
f (τ)dτ (55)

where

g2 = ε2m2 + ‖ ˙̃Ap‖
2

i,2
(56)

Since εm , ˙̃Ap ∈ L2 , it follows that g ∈ L2 . Bellman-
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Gronwall Lemma (see App.) can then be applied to show that
mf ∈ L∞ which further implies that m , ē , x , φ ∈ L∞ .

As a result we establish boundedness of all signals in the
closed-loop when the system experiences saturation.

V. CONCLUSION

The control of linear systems with bounded inputs is a chal-
lenging task. The recently developed anti-windup compen-
sator design techniques promise systematic formulation and
stability during saturation. The control of uncertain systems
prone to input rate saturation, however, is still recognized as
an open problem.

In this paper an adaptive control structure including an
adaptive anti-windup scheme is developed for systems with
large parametric uncertainties and input rate saturation con-
straints. The signals in the closed-loop are shown to remain
bounded in the saturation phase while the adaptive anti-
windup augmentation is activated. The oscillations in the
system response caused by the input rate saturation and
the corresponding performance degradation can thus be sup-
pressed by the proposed indirect adaptive control design.

APPENDIX

Bellman-Gronwall Lemma: If λ(t) , g(t) and k(t) are
nonnegative piecewise continuous functions of time t , and

y(t) ≤ λ(t) + g(t)
∫ t

t0

k(s)y(s)ds , ∀ t ≥ t0 ≥ 0

then it can be shown [29] for any t ≥ t0 ≥ 0 that

y(t) ≤ λ(t) + g(t)
∫ t

t0

λ(s)k(s)exp
(∫ t

s

k(τ)g(τ)dτ
)
ds
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